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Abstract—This paper shows that the slope at each corner
point of the capacity region of the general broadcast channel
coincides with that of the randomized time division (hence the
Marton) inner bound and the Nair–El Gamal (as well as the
Körner–Marton) outer bound. We then show that the optimal
superposition coding inner bound by Bandemer, El Gamal, and
Kim can be simplified to the convex closure of the union of the
Cover–Bergmans UX region and the Cover–van der Meulen UV

region. Generalizing a result by Hajek and Pursely on the skewed
binary symmetric broadcast channel, we show that for binary
input broadcast channels, the UV region reduces to time division
further simplifying the superposition coding inner bound. Finally
we establish necessary and sufficient conditions for the optimality
of the superposition inner bound for skewed binary broadcast
channels.

I. INTRODUCTION

Consider the 2-receiver discrete-memoryless broadcast

channel p(y1, y2|x) depicted in Figure 1. We consider the

private message setup in which the sender X wishes to

communicate a message M1 ∈ [1 : 2nR1 ] to receiver Y1 and

a message M2 ∈ [1 : 2nR2 ] to receiver Y2 and define the

capacity region of this channel as the closure of the set of

all achievable rates (R1, R2) (see [1, chapter 5] for detailed

definitions).
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Fig. 1: Broadcast channel with private messages.

The capacity region of this channel is not known in general

and there are inner and outer bounds that coincide for several

special cases [1]. The first nontrivial inner bound uses super-

position coding, which was invented by Cover in his seminal

paper on the broadcast channel [2]. The best known inner

bound on the capacity region of the broadcast channel is due

to Marton [3] and the best known outer bound is due to Nair

and El Gamal [4] who showed that it is strictly tighter than the

earlier Körner–Marton outer bound [3]. In [5] it was shown
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that the Nair–El Gamal outer bound is not tight in general. It

is not known, however, if the Marton inner bound is optimal in

general. Recently, Anantharam, Gohari, and Nair [6] showed

that for broadcast channels with binary input, the Marton inner

bound reduces to the randomized time division inner bound,

which in turn is a special case of the Cover–van der Meulen

UVW inner bound [7].

In this paper we establish new optimality results for the ran-

domized time division and superposition coding inner bounds.

In the following section, we show that the slope at each

corner point of the capacity region of the general irreducible

broadcast channel coincides with the slope of the randomized

time division (hence the Marton inner bound) inner bound and

the Körner–Marton outer bound [3]. This is quite surprising

given that randomized time division is in general a special

case of the Marton inner bound (and even of the Cover–van

der Meulen inner bound).

As pointed out in [8], there are two superposition coding

schemes. The first is the UV scheme, which is a natural exten-

sion of Cover’s superposition scheme for the binary symmetric

broadcast channel and a special case of the Cover–van der

Meulen UVW scheme [7]. The second is the more popular

“layered” superposition coding UX (and V X) scheme, also

introduced in [2] and formally established by Bergmans [9].

The optimal inner bound on the capacity region of the broad-

cast channel achieved by the UV scheme was established

in [10]. In [8], it was shown that this inner bound includes

the inner bound for the UX scheme and that this inclusion

can be strict. In Section III, we simplify the superposition

coding inner bound in [10]. We then show that for binary input

broadcast channels, the UV region reduces to time division,

which generalizes the result of Hajek and Pursely’s for the

skewed binary symmetric broadcast channel [11] and further

simplifies the superposition coding inner bound. In Section IV,

we establish a simple but general condition under which

the superposition coding inner bound is not tight. We then

establish necessary and sufficient conditions for the optimality

of superposition coding for skewed binary broadcast channels.

II. OPTIMALITY OF RANDOMIZED TIME DIVISION INNER

BOUND AT CORNER POINTS

In this section, we characterize the slope of the capacity

region of the broadcast channel around the corner points. We

show that it is equal to the slope of the randomized time



division inner bound and the slope of the Körner–Marton outer

bound.

Recall that the Marton inner bound [3] is the set of rate

pairs (R1, R2) such that

R1 < I(V,W ;Y1),

R2 < I(U,W ;Y2),

R1 +R2 < min{I(W ;Y1), I(W ;Y2)}+ I(V ;Y1 |W )

+ I(U ;Y2 |W )− I(U ;V |W )

(1)

for some pmf q(u, v, w, x). We consider the equivalent

weighted sum-rate for λ ∈ [0, 1],

λR1 +R2 = max
q(u,v,w,x)

min
a∈[0,1]

(

(λ− 1)I(V,W ;Y1)

+ (1 − a)I(W ;Y1) + aI(W ;Y2)

+ I(V ;Y1 |W ) + I(U ;Y2 |W )− I(U ;V |W )
)

.

We can interchange the max and min operations above (and

in similar situations in this paper) by applying Corollary 2 in

[5] to yield

λR1 +R2 = min
a∈[0,1]

max
q(u,v,w,x)

(

(λ− 1)I(V,W ;Y1)

+ (1 − a)I(W ;Y1) + aI(W ;Y2)

+ I(V ;Y1 |W ) + I(U ;Y2 |W )− I(U ;V |W )
)

.

This characterization can be equivalently represented using the

upper concave envelope [12] as

λR1 +R2 = min
a∈[0,1]

max
q(x)

(

(λ− a)I(X ;Y1) + aI(X ;Y2)

+ C[−(λ− a)I(X ;Y1)− aI(X ;Y2)

+ max
q(u,v|x)

{λI(V ;Y1) + I(U ;Y2)− I(U ;V )}]
)

,

where C[f ] denotes the upper concave envelope of f (the

smallest concave function that is greater than or equal to f ).

The randomized time-division inner bound [11] can be seen

as a restriction of the expression above to the choices of

q(u, v|x) governed by U = X,V = 0 or V = X,U = 0,

yielding the achievable weighted sum-rate

λR1 +R2 = min
a∈[0,1]

max
q(x)

(

(λ− a)I(X ;Y1) + aI(X ;Y2)

+ C[max{aI(X ;Y1)− aI(X ;Y2),

(1− a)I(X ;Y2)− (λ− a)I(X ;Y1)}]
)

.

(2)

Note that for binary input broadcast channels, the random-

ized time-division region coincides with the Marton’s inner

bound [6].

The Nair–El Gamal outer bound [4] states that if a rate pair

(R1, R2) is achievable, then it must satisfy the inequalities

R1 ≤ I(V ;Y1),

R2 ≤ I(U ;Y2),

R1 +R2 ≤ I(V ;Y1) + I(X ;Y2 |V ),

R1 +R2 ≤ I(U ;Y2) + I(X ;Y1 |U)

for some q(u, v, x). This implies that for every achievable

(R1, R2) and λ ∈ [0, 1],

λR1 +R2 ≤ max
q(u,x)

(

I(U ;Y2) + λI(X ;Y1 |U)
)

=max
q(x)

(

I(X ;Y2) + C[λI(X ;Y1)− I(X ;Y2)]
)

, (3)

and for λ ≥ 1,

λR1 +R2 ≤ max
q(v,x)

(

λI(V ;Y1) + I(X ;Y2 |V )
)

≤ max
q(x)

(

λI(X ;Y1) + C[I(X ;Y2)− λI(X ;Y1)]
)

. (4)

Define C1 = maxq(x) I(X ;Y1) and C2 = maxq(x) I(X ;Y2).
We know that the two rate pairs (C1, 0) and (0, C2) lie on the

capacity region C. Now define the slope of the capacity region

around the corner-point (C1, 0) as

λ∗
1 = inf{λ ≥ 0 : λR1 +R2 ≤ λC1, ∀(R1, R2) ∈ C}.

We partition (with respect to the channel p(y1|x)) the set

of broadcast channels into two classes:

Class A: There is a capacity achieving pmf q∗1 for the channel

p(y1|x) such that

C[I(X ;Y1)− I(X ;Y2)]q∗
1
= Iq∗

1
(X ;Y1)− Iq∗

1
(X ;Y2),

Class B: For any capacity achieving pmf q∗1 for the channel

p(y1|x),

C[I(X ;Y1)− I(X ;Y2)]q∗
1
> Iq∗

1
(X ;Y1)− Iq∗

1
(X ;Y2),

where C[f ]q∗
1

denotes C[f ] evaluated at q∗1 , and Iq∗
1
(X ;Yi)

denotes the mutual information between X and Yi for X ∼ q∗1 ,

i = 1, 2.

Definition 1. A channel p(y|x) is said to be irreducible if any

capacity achieving pmf q∗ satisfies q∗(x) > 0 for all x ∈ X .

Note that every channel can be expressed as a limit of

irreducible channels. Suppose there is an input symbol such

that for capacity achieving pmf q∗(x0) = 0. Then introduce

a new a output symbol η and change the channel transition

matrix to: p′
Y |X(η|x0) = ǫ, p′

Y |X(y|x0) = (1 − ǫ)p(y|x0) for

y 6= η, leaving other transition probabilities unchanged. Note

that any capacity achieving pmf for the new channel must have

q∗(x0) > 0 (since, infinite derivative at boundary).

In the following, we characterize the slope of the capacity

region λ∗
1 around the corner-point (C1, 0), which is achieved

using the randomized time division, under various conditions

on the channel.

Theorem 1.

(i) If the broadcast channel belongs to Class A and the

channel p(y1|x) is irreducible, then λ∗
1 is the smallest

λ ∈ [0, 1] such that there exists a capacity achieving

pmf q∗1 for the channel p(y1|x) satisfying

C[λI(X ;Y1)−I(X ;Y2)]q∗
1
= λIq∗

1
(X ;Y1)−Iq∗

1
(X ;Y2).

(ii) If the broadcast channel belongs to Class B, then define

λ̂1 = inf{λ ≥ 0 : λI(X ;Y1) ≥ I(X ;Y2) ∀q(x)}.



(In standard fashion, we set λ̂1 = ∞ if the set is empty.)

(a) λ∗
1 = λ̂1 if λ̂1 ≥ 1 and the channel p(y1|x) is

irreducible.

(b) If λ̂1 < 1, then λ∗
1 = 1. Note that the receiver Y1

is more capable than the receiver Y2 and the entire

capacity region is characterized in [13].

Proof. We establish the two parts separately.

(i) Assume that the broadcast channel belongs to Class A. Let

λ′
1 be the smallest λ ∈ [0, 1] such that there exists a capacity

achieving pmf q∗1 for the channel p(y1|x) satisfying

C[λI(X ;Y1)− I(X ;Y2)]q∗
1
= λIq∗

1
(X ;Y1)− Iq∗

1
(X ;Y2).

(5)

To show that λ∗
1 ≤ λ′

1, we need to show that λ′
1R1 +

R2 ≤ λ′
1C1 for any (R1, R2) ∈ C. Note that for any

(R1, R2) ∈ C and λ′
1 ∈ [0, 1], as shown in (3), λ′

1R1 +R2 ≤
maxq(x)(I(X ;Y2) + C[λ′

1I(X ;Y1) − I(X ;Y2)]). Since the

right-hand-side is a concave function of q(x), our assump-

tion yields that the outer bound reduces to λ′
1I(X ;Y1) at

q(x) = q∗1 ; hence q(x) = q∗1 is a local maximum and thus

a global maximum. This implies that for any (R1, R2) ∈ C,

one has λ′
1R1 +R2 ≤ λ′

1C1.

To show the reverse direction λ∗
1 ≥ λ′

1 we show that a rate

pair (R1, R2) such that λR1+R2 > λC1 is achievable for any

λ ∈ [0, λ′
1). Randomized-time-division, for λ ∈ [0, 1] yields a

weighted rate sum (see (2)), given by

λR1 +R2 = min
a∈[0,1]

max
q(x)

(

(1− λa)I(X ;Y2) + λaI(X ;Y1)

+ C[max{λa(I(X ;Y2)− I(X ;Y1)),

λ(1− a)I(X ;Y1)− (1− λa)I(X ;Y2)}]
)

.

Suppose the minimum is achieved at a∗ ∈ [0, 1] for some

λ ∈ [0, λ′
1), then the weighted rate sum would satisfy

λR1 +R2 ≥ max
q(x)

(

(1− λa∗)I(X ;Y2) + λa∗I(X ;Y1)

+ C[λ(1 − a∗)I(X ;Y1)− (1− λa∗)I(X ;Y2)]
)

≥ max
q(x)

(

(1− λa∗)I(X ;Y2) + λa∗I(X ;Y1)

+ (1− λa∗)C[
λ(1 − a∗)

1− λa∗
I(X ;Y1)− I(X ;Y2)]

)

> (1− λa∗)Iq∗
1
(X ;Y2) + λa∗Iq∗

1
(X ;Y1)

+(1− λa∗)

(

λ(1 − a∗)

1− λa∗
Iq∗

1
(X ;Y1)− Iq∗

1
(X ;Y2)

)

= λC1,

where the last inequality holds because for λ ∈ [0, λ′
1) and

for all capacity achieving pmfs q∗1 for the channel p(y1|x), we

have C[λI(X ;Y1)− I(X ;Y2)]q∗
1
> λIq∗

1
(X ;Y1)− Iq∗

1
(X ;Y2)

by the definition of λ′
1 in (5).

(ii) Now assume that the broadcast channel belongs to Class

B. Let λ′′
1 be the smallest λ ∈ [0,∞) such that

λI(X ;Y1) ≥ I(X ;Y2) ∀q(x).

We divide the case into two parts: (a) when λ′′
1 ≥ 1 and (b),

when when λ′′
1 < 1.

Sub-case (a): We first show that λ∗
1 ≤ λ′′

1 . Note that for

any (R1, R2) ∈ C and λ′′
1 ≥ 1, as shown in (3), λ′′

1R1 +
R2 ≤ maxq(x) λ

′′
1I(X ;Y1) + C[I(X ;Y2) − λ′′

1I(X ;Y1)]. If

λ′′
1I(X ;Y1) ≥ I(X ;Y2) ∀q(x), then clearly C[I(X ;Y2) −

λ′′
1I(X ;Y1)] = 0 and λ′′

1R1 +R2 ≤ λ′′
1C1.

To show the reverse direction λ∗
1 ≥ λ′′

1 , note that since the

channel p(y1|x) is irreducible, q∗1 is an interior point. Hence if

there exists some q(x) such that λI(X ;Y1) < I(X ;Y2), then

C[I(X ;Y2)− λI(X ;Y1)]q∗
1
> 0.

As stated in (2), randomized-time-division for λ ≥ 1 yields a

weighted rate sum

λR1 +R2 = min
a∈[0,1]

max
q(x)

(

(λ− a)I(X ;Y1) + aI(X ;Y2)

+ C[max{a(I(X ;Y1)− I(X ;Y2)),

(1 − a)I(X ;Y2)− (λ− a)I(X ;Y1)}]
)

.

Suppose a∗ ∈ (0, 1] is the minimizer; then the weighted sum-

rate by randomized-time-division would satisfy

λR1 +R2 ≥ max
q(x)

(

(λ− a∗)I(X ;Y1) + a∗I(X ;Y2)

+ a∗C[I(X ;Y1)− I(X ;Y2)]
)

> (λ− a∗)Iq∗
1
(X ;Y1) + a∗Iq∗

1
(X ;Y2)

+ a∗(Iq∗
1
(X ;Y1)− Iq∗

1
(X ;Y2))

= λC1.

In above the last inequality is due the fact that the broadcast

channel belongs to Class B. (The inequality is only strict for

a∗ 6= 0).

If a∗ = 0 is the minimizer, then the weighted sum-rate by

randomized-time-division would satisfy

λR1 + R2 = max
q(x)

(

λI(X ;Y1) + C[I(X ;Y2)− λI(X ;Y2)]
)

> λC1,

where the last inequality is a consequence of having

C[I(X ;Y2)− λI(X ;Y1)]q∗
1
> 0.

Sub-case (b): As mentioned earlier, the entire capacity region

is established in [13] and it can be easily seen that for λ ≤ 1

max
(R1,R2)∈C

(λR1 +R2) = min
a∈[0,1]

max
q(x)

(

(1− λa)I(X ;Y2)

+ λaI(X ;Y1) + C[λ(1 − a)I(X ;Y1)− (1− λa)I(X ;Y2)]
)

.

(6)

Since the channel is in Class B, it is easy to see that for any

capacity achieving pmf q∗1 and λ < 1,

C[λ(1 − a)I(X ;Y1)− (1− λa)I(X ;Y2)]q∗
1

> λ(1 − a)Iq∗
1
(X ;Y1)− (1− λa)Iq∗

1
(X ;Y2).

Plugging this into (6), we obtain that for any λ < 1,

max(R1,R2)∈C(λR1 + R2) > λC1. On the other hand, we

have max(R1,R2)∈C(R1+R2) = C1, establishing λ∗
1 = 1.



Remark 1. The following observations are pertinent here.

• There is two extremal cases, in both the channel p(y1|x)
is reducible, that are not covered by Theorem 1. First is

when the broadcast channel belongs to class A, and the

other where the broadcast channel belonging to Class B,

and λ̂1 ≥ 1.

• There is an as yet unpublished result by Salman

Beigi [14] which characterizes when Time-Division strat-

egy matches the capacity region for broadcast channels.

While this condition can be inferred from the slope result

mentioned above; the first author is sure that some of the

ideas for the slope characterization did permeate during

the discussions with Salman Beigi.

III. SIMPLIFIED CHARACTERIZATION OF SUPERPOSITION

CODING INNER BOUND

In this section, we present a simplified characterization

of the superposition coding inner bound in [10]. We then

simplify this characterization further for binary input broadcast

channels.

Consider the UV superposition coding inner bound on the

capacity of the broadcast channel. We fix a pmf q(u, v, x) =
{q(u)q(v), x(u, v)}. We randomly and independently generate

2nR2 sequences un(m2) ∼
∏n

i=1 pU (ui), m2 ∈ [1 : 2nR2 ], and

2nR1 sequences vn(m1) ∼
∏n

i=1 pV (vi), m1 ∈ [1 : 2nR1 ]. To

send (m1,m2), the sender transmits x(ui(m2), vi(m1)) for

i ∈ [1 : n].
In [10], Bandemer, El Gamal, and Kim showed that simulta-

neous nonunique decoding is optimal for this scheme. Further,

it is shown that the limit of the average probability of error

for this scheme approaches zero if (R1, R2) is in one of the

following four regions:

RUX(q): The set of rate pairs (R1, R2) such that

R2 < I(U ;Y2), R1 < I(X ;Y1 |U), R1 +R2 < I(X ;Y1).
(7)

RV X(q): The set of rate pairs (R1, R2) such that

R1 < I(V ;Y1), R2 < I(X ;Y2 |V ), R1 +R2 < I(X ;Y2).
(8)

RUV (q): The set of rate pairs (R1, R2) such that

R1 < I(V ;Y1), R2 < I(U ;Y2). (9)

RXX(q): Set of rate pairs (R1, R2) such that

R1 < I(X ;Y2 |U), R2 < I(X ;Y1 |V ),

R1 +R2 < min{I(X ;Y1), I(X ;Y2)}.
(10)

The optimal superposition coding inner bound in [10] can be

characterized as:

R
∗=co

(

∪q(u,v,x)

(

RUX(q) ∪ RVX(q) ∪ RUV (q) ∪ RXX(q)
))

.

Now consider the following four inner bounds

RUX = ∪q(u,v,x)RUX(q), RV X = ∪q(u,v,x)RV X(q),

RUV = co(∪q(u,v,x)RUV (q)), RXX = co(∪q(u,v,x)RXX(q)).

Note that RUX and RV X are the inner bounds of the “layered”

superposition coding scheme established in [2, 9] and RUV is

the Cover–van der Meulen inner bound for the general broad-

cast channel without the common auxiliary random variable

W [7, 15].

It can be easily seen that R∗ can be equivalently written as:

R
∗ = co(RUX ∪ RV X ∪ RUV ∪RXX). (11)

We are now ready to establish our first result, which

simplifies the characterization of R∗ in (11).

Theorem 2. The optimal superposition coding inner bound

for the broadcast channel with C1 ≥ C2 is

R
∗ = co (RUX ∪ RUV ) .

Proof. We show that (RV X ∪ RXX) ⊆ RUV .

Let (R1, R2) ∈ (RV X ∪ RXX). Then (R1, R2) satisfies

R1/C1 + R2/C2 ≤ 1 because for any rate pair (R1, R2) ∈
RVX ∪RXX , R1+R2 ≤ C2 from the inequalities on the sum

rate in RVX and RXX , and R1/C1 + R2/C2 ≤ R1/C2 +
R2/C2.

We now show that RUV contains any rate pair (R1, R2)
such that R1/C1 + R2/C2 ≤ 1. Note that (R1, R2) =
(C1, 0) satisfies the inequalities in RUV for q∗1 =
argmaxq(x) I(X ;Y1) and (U, V ) = (∅, X). Similarly,

(R1, R2) = (0, C2) satisfies the inequalities in RUV for

q∗2 = argmaxq(x) I(X ;Y2) and (U, V ) = (X, ∅). Thus for

any γ ∈ [0, 1], (γC1, (1 − γ)C2) ∈ RUV , i.e., RUV includes

any rate pair (R1, R2) such that R1/C1 +R2/C2 ≤ 1.

It is not difficult to show via examples that RUX does not

always include RUV nor is always included in it. For example

for a binary symmetric broadcast channel (with 0 < p1 < p2 <
0.5) [2], RUV ⊂ RUX , since RUX is the capacity region while

RUV is the time division region. On the other hand, for the

simple binary vector broadcast channel in [8], RUX ⊂ RUV .

Theorem 3. For binary input broadcast channels,

RUV = RTD,

where RTD is the set of rate pairs (R1, R2) such that R1/C1+
R2/C2 < 1.

Proof. The key to this is an information inequality, established

in [16], that for all random variables satisfying (U, V ) → X →
(Y1, Y2) with |X | = 2, the following inequality holds:

I(U ;Y1) + I(V ;Y2)− I(U ;V ) ≤ max{I(X ;Y1), I(X ;Y2)}.
(12)

The details can be found in the full version at [17]

A direct result of Theorem 3 is that the superposition

inner bound in (11) can be further simplified for binary input

broadcast channels.

Corollary 1. For binary input broadcast channels with C1 ≥
C2,

R
∗ = co (RUX ∪ {(0, C2)}) .



IV. OPTIMALITY OF SUPERPOSITION CODING INNER

BOUND

It is known that superposition coding is optimal for several

classes of broadcast channels, including when it is more

capable [18] or effectively less noisy [19]. In this section we

first present a general condition under which superposition

coding is not optimal, then establish necessary and sufficient

conditions under which superposition coding is optimal for the

skewed binary broadcast channels.

Proposition 1. For a broadcast channel with C1 ≥ C2,

if (0, C2) /∈ RUX and I(X ;Y1) and I(X ;Y2) are strictly

concave in q(x), then superposition coding is suboptimal.

Proof. The proof can be found in the full version [17].

0

1 0

1

X

Y1

Y2

s

0

1

z

Fig. 2: Skewed binary broadcast channel.

In [19], it was shown that superposition coding is optimal

in the shaded area in Figure 3, which corresponds to the

case where the superposition rate region coincides with the

Körner–Marton outer bound without the sum rate inequality

characterized as follows. Theorem 4 shows that superposition

coding is only optimal for that region.

Definition 2 (Beyond effectively less noisy [19]). For a DM-

BC, p(y1, y2|x), let Q(u, x) be a set of pmfs q(u, x) such that

for every λ ≥ 1,

max
q(u,x)

(

λI(U ;Y2) + I(X ;Y1 |U)
)

= max
q(u,x)∈Q(u,x)

(

λI(U ;Y2) + I(X ;Y1 |U)
)

.
(13)

Receiver Y1 is said to be beyond effectively less noisy than

receiver Y2 if there exists a Q(u, x) such that I(U ;Y1) ≥
I(U ;Y2) for every q(u, x) ∈ Q(u, x).

Theorem 4. For a skewed binary broadcast channel, super-

position coding is optimal if and only if Receiver Y1 is beyond

effectively less noisy than receiver Y2.

Proof. The proof can be found in the full version [17].
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