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Abstract

Marton’s inner bound is the tightest known inner bound on the capacity region of the broadcast
channel. It is not known, however, if this bound is tight in general. One approach to settle this key open
problem in network information theory is to investigate the multi-letter extension of Marton’s bound,
which is known to be tight in general. This approach has become feasible only recently through the
development of a new method for bounding cardinalities of auxiliary random variables by Gohari and
Anantharam. This paper undertakes this long overdue approach to establish several new results, including
(i) establishing the optimality of Marton’s bound for new classes of product broadcast channels, (ii)
showing that the best known outer bound by Nair and El Gamal is not tight in general, and (iii) finding
sufficient conditions for a global maximizer of Marton’s bound that imply that the 2-letter extension does
not increase the achievable rate. Motivated by the new capacity results, we establish a new outer bound
on the capacity region of product broadcast channels in general.

I. INTRODUCTION

Consider the broadcast channel q(y, z|x) with private messages depicted in Figure 1. The sender X
wishes to communicate a message M1 at rate R1 to receiver Y1 and a message M2 at rate R2 to another
receiver Y2. What is the capacity region, that is, the closure of the set of achievable rate pairs (R1, R2)?

This question is one of the key open problems in network information theory. Since the introduction
of this problem in the groundbreaking paper by Cover [1], several inner and outer bounds on the capacity
region of this channel have been developed and shown to be tight in some special cases; see Chapters
5, 8, and 9 of [2] for a detailed discussion of previous works.

Marton’s inner bound [3] and the UV outer bound [4](also sometimes referred to as the Nair–El Gamal
outer bound) are the tightest known bounds on the capacity region of the broadcast channel. These bounds
have been shown to coincide for all classes of broadcast channels with known capacity regions. Recently
it has been shown [5], [6], [7] that there are channels for which these inner and outer bounds do not
coincide. Therefore, clearly at least one of them is strictly sub-optimal.

In this paper we show that the UV outer bound is strictly suboptimal by establishing the capacity region
for a new class of broadcast channels and showing that this capacity region coincides with Marton’s inner
bound but not with the UV outer bound. This result is only one consequence of exploring an approach to
establish the optimality (or lack thereof) of Marton’s region by investigating its multi-letter extension. This
approach, although conceptually simple, has only become interesting recently. This is due to the fact that
cardinality bounds on the auxiliary random variables in Marton’s inner bound were recently established in
[6]; and only since then did Marton’s inner bound become computable and hence amenable to numerical
simulations for test channels.
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A. Preliminaries
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Fig. 1. A broadcast channel

In the broadcast channel setting a sender X , who has messages M1,M2, wishes to communicate
message M1 to receiver Y and M2 to receiver Z over a noisy discrete memoryless broadcast channel
q(y, z|x). A set of rate pairs (R1, R2) is said to be achievable for this broadcast channel, q(y, z|x), if
there is a sequence of codebooks, each consisting of:
• an encoder at the sender that maps the message pair (M1,M2) into a sequence Xn,
• a decoder at receiver Y that maps the received sequence Y n into an estimate M̂1 of its intended

message M1, and
• a decoder at receiver Z that maps the received sequence Zn into an estimate M̂2 of its intended

message M2

such that P(M̂1 6= M1),P(M̂2 6= M2) → 0 as n → ∞, when the messages M1,M2 are uniformly
distributed in [1 : 2nR1 ] × [1 : 2nR2 ]. The capacity region is the closure of the set of all achievable rate
pairs. An evaluable characterization of this capacity region is a well known open problem.

An inner bound to the capacity region refers to a set of rate pairs for which there is a strategy to
achieve it. The best known inner bound to the capacity region of the two receiver broadcast channel is
due to Marton [3]. It is not known if Marton’s inner bound is optimal or not. Marton’s inner bound for
a general two-receiver discrete-memoryless broadcast channel with private messages is the following:

Inner bound: (Marton [3]) The union of rate pairs (R1, R2) satisfying the inequalities

R1 ≤ I(U,W ;Y )

R2 ≤ I(V,W ;Z) (1)

R1 +R2 ≤ min{I(W ;Y ), I(W ;Z)}+ I(U ;Y |W ) + I(V ;Z|W )− I(U ;V |W )

over all (U, V,W,X) : (U, V,W )→ X → (Y,Z) forms a Markov chain constitutes an inner bound to the
capacity region. Further to compute this region it suffices [6] to consider |U|, |V| ≤ |X |, |W| ≤ |X |+ 4.

One of the main results of this paper is computing the capacity region for new classes of product
broadcast channels, and deducing that the best outer bound previously known is strictly sub-optimal.
The best outer bound1 for a general two-receiver discrete-memoryless broadcast channel with private
messages is the following:

1Though there have been several proposed outer bounds since [4], it was shown in [8] that they reduced to the one in [4] for
the private messages case.
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Outer bound: (UV outer bound [4]) The union of rate pairs (R1, R2) satisfying the inequalities

R1 ≤ I(U ;Y )

R2 ≤ I(V ;Z)

R1 +R2 ≤ I(U ;Y ) + I(X;Z|U)

R1 +R2 ≤ I(V ;Z) + I(X;Y |V )

over all (U, V,X) : (U, V ) → X → (Y,Z) forms a Markov chain constitutes an outer bound to the
capacity region. Further to compute this region it suffices to consider |U|, |V| ≤ |X |+ 1.

For the case with common and private messages requirement one has the following outer bound for
the capacity region.

Outer bound: (UVW outer bound [8]) The union of rate triples (R0, R1, R2) satisfying the inequalities

R0 ≤ min{I(W ;Y ), I(W ;Z)}
R0 +R1 ≤ I(U ;Y |W ) + min{I(W ;Y ), I(W ;Z)}
R0 +R2 ≤ I(V ;Z|W ) + min{I(W ;Y ), I(W ;Z)}

R0 +R1 +R2 ≤ min{I(W ;Y ), I(W ;Z)}+ I(X;Y |V,W ) + I(V ;Z|W )

R0 +R1 +R2 ≤ min{I(W ;Y ), I(W ;Z)}+ I(U ;Y |W ) + I(X;Z|U,W )

over all (U, V,W,X) such that (U, V,W ) → X → (Y, Z) forms a Markov chain constitutes an outer
bound to the capacity region. Further it suffices to consider |W| ≤ |X |+5, |U| ≤ |X |+1, |W| ≤ |X |+1.

It is also established in [8] that when R0 = 0, the UVW outer bound reduces to the UV outer bound.
1) Definitions of some classes of broadcast channels:

Definition 1. A broadcast channel q(y, z|x) is said to be a product broadcast channel if X = (X1,X2),Y =
(Y1,Y2),Z = (Z1,Z2) and q(y1, y2, z1, z2|x1, x2) = q1(y1, z1|x1)q2(y2, z2|x2). Here we denote q =
q1 × q2.

Definition 2. A product broadcast channel q = q1 × q2 is said to be reversely semi-deterministic if
the channel to one of the receivers in the first component is deterministic, and the channel to the other
receiver in the second component is deterministic. That is either both q1(y1|x1), q2(z2|x2) ∈ {0, 1} or
both q1(z1|x1), q2(y2|x2) ∈ {0, 1}.

Definition 3. A product broadcast channel q = q1 × q2 is said to be reversely more capable if one of
the following two holds:
• I(X1;Y1) ≥ I(X1;Z1), ∀p(x1), and I(X2;Z2) ≥ I(X2;Y2), ∀p(x2),
• I(X1;Z1) ≥ I(X1;Y1), ∀p(x1), and I(X2;Y2) ≥ I(X2;Z2), ∀p(x2).

B. Organization and summary of results

The rest of the paper is organized as follows. In Section II we show that the UV outer bound is not tight
(Claim 3). To do so, we need to introduce a quantity called the λ-sum-rate and use some of its properties
to compare the inner and outer bounds. In Section IV-B we will establish some additional properties
of λ-sum-rate some of which will be used critically for explicit evaluations of bounds. In Section III
we establish a new outer bound (Claim 4) for product broadcast channels and use it to determine the
capacity region of some new classes (Theorems 2 and 3). This outer bound is strictly better than the UV
outer bound as it is optimal for the example where the UV outer bound is loose. In (Lemma 8) we show
that Marton’s region for a product of two non-identical broadcast channels can be strictly larger than the
(Minkowski) sum of the individual regions. Section V deals with a particular coding strategy, randomized
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time-division, that is equivalent to Marton’s inner bound (albeit much simpler) for binary input broadcast
channels. If the generalization of the strategy described in Section V is indeed equivalent to Marton’s
inner bound for products of binary input broadcast channels, then one can deduce the optimality of
Marton’s coding scheme for binary input broadcast channels from a result (Theorem 4) we establish in
this section. Essentially, the results in this section show a reduction from an n-letter characterization to
a single-letter characterization within a randomized time-division strategy. Finally, some of the technical
arguments as well as other lengthy but routine arguments are relegated to the Appendices.

II. THE UV OUTER BOUND IS NOT TIGHT

The flow of this section is as follows: we first introduce λ-sum-rate, a quantity that helps in the
computation of Marton’s inner bound. To explicitly compute the sum rate for product channels we
introduce the notion of factorization of λ-sum-rate. Using this factorization idea, we show that Marton’s
sum rate is optimal for the product of reversely semi-deterministic channels. Having computed the optimal
sum rate, the UV outer bound is shown to be strictly suboptimal (via a specifically constructed example)
over this class of broadcast channels.

A. Definitions and preliminary results
Given a broadcast channel q(y, z|x) we define the following quantities for λ ∈ [0, 1] and for auxiliary

random variables (U, V,W ) that satisfy the Markov chain (U, V,W )→ X → (Y,Z):

λ-SRM (q, p(u, v, w, x)) := λI(W ;Y ) + (1− λ)I(W ;Z) + I(U ;Y |W ) + I(V ;Z|W )− I(U ;V |W ) (2)

λ-SRM (q, p(x)) := max
p(u,v,w|x):

(U,V,W )→X→(Y,Z)

λI(W ;Y ) + (1− λ)I(W ;Z) + I(U ;Y |W )

+ I(V ;Z|W )− I(U ;V |W ) (3)

λ-SRM (q) := max
p(u,v,w,x):

(U,V,W )→X→(Y,Z)

λI(W ;Y ) + (1− λ)I(W ;Z) + I(U ;Y |W )

+ I(V ;Z|W )− I(U ;V |W ) (4)

Note the following relations:

λ-SRM (q, p(x)) = max
p(u,v,w|x):

(U,V,W )→X→(Y,Z)

λ-SRM (q, p(u, v, w, x)),

and
λ-SRM (q) = max

p(x)
λ-SRM (q, p(x)).

Further one can verify that λ-SRM (q, p(x)) is concave in p(x) for a fixed λ.
Note that the maximum sum rate yielded by Marton’s inner bound in (1) is given by

SRM (q) := max
p(u,v,w,x):

(U,V,W )→X→(Y,Z)

min{I(W ;Y ), I(W ;Z)}+ I(U ;Y |W ) + I(V ;Z|W )− I(U ;V |W ).

Hence SRM (q) = maxp(u,v,w,x) minλ∈[0,1] λ-SRM (q, p(u, v, w, x)).
The following lemma allows us to shift the discussion from Marton’s sum rate to λ-sum-rate, and then

return to Marton’s sum rate at a later point to complete our arguments.
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Lemma 1. The following min-max theorem holds:

max
p(u,v,w,x)

min
λ∈[0,1]

λ-SRM (q, p(u, v, w, x)) = max
p(x)

min
λ∈[0,1]

max
p(u,v,w|x)

λ-SRM (q, p(u, v, w, x))

= min
λ∈[0,1]

max
p(u,v,w,x)

λ-SRM (q, p(u, v, w, x)).

This implies that the sum rate of Marton’s inner bound can be calculated using any of the three above
expressions.

Proof: The proof is presented in Appendix A and can be considered as an application of a min-max
theorem of Terkelsen[9]. The fact that

SRM (q) = max
p(u,v,w,x)

min
λ∈[0,1]

λ-SRM (q, p(u, v, w, x)) = min
λ∈[0,1]

max
p(u,v,w,x)

λ-SRM (q, p(u, v, w, x))

was also established in section 3.1.1 of [10]. However Corollary 2 established in the Appendix, which
is the crux of the current proof, can also be used in other instances where a max-min occurs, such as
compound channels.

Definition 4. For a given product channel q1(y1, z1|x1) × q2(y2, z2|x2) we say that the λ-sum-rate
factorizes if for all p(x1, x2) we have

λ-SRM (q1 × q2, pX1,X2
(x1, x2)) ≤ λ-SRM (q1, pX1

(x1)) + λ-SRM (q2, pX2
(x2)). (5)

Sufficient conditions for factorization of λ-sum-rate: In this section, we derive sufficient conditions
under which (5) holds. The following claim is key to the arguments in this section.

Claim 1. Let U1 = U2 = U, V1 = V2 = V,W1 = (W,Z2),W2 = (W,Y1). Then the following holds:

λ-SRM (q1 × q2, p(u, v, w, x1, x2))

= λ-SRM (q1, p(u1, v1, w1, x1)) + λ-SRM (q2, p(u2, v2, w2, x2)) + I(U ;V |W,Y1, Z2)

− λI(Y1;Y2)− (1− λ)I(Z1;Z2)− I(Y1;Z2|U, V,W ).

Proof:

λ-SRM (q1 × q2, p(u, v, w, x1, x2))

= λI(W ;Y1, Y2) + (1− λ)I(W ;Z1, Z2) + I(U ;Y1, Y2|W ) + I(V ;Z1, Z2|W )− I(U ;V |W )

= λI(W,Z2;Y1) + (1− λ)I(W,Z2;Z1) + I(U ;Y1|W,Z2) + I(V ;Z1|W,Z2)− I(U ;V |W,Z2)

+ λI(W,Y1;Y2) + (1− λ)I(W,Y1;Z2) + I(U ;Y2|W,Y1) + I(V ;Z2|W,Y1)− I(U ;V |W,Y1)

+ I(U ;V |W,Y1, Z2)− λI(Y1;Y2)− (1− λ)I(Z1;Z2)− I(Y1;Z2|U, V,W ).

Thus the excess term one needs to cancel (using a different choice of (U1, V1,W1) or (U2, V2,W2) or
both) to ensure factorization, is at most I(U ;V |W,Y1, Z2).

Also observe that one can get a similar identity by interchanging Y1 ↔ Z1 and Z2 ↔ Y2. Here W1 =
(W,Y2) and W2 = (W,Z1). This will yield the term I(U ;V |W,Y2, Z1) instead of I(U ;V |W,Y1, Z2).

Theorem 1. The λ-sum-rate factorizes (as in (5)) if either of the conditions below hold:
1) Any one of the four channels X1 → Y1;X1 → Z1;X2 → Y2 or X2 → Z2 is deterministic.
2) In either of the two components, one channel is more capable than the other.

Proof: Assume the first condition holds. In particular let X2 → Z2 be deterministic. Then we will
show that

λ-SRM (q1 × q2, p(u, v, w, x1, x2)) ≤ λ-SRM (q1, p(u1, v1, w1, x1)) + λ-SRM (q2, p(u2, v2, w2, x2))
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where U1 = U2 = U, V1 = V, V2 = Z2,W1 = (W,Z2),W2 = (W,Y1). To show this, from Claim 1 it
suffices to show that

λ-SRM (q2, p(u, v, w2, x2)) + I(U ;V |W,Y1, Z2) ≤ λ-SRM (q2, p(u, z2, w2, x2)),

where w2 = (w, y1). Observe that

λ-SRM (q2, p(u, v, w2, x2)) + I(U ;V |W,Y1, Z2)

= λI(W,Y1;Y2) + (1− λ)I(W,Y1;Z2) + I(U ;Y2|W,Y1)

+ I(V ;Z2|W,Y1)− I(U ;V |W,Y1) + I(U ;V |W,Y1, Z2)

= λI(W,Y1;Y2) + (1− λ)I(W,Y1;Z2) + I(U ;Y2|W,Y1) + I(V ;Z2|U,W, Y1)

≤ λI(W,Y1;Y2) + (1− λ)I(W,Y1;Z2) + I(U ;Y2|W,Y1) +H(Z2|U,W, Y1)

= λI(W,Y1;Y2) + (1− λ)I(W,Y1;Z2) + I(U ;Y2|W,Y1) + I(Z2;Z2|W,Y1)− I(Z2;U |W,Y1)

= λ-SRM (q2, p(u, z2, w2, x2)),

where we identify w2 = (w, y1). Similar reasoning can deal with the case where X1 → Y1 is a
deterministic channel.

Note that if X2 → Y2 is deterministic, then one must start with the interchanged W1,W2, i.e. W1 =
(W,Y2),W2 = (W,Z1), and similarly show that

λ-SRM (q2, p(u, v, w2, x2)) + I(U ;V |W,Z1, Y2) ≤ λ-SRM (q2, p(y2, v, w2, x2)),

where w2 = (w, z1). Finally, the case when X1 → Z1 is deterministic can be dealt with similarly.
Proceeding to the second condition, let us assume that the channel X2 → Y2 is more capable than the

channel X2 → Z2, i.e. for all p(x2), I(X2;Y2) ≥ I(X2;Z2). Let W2 = (W,Y1). Then observe that

λ-SRM (q2, p(u, v, w2, x2)) + I(U ;V |W,Y1, Z2)

= λI(W,Y1;Y2) + (1− λ)I(W,Y1;Z2) + I(U ;Y2|W,Y1)

+ I(V ;Z2|W,Y1)− I(U ;V |W,Y1) + I(U ;V |W,Y1, Z2)

= λI(W,Y1;Y2) + (1− λ)I(W,Y1;Z2) + I(U ;Y2|W,Y1) + I(V ;Z2|U,W, Y1)

≤ λI(W,Y1;Y2) + (1− λ)I(W,Y1;Z2) + I(U ;Y2|W,Y1) + I(X2;Z2|U,W, Y1)

≤ λI(W,Y1;Y2) + (1− λ)I(W,Y1;Z2) + I(U ;Y2|W,Y1) + I(X2;Y2|U,W, Y1)

= λI(W,Y1;Y2) + (1− λ)I(W,Y1;Z2) + I(X2;Y2|W,Y1)

= λ-SRM (q2, p(x2, ∅, w2, x2)).

Thus from Claim 1 we have the factorization of λ-SRM (q1 × q2).
Similar reasoning works for the other three cases. Again observe that when Z2 is more capable than

Y2 or Y1 is more capable than Z1, one should start with start with the interchanged W1,W2, i.e. W1 =
(W,Y2),W2 = (W,Z1). This completes the proof of the lemma.

B. Optimal sum rate for product of reversely semi-deterministic channels

Claim 2. Marton’s sum rate is optimal for the product of reversely semi-deterministic channels. Moreover
the sum rate of such a product channel q1 × q2 is given by

min
λ∈[0,1]

(
λ-SRM (q1) + λ-SRM (q2)

)
.

Proof: Take two semi-deterministic channels q1(y1, z1|x1) and q2(y2, z2|x2) where Y1 is a deter-
ministic function of X1 and Z2 is a deterministic function of X2.
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Consider the n-letter λ-sum-rate of the product channel q1 × q2. Using Theorem 1 the λ-sum-rate
of n-letter product channel factorizes into λ-sum-rate of two n-letter sub channels. Each term again
factorizes by repeated application of Theorem 1. More precisely,

λ-SRM (q1 ⊗n ×q2⊗n) = λ-SRM (q1⊗n) + λ-SRM (q2⊗n)

= n · λ-SRM (q1) + n · λ-SRM (q2).

Marton’s inner bound sum rate for the n-letter of the product channel q1 × q2 is equal to

min
λ∈[0,1]

(
λ-SRM (q1 ⊗n ×q2⊗n)

)
.

We can write the above expression as

n · min
λ∈[0,1]

(
λ-SRM (q1) + λ-SRM (q2)

)
.

Therefore, the actual sum rate satisfies2

SR∗(q1 × q2) ≤ min
λ∈[0,1]

(
λ-SRM (q1) + λ-SRM (q2)

)
.

On the other hand, this sum rate is achievable since it is equal to the single letter Marton’s inner bound
for q1 × q2, i.e.

SR∗(q1 × q2) = min
λ∈[0,1]

λ-SRM (q1 × q2) = min
λ∈[0,1]

(
λ-SRM (q1) + λ-SRM (q2)

)
.

C. The UV outer bound is strictly suboptimal

From the UV outer bound the sum rate of a general broadcast channel can be bounded from above by

SRUV (q) = max
p(u,v,x)

min{I(U ;Y ) + I(V ;Z), I(U ;Y ) + I(X;Z|U), I(V ;Z) + I(X;Y |V )}. (6)

In this example we will demonstrate a product of reversely semi-deterministic channel, q = q1×q2, such
that the optimal sum rate SR∗(q1 × q2) satisfies

SRM (q1 × q2) = SR∗(q1 × q2) < SRUV (q1 × q2).

This unequivocally shows that the UV outer bound is strictly suboptimal for the general broadcast channel.

Remark 1. Even if one were to consider the best outer bound with a common message requirement,
the UVW outer bound [8], the fact that we are showing that the sum rate is strictly weak for the UV
outer bound immediately implies the strict sub optimality of the UVW outer bound as well. To note this,
observe that the projection of the UVW outer bound on the plane R0 = 0 (which is shown in [8] to be
the UV outer bound) is strictly suboptimal.

Claim 3. Consider the reversely semi-deterministic channel in Figure 2. Assume that the transition
probabilities are uniform across the possible outputs, i.e the red edges have a probability 1

3 in the first
component and the blue edges have a probability 1

3 in the second component. Then Marton’s sum rate
(the optimal sum rate) is given by 8

3 = 3− 1
3 , while the UV sum rate is at least 3− 1

15 .

2We utilize the known fact that Marton’s inner bound sum rate for the n-letter version of the channel approaches the optimal
sum rate as n goes to infinity.
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Fig. 2. A reversely semi-deterministic channel

Proof: We begin by showing that Marton’s sum rate (the optimal sum rate) is given by 8
3 . Claim 2

shows that the sum rate of q1 × q2 is

min
λ∈[0,1]

(
λ-SRM (q1) + λ-SRM (q2)

)
.

The result of Appendix A implies that for any λ ∈ [0, 1], λ-SRM (q1) is equal to λ-SRM (q1, u(x1))
where u is the uniform distribution on X1. A similar statement holds for λ-SRM (q2). Therefore the sum
rate of q1 × q2 is equal to

min
λ∈[0,1]

(
λ-SRM (q1, u(x1)) + λ-SRM (q2, u(x2))

)
. (7)

By symmetry, λ-SRM (q2, u(x2)) = (1− λ)-SRM (q1, u(x1)). Therefore we can express the sum rate as

min
λ∈[0,1]

(
λ-SRM (q1, u(x1)) + (1− λ)-SRM (q1, u(x1))

)
.

In Appendix B we show that λ-SRM (q1, u(x1)) is equal to

λ-SRM (q1, u(x1)) =

{
5
3 −

2
3λ λ ∈ [0, 1

2 ]
4
3 λ ∈ [1

2 , 1]
.

Substituting this function into (7) we see that the minimum occurs uniquely at λ = 0.5 and the optimum
sum rate is equal to 8

3 .
To compute a lower bound on the UV sum rate, let p(x1, x2) = u(x1)u(x2), i.e. independent uniform

distribution on X1 and X2. We define U1, V1, X1, U2, V2, X2 having a joint distribution of the form
p(u1, v1, x1)p(u2, v2, x2) as follows. Let U1 = Y1 and p(u2, x2) satisfy

P(X2 = 1|U2 = 1) = P(X2 = 3|U2 = 1) =
1

2
, and P(X2 = 2|U2 = 1) = P(X2 = 4|U2 = 1) =

1

2
,

P(U2 = 1) = P(U2 = 2) =
1

2
.
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Similarly, let V2 = Z2 and p(v1, x1) satisfy

P(X1 = 1|V1 = 1) = P(X1 = 3|V1 = 1) =
1

2
, and P(X1 = 2|V1 = 1) = P(X1 = 4|V1 = 1) =

1

2
,

P(V1 = 1) = P(V1 = 2) =
1

2
.

Let binary random variables Q1 and Q2 be mutually independent of each other, and independent of
U1, V1, X1, U2, V2, X2. Furthermore assume that P(Q1 = 0) = P(Q2 = 0) = 4

5 . Define V ′1 and U ′2 as
follows: When Q1 = 0 set V ′1 = V1 and else set V ′1 = X1. When Q2 = 0 set U ′2 = U2 and else set
U ′2 = X2. Lastly set Ṽ1 = (V ′1 , Q1) Ũ2 = (U ′2, Q2).

We consider the UV region for the choice of (U1, Ũ2), (Ṽ1, V2), (X1, X2). Note that

R1 ≤ I(U1, Ũ2;Y1, Y2)

= I(U1;Y1) + I(Ũ2;Y2)

= H(Y1) +
4

5
I(U2;Y2) +

1

5
I(X2;Y2)

= 1 +
4

5
· 1

3
+

1

5
· 1

=
22

15
.

Similarly, one can show that

R2 ≤ I(Ṽ1, V2;Z1, Z2)

=
22

15
.

The sum rate constraint on R1 +R2 is as follows:

R1 +R2 ≤ I(U1, Ũ2;Y1, Y2) + I(X1, X2;Z1, Z2|U1, Ũ2)

= I(U1;Y1) + I(X1;Z1|U1) + I(Ũ2;Y2) + I(X2;Z2|Ũ2)

= H(Y1) + I(X1;Z1|Y1) +
4

5
I(U2;Y2) +

1

5
I(X2;Y2) +

4

5
H(Z2|U2)

= 1 +
2

3
+

4

5
· 1

3
+

1

5
· 1 +

4

5
· 1

=
44

15
.

Similarly, one can show that

R1 +R2 ≤ I(Ṽ1, V2;Z1, Z2) + I(X1, X2;Y1, Y2|Ṽ1, V2)

=
44

15
.

Therefore the point (R1, R2) = (22
15 ,

22
15) is in this region. Hence the UV sum rate is at least 44

15 = 3− 1
15 .

Thus for the product channel under consideration
8

3
= SRM (q1 × q2) = SR∗(q1 × q2) <

44

15
≤ SRUV (q1 × q2).

This shows that the UV outer bound is strictly suboptimal in general.

III. CAPACITY REGIONS FOR CLASSES OF PRODUCT BROADCAST CHANNELS

In this section we establish the capacity region for some classes of product broadcast channels. Here
we consider a more general setting where in addition to the private messages, the receivers also wish to
decode a common message M0. Hence we are interested in the achievable rate triples (R0, R1, R2). The
capacity region is defined in a similar fashion as in the case without common message.
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A. An outer bound for product channels

We present a new outer bound for the product of two broadcast channels. The manipulations here
are inspired by the manipulations in the proof of Theorem 1. This outer bound matches the capacity
region for a variety of product channels, including the product of two reversely semideterministic and the
product of two reversely more-capable channels. Hence, from Claim 3, it follows that this is a strictly
better bound for product broadcast channels than the UVW outer bound [8].

Claim 4. Given a product channel q(y1, y2, z1, z2|x1, x2) = q1(y1, z1|x1)q2(y2, z2|x2), the union over
all p1(w1, u1, v1, x1)p2(w2, u2, v2, x2) of triples (R0, R1, R2) satisfying

R0 ≤ min{I(W1;Y1) + I(W2;Y2), I(W1;Z1) + I(W2;Z2)}
R0 +R1 ≤ min{I(W1;Y1) + I(W2;Y2), I(W1;Z1) + I(W2;Z2)}+ I(U1;Y1|W1) + I(U2;Y2|W2)

R0 +R2 ≤ min{I(W1;Y1) + I(W2;Y2), I(W1;Z1) + I(W2;Z2)}+ I(V1;Z1|W1) + I(V2;Z2|W2)

R0 +R1 +R2 ≤ min{I(W1;Y1) + I(W2;Y2), I(W1;Z1) + I(W2;Z2)}
+ I(U2;Y2|W2) + I(X2;Z2|U2,W2)

+ min
{
I(U1;Y1|W1) + I(X1;Z1|U1,W1), I(V1;Z1|W1) + I(X1;Y1|V1,W1)

}
,

R0 +R1 +R2 ≤ min{I(W1;Y1) + I(W2;Y2), I(W1;Z1) + I(W2;Z2)}
+ min

{
I(U2;Y2|W2) + I(X2;Z2|U2,W2), I(V2;Z2|W2) + I(X2;Y2|V2,W2)

}
+ I(V1;Z1|W1) + I(X1;Y1|V1,W1),

forms an outer bound to the capacity region of the product broadcast channel.

Remark 2. Note that setting X2, Y2, Z2 = ∅ reduces this bound to UVW outer bound. Additionally, one
can interchange the roles of Y2 and Z1 with Z2 and Y1 respectively to get another set of similar constraints.
These constraints will be over different auxiliaries distributed as p1(w̃1, ũ1, ṽ1, x1)p2(w̃2, ũ2, ṽ2, x2) (ob-
serve that the distributions on X1, X2 are preserved), and we can take the intersection of these two con-
straints. Finally one can take union of these two sets of constraints over all p1(w1, u1, v1, w̃1, ũ1, ṽ1, x1)p2(w2, u2, v2, w̃2, ũ2, ṽ2, x2)
to get another, possibly better, outer bound.

Proof: The proof of this claim is given in Appendix B.

Remark 3. The above outer bound is also strictly sub-optimal. To see this first note that when one of
the product channels is trivial, this outer bound does not give us anything beyond the UVW-outer bound
[8]. Now, consider a product of three channels, first one is trivial, the collection of two and three forms
a reversely semi-deterministic pair. The new outer bound reduces to the UVW bound on the reversely
semi-deterministic, and therefore it is strictly sub-optimal. However, one could argue that in order to
write the outer bound, one should take the intersection of all possible outer bounds one can write by
breaking up the broadcast channel into product forms. To deal with this objection one can consider the
product of three channels as above and then slightly perturb the channel to destroy the product form
structure of the channel. Because the above outer bound is continuous in the underlying channel, this
outer bound must be loose for this channel. In fact, we still don’t know of “the correct way” to write
an outer bound that fully captures the spirit of the counterexample discussed earlier. We have thought of
alternative expressions but none seemed satisfactory.
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1) An achievable region for a product broadcast channel: Given a product channel q(y1, y2, z1, z2|x1, x2) =
q1(y1, z1|x1)q2(y2, z2|x2) the union of rate triples satisfying

R0 ≤ min{I(W1;Y1) + I(W2;Y2), I(W1;Z1) + I(W2;Z2)}
R0 +R1 ≤ I(W1;Y1) + I(W2;Y2) + I(U1;Y1|W1) + I(U2;Y2|W2) (8)

R0 +R2 ≤ I(W1;Z1) + I(W2;Z2) + I(V1;Z1|W1) + I(V2;Z2|W2)

R0 +R1 +R2 ≤ min{I(W1;Y1) + I(W2;Y2), I(W1;Z1) + I(W2;Z2)}
+ I(U1;Y1|W1) + I(U2;Y2|W2) + I(V1;Z1|W1)

+ I(V2;Z2|W2)− I(U1;V1|W1)− I(U2;V2|W2)

over all p1(w1, v1, u1, x1)p2(w2, v2, u2, x2) constitutes an inner bound to the capacity region. The achiev-
ability of these points is immediate from Marton’s inner bound by letting U = (U1, U2), V = (V1, V2),W =
(W1,W2) and p(u, v, w) ∼ p1(w1, v1, u1, x1)p2(w2, v2, u2, x2).

B. Capacity regions for new classes of product broadcast channels
Theorem 2. The capacity region for a product of reversely semi-deterministic (say, channels X1 →
Y1, X2 → Z2 are deterministic) broadcast channel is given by the union of rate triples satisfying

R0 ≤ min{I(W1;Y1) + I(W2;Y2), I(W1;Z1) + I(W2;Z2)}
R0 +R1 ≤ I(W1;Y1) + I(W2;Y2) +H(Y1|W1) + I(U2;Y2|W2)

R0 +R2 ≤ I(W1;Z1) + I(W2;Z2) + I(V1;Z1|W1) +H(Z2|W2)

R0 +R1 +R2 ≤ min{I(W1;Y1) + I(W2;Y2), I(W1;Z1) + I(W2;Z2)}
+ I(V1;Z1|W1) +H(Y1|V1,W1) + I(U2;Y2|W2) +H(Z2|U2,W2)

over all p1(w1, v1, x1)p2(w2, u2, x2).

Proof: The achievability is immediate by setting U1 = Y1 and V2 = Z2 in (8). Note that these two
choices of auxiliary random variables are possible since channels X1 → Y1, X2 → Z2 are deterministic.

The converse is also immediate from the outer bound in Claim 4. Observe that for any p1(w1, v1, u1, x1),
p2(w2, v2, u2, x2) we have

I(U1;Y1|W1) ≤ H(Y1|W1), I(V2;Z2|W2) ≤ H(Z2|W2),

and each of the two sum rate terms in Claim 4 is bounded by

min{I(W1;Y1) + I(W2;Y2), I(W1;Z1) + I(W2;Z2)}+ I(V1;Z1|W1)

+H(Y1|V1,W1) + I(U2;Y2|W2) +H(Z2|U2,W2).

Thus the outer bound is contained in the inner bound (and hence they coincide).

Theorem 3. The capacity region for a product of reversely more-capable (say, receiver Z1 is more
capable than Y1, and receiver Y2 is more capable than Z2) broadcast channel is given by the union of
rate triples satisfying

R0 ≤ min{I(W1;Y1) + I(W2;Y2), I(W1;Z1) + I(W2;Z2)}
R0 +R1 ≤ min{I(W1;Y1) + I(W2;Y2), I(W1;Z1) + I(W2;Z2)}+ I(U1;Y1|W1) + I(X2;Y2|W2)

R0 +R2 ≤ min{I(W1;Y1) + I(W2;Y2), I(W1;Z1) + I(W2;Z2)}+ I(X1;Z1|W1) + I(V2;Z2|W2)

R0 +R1 +R2 ≤ min{I(W1;Y1) + I(W2;Y2), I(W1;Z1) + I(W2;Z2)}+ I(X2;Y2|W2)

+ min
{
I(U1;Y1|W1) + I(X1;Z1|U1,W1), I(X1;Z1|W1)

}
,

R0 +R1 +R2 ≤ min{I(W1;Y1) + I(W2;Y2), I(W1;Z1) + I(W2;Z2)}
+ min

{
I(X2;Y2|W2), I(V2;Z2|W2) + I(X2;Y2|V2,W2)

}
+ I(X1;Z1|W1)
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over all p1(w1, v1, x1)p2(w2, u2, x2).

Proof: The achievability is immediate by setting W ′1 = (U1,W1), U ′1 = ∅, V ′1 = X1 and W ′2 =
(V2,W2), U ′2 = X ′2, V

′
2 = ∅ in (8). Plugging these choices into (8) we obtain that one can achieve rate

triples satisfying

R0 ≤ min{I(U1,W1;Y1) + I(V2,W2;Y2), I(U1,W1;Z1) + I(V2,W2;Z2)}
R0 +R1 ≤ I(U1,W1;Y1) + I(V2,W2;Y2) + I(X2;Y2|V2,W2)

= I(W1;Y1) + I(W2;Y2) + (U1;Y1|W1) + I(X2;Y2|W2)

R0 +R2 ≤ I(U1,W1;Z1) + I(V2,W2;Z2) + I(X1;Z1|U1,W1)

= I(W1;Z1) + I(W2;Z2) + I(X1;Z1|W1) + I(V2;Z2|W2)

R0 +R1 +R2 ≤ min{I(U1,W1;Y1) + I(V2,W2;Y2), I(U1,W1;Z1) + I(V2,W2;Z2)}
+ I(X2;Y2|V2,W2) + I(X1;Z1|U1,W1).

The last sum rate term can be split into two terms as follows

R0 +R1 +R2 ≤ I(U1,W1;Y1) + I(V2,W2;Y2) + I(X2;Y2|V2,W2) + I(X1;Z1|U1,W1)

= I(W1;Y1) + I(W2;Y2) + I(X2;Y2|W2) + I(U1;Y1|W1) + I(X1;Z1|U1,W1)

R0 +R1 +R2 ≤ I(U1,W1;Z1) + I(V2,W2;Z2) + I(X2;Y2|V2,W2) + I(X1;Z1|U1,W1)

= I(W1;Z1) + I(W2;Z2) + I(X1;Z1|W1) + I(V2;Z2|W2) + I(X2;Y2|V2,W2).

Thus we see, by comparing term by term, that this achievable region is at least as large as the region
stated in Theorem 3, and hence the region in Theorem 3 is achievable.

The converse is also reasonably immediate from the outer bound in Claim 4. Observe the following:

min{I(W1;Y1) + I(W2;Y2), I(W1;Z1) + I(W2;Z2)}+ I(U1;Y1|W1) + I(U2;Y2|W2)

≤ min{I(W1;Y1) + I(W2;Y2), I(W1;Z1) + I(W2;Z2)}+ I(U1;Y1|W1) + I(X2;Y2|W2),

min{I(W1;Y1) + I(W2;Y2), I(W1;Z1) + I(W2;Z2)}+ I(V1;Z1|W1) + I(V2;Z2|W2)

{I(W1;Y1) + I(W2;Y2), I(W1;Z1) + I(W2;Z2)}+ I(X1;Z1|W1) + I(V2;Z2|W2),

min{I(W1;Y1) + I(W2;Y2), I(W1;Z1) + I(W2;Z2)}+ I(U2;Y2|W2) + I(X2;Z2|U2,W2)

+ min
{
I(U1;Y1|W1) + I(X1;Z1|U1,W1), I(V1;Z1|W1) + I(X1;Y1|V1,W1)

}
≤ min{I(W1;Y1) + I(W2;Y2), I(W1;Z1) + I(W2;Z2)}+ I(X2;Y2|W2)

+ min
{
I(U1;Y1|W1) + I(X1;Z1|U1,W1), I(X1;Z1|W1)

}
,

and finally,

min{I(W1;Y1) + I(W2;Y2), I(W1;Z1) + I(W2;Z2)}+ I(V1;Z1|W1) + I(X1;Y1|V1,W1)

+ min
{
I(U2;Y2|W2) + I(X2;Z2|U2,W2), I(V2;Z2|W2) + I(X2;Y2|V2,W2)

}
≤ {I(W1;Y1) + I(W2;Y2), I(W1;Z1) + I(W2;Z2)}+ I(X1;Z1|W1)

+ min
{
I(X2;Y2|W2), I(V2;Z2|W2) + I(X2;Y2|V2,W2)

}
.

Thus we see, by comparing term by term, that the region stated in Theorem 3 is at least as large as the
outer bound in Claim 4. Hence the region in Theorem 3 is an outer bound, thus completing the converse.

Remark 4. The achievable region in (8) also matches the outer bound in Claim 4 for a variety of other
classes. For instance, say Z1 is more capable than Y1 and Y2 is a deterministic function of X2. In this



13

case, one can show that the capacity region is given by the union of rate triples satisfying

R0 ≤ min{I(W1;Y1) + I(W2;Y2), I(W1;Z1) + I(W2;Z2)}
R0 +R1 ≤ min{I(W1;Y1) + I(W2;Y2), I(W1;Z1) + I(W2;Z2)}+ I(U1;Y1|W1) +H(Y2|W2)

R0 +R2 ≤ min{I(W1;Y1) + I(W2;Y2), I(W1;Z1) + I(W2;Z2)}+ I(X1;Z1|W1) + I(V2;Z2|W2)

R0 +R1 +R2 ≤ min{I(W1;Y1) + I(W2;Y2), I(W1;Z1) + I(W2;Z2)}
+ I(V2;Z2|W2) +H(Y2|V2,W2) + I(X1;Z1|W1).

The details are left to the reader.

IV. ON MARTON’S INNER BOUND AND λ-SUM-RATE

In this section we prove a collection of results regarding Marton’s inner bound and also about the
quantity we introduced earlier, the λ-sum-rate.

A. Two letter Marton’s inner bound

This section considers the two letter Marton’s inner bound and the role it plays in determining the
optimality of the traditional Marton’s inner bound. To simplify our analysis and for the ease of exposition
we will focus on the sum rate, but some of the insights that we obtained have already been useful beyond
just the sum rate.

Given a broadcast channel q(y, z|x) the maximum sum rate achievable via Marton’s strategy is given
by

SRM (q) = max
p(u,v,w,x)

min{I(W ;Y ), I(W ;Z)}+ I(U ;Y |W ) + I(V ;Z|W )− I(U ;V |W ). (9)

The maximum is taken over distributions p(u, v, w, x) where the auxiliary random variables satisfy the
Markov chain (U, V,W )→ X → (Y,Z).

Consider a product broadcast channel q(y1, z1|x1) × q(y2, z2|x2) obtained by taking identical copies
of the original channel. One can obtain the maximum sum rate achievable via Marton’s strategy for this
new channel as

SRM (q× q) = max
p(u,v,w,x1,x2)

min{I(W ;Y1, Y2), I(W ;Z1, Z2)}+ I(U ;Y1, Y2|W )

+ I(V ;Z1, Z2|W )− I(U ;V |W ). (10)

Here the maximum is taken over distributions p(u, v, w, x1, x2) where the auxiliary random vari-
ables (U, V,W ) satisfy the Markov chain: (U, V,W ) → (X1, X2) → (Y1, Y2, Z1, Z2), and the channel
has a product nature given by q(y1, y2, z1, z2|x1, x2) = q(y1, z1|x1)q(y2, z2|x2). Define SR2M (q) :=
1
2SRM (q× q) to be the two-letter sum rate yielded by Marton’s inner bound.

Here we state a (folk-lore) lemma that relates the optimality of Marton’s achievable strategy and the
relationship between SR2M (q) and SRM (q).

Lemma 2. (Folklore) The following two statements are equivalent:
1) Marton’s achievable strategy achieves the optimal sum rate, SR∗(q), for all broadcast channels

q(y, z|x), i.e. SRM (q) = SR∗(q).
2) SR2M (q) = SRM (q) for all q(y, z|x).

Proof: We present an argument here for completeness.
(1 =⇒ 2) This follows from two facts: first, SR2M (q) yields an achievable sum rate for the broadcast

channel q(y, z|x), i.e. SR2M (q) ≤ SR∗(q); and second, SR2M (q) ≥ SRM (q) for all q(y, z|x). To see the
first, observe that a codebook of block length n for the product channel q(y1, z1|x1)q(y2, z2|x2) yields a
codebook of block length 2n for the original channel q(y, z|x), since the mapping from (x1, ..., x2n) to the
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pairs (y1, . . . y2n), (z1, . . . , z2n) by the channel q(y, z|x) is same as the mapping from ((x1, x2), ...., (x2n−1, x2n))
to the pairs ((y1, y2), ...., (y2n−1, y2n)), and ((z1, z2), ...., (z2n−1, z2n)) by the channel q(y1, z1|x1)q(y2, z2|x2).
Hence any rate achievable for the product channel q(y1, z1|x1)q(y2, z2|x2) (normalized by factor 1

2 ) is
also achievable for the single channel q(y, z|x).

Let p∗(u, v, w, x) achieve the maximum sum rate in (9). Choose Ũ = (U1, U2), Ṽ = (V1, V2), W̃ =
(W1,W2) and let p(ũ, ṽ, w̃, x1, x2) = p∗(u1, v1, w1, x1)p∗(u2, v2, w2, x2), i.e. take a product distribution
by taking two i.i.d. copies of the single letter optimal distribution. Now observe that

2SR2M (q) ≥ min{I(W̃ ;Y1, Y2), I(W̃ ;Z1, Z2)}+ I(Ũ ;Y1, Y2|W̃ ) + I(Ṽ ;Z1, Z2|W̃ )− I(Ũ ; Ṽ |W̃ )

= min{I(W1;Y1), I(W1;Z1)}+ I(U1;Y1|W1) + I(V1;Z1|W1)− I(U1;V1|W1)

+ min{I(W2;Y2), I(W2;Z2)}+ I(U2;Y2|W2) + I(V2;Z2|W2)− I(U2;V2|W2)

= 2SRM (q).

This shows that if SRM (q) is the maximum achievable sum rate then SR2M (q) = SRM (q) for all
q(y, z|x).

(2 =⇒ 1) Let q ⊗n (yn1 , z
n
1 |xn1 ) =

∏n
i=1 q(yi, zi|xi) denote the n-fold product channel. If 2 holds

then, by induction, for any k ≥ 1 the 2k-fold product channel satisfies

1

2k
SRM (q⊗2k) = SRM (q).

However for any n, we know from Fano’s inequality that for any sequence of good codebooks

n(R1 +R2)

≤ I(M1;Y n
1 ) + I(M2;Zn1 ) + n(R1 +R2)εn + 1

≤ SRM (q⊗n) + n(R1 +R2)εn + 1.

where SRM (q⊗n) is the maximum sum rate by Marton’s strategy for the n-fold product channel, as
setting U = M1, V = M2,W = ∅ is a particular choice of the auxiliary random variables for the n-fold
product channel. Further we also know that εn → 0 as n→∞. This implies that the optimal sum rate,
SR∗(q), for the broadcast channel q(y, z|x) satisfies

SR∗(q) ≤ lim inf
n

1

n
SRM (q⊗n) ≤ lim

k→∞

1

2k
SRM (q⊗2k) = SRM (q).

On the other hand SRM (q) ≤ SR∗(q) since SRM (q) is the rate given by Marton’s achievable strategy.
Hence we have SRM (q) = SR∗(q).

Remark 5. Lemma 2 is an attempt at answering the question of whether Marton’d inner bound is optimal
or not. If one can find a channel for which SR2M (q) > SRM (q) then Marton’s inner bound is strictly
sub-optimal, otherwise (i.e. for all channels q we have SR2M (q) = SRM (q)) Marton’s inner bound is
optimal for the sum rate and would yield the capacity region. The advantage of just having to look at
2-letter extensions is that with the recently established cardinality bounds [6] one can numerically search
over channels q, to try and determine a channel where SR2M (q) > SRM (q). So far, our searches have
yielded evidence to the contrary, i.e. they point towards a potential optimality of Marton’s coding scheme.

B. Properties of λ-sum-rate

In this section, we state some results about the λ-sum-rate (defined in Section II-A) as this quantity
seems to possess properties (such as factorizations over q1× q2) which we will show that SRM (q) does
not possess. Further λ-sum-rate also gives us a lot of insight into evaluations of the various bounds and
in the search for potential counterexamples to optimality of Marton.
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Lemma 3. For a given channel q(y, z|x), λ-SRM (q) and λ-SRM (q, p(x)) are convex in λ for λ ∈ [0, 1],
and concave in p(x) for a fixed λ ∈ [0, 1].

Proof: To show that λ 7→ λ-SRM (q, p(x)) is convex, take arbitrary λ1, λ2, λ3 satisfying λ2 = λ1+λ3

2 .
Take some p(w∗, u∗, v∗|x) maximizing λ2-SRM (q, p(x)). Note that

λ2-SRM (q, p(x)) ={
λ2I(W ∗;Y ) + (1− λ2)I(W ∗;Z) + I(U∗;Y |W ∗) + I(V ∗;Z|W ∗)− I(U∗;V ∗|W ∗)

}
=

1

2

[{
λ1I(W ∗;Y ) + (1− λ1)I(W ∗;Z) + I(U∗;Y |W ∗) + I(V ∗;Z|W ∗)− I(U∗;V ∗|W ∗)

}
+

{
λ3I(W ∗;Y ) + (1− λ3)I(W ∗;Z) + I(U∗;Y |W ∗) + I(V ∗;Z|W ∗)− I(U∗;V ∗|W ∗)

}]
≤

1

2

[
λ1-SRM (q, p(x)) + λ3-SRM (q, p(x))

]
.

To show that λ 7→ λ-SRM (q) is convex, let p∗(x) be the maximizing input distribution, i.e. λ-SRM (q, p∗(x)) =
λ-SRM (q). Note that

λ-SRM (q) = λ-SRM (q, p∗(x))

≤ 1

2

[
λ1-SRM (q, p∗(x)) + λ3-SRM (q, p∗(x))

]
≤ max

p(x)

1

2
λ1-SRM (q, p(x)) + max

p(x)

1

2
λ3-SRM (q, p(x))

=
1

2

[
λ1-SRM (q) + λ3-SRM (q)

]
.

To show the concavity in p(x) take two marginal distributions p0(x) and p1(x), and assume that
(U0, V0,W0, X0) and (U1, V1,W1, X1) are two set of random variables maximizing the expressions
of λ-SRM (q, p0(x)) and λ-SRM (q, p1(x)) respectively. Take a uniform binary random variable Q,
independent of all previously defined random variables. Let U = UQ, V = VQ, W = (WQ, Q), X = XQ.
Observe that X is distributed according to p0(x)

2 + p1(x)
2 and

λ-SRM (q,
p0(x)

2
+
p1(x)

2
) ≥ λI(WQ, Q;Y ) + λ̄I(WQ, Q;Z) + I(UQ;Y |WQ, Q)

+ I(VQ;Z|Q,WQ)− I(UQ;VQ|WQ, Q)

= λI(Q;Y ) + λ̄I(Q;Z) +
1

2
λ-SRM (q, p0(x)) +

1

2
λ-SRM (q, p1(x)).

Thus, λ-SRM (q, p(x)) is concave in p(x).

Lemma 4. λ-SRM (q) is related to the optimal sum rate as follows:

min
λ∈{0,1}

λ-SRM (q) ≥ SR∗(q),

i.e. the minimum value of λ-SRM (q) at the boundaries, i.e. λ = 0, 1, yields an upper bound on the
optimal sum rate, SR∗(q) .

Proof: We prove the statement for λ = 0; the proof for λ = 1 is similar. We will show that

0-SRM (q, p(x)) = max
p(w|x)

I(W ;Z) + I(X;Y |W ). (11)

Once (11) is established the proof then becomes an immediate, as 0-SRM (q, p(x)) will in turn be an
upper bound on the optimal sum rate by the UV outer bound (replace W by V).
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To show (11) first note that by setting V = ∅, U = X in (3) we obtain

0-SRM (q, p(x)) ≥ max
p(w|x)

I(W ;Z) + I(X;Y |W ).

To obtain the other direction, observe that

0-SRM (q, p(x)) = max
p(u,v,w|x)

{
I(W ;Z) + I(U ;Y |W ) + I(V ;Z|W )− I(U ;V |W )

}
= max

p(u,v,w|x)

{
I(VW ;Z) + I(U ;Y |W )− I(U ;V |W )

}
= max

p(u,v,w|x)

{
I(VW ;Z) + I(U ;Y |VW )− I(U ;V |WY )

}
≤ max

p(u,v,w|x)

{
I(VW ;Z) + I(X;Y |VW )

}
= max

p(w′|x)
I(W ′;Z) + I(X;Y |W ′).

Note that in the last step we replace (V,W ) by W ′.
Thus we have, as desired,

0-SRM (q, p(x)) = max
p(w|x)

I(W ;Z) + I(X;Y |W ).

Corollary 1. If the minimum value of λ-SRM (q) is attained at λ = 0 or λ = 1 then SRM (q) = SR∗(q),
i.e. Marton’s strategy achieves the optimal sum rate.

Proof: This follows from the relationships

min
λ∈[0,1]

λ-SRM (q) = SRM (q) ≤ SR∗(q) ≤ min
λ∈{0,1}

λ-SRM (q).

Lemma 5. To compute the maximum sum rate in (4), it suffices to consider auxiliary random variables
that satisfy |U|, |V|, |W| ≤ |X |.

Proof: This is proved in Theorem 2 of [10].

Lemma 6. Take some arbitrary p(x) and real λ∗. Then for any p(w∗, u∗, v∗|x) achieving λ∗-SRM (q, p(x)),
the line λ 7→ (λ − λ∗)(I(W ∗;Y ) − I(W ∗;Z)) + λ∗-SRM (q, p(x)) is a supporting hyperplane to the
convex curve λ 7→ λ-SRM (q, p(x)).

Proof: At λ = λ∗, the expression (λ− λ∗)(I(W ∗;Y )− I(W ∗;Z)) + λ∗-SRM (q, p(x)) is equal to
λ∗-SRM (q, p(x)) which is a point on the curve λ 7→ λ-SRM (q, p(x)). We need to show that for any
arbitrary λ,

λ-SRM (q, p(x)) ≥ (λ− λ∗)(I(W ∗;Y )− I(W ∗;Z)) + λ∗-SRM (q, p(x)).

The above inequality holds because it is equivalent to

λ-SRM (q, p(x)) ≥ λI(W ∗;Y ) + (1− λ)I(W ∗;Z) + I(U∗;Y |W ∗) + I(V ∗;Z|W ∗)− I(U∗;V ∗|W ∗).

Lemma 7. λ-SRM (q, p(x)) is linear in λ for more capable3 channels and constant in λ for less noisy
channels and deterministic channels.

3For the definitions of less noisy broadcast channel or more capable broadcast channel, please refer to [11].
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Proof: More capable: Assume that Y is more capable than Z.

λ-SRM (q, p(x)) = max
p(u,v,w|x)

[
λI(W ;Y ) + (1− λ)I(W ;Z) + I(U ;Y |W ) + I(V ;Z|W )− I(U ;V |W )

]
≤ max

p(u,v,w|x)

[
λI(W ;Y ) + (1− λ)I(W ;Z) + I(U ;Y |W ) + I(V ;Z|U,W )

]
≤ max

p(u,w|x)

[
λI(W ;Y ) + (1− λ)I(W ;Z) + I(U ;Y |W ) + I(X;Z|U,W )

]
(a)

≤ max
p(u,w|x)

[
λI(W ;Y ) + (1− λ)I(W ;Z) + I(U ;Y |W ) + I(X;Y |U,W )

]
≤ max

p(w|x)

[
λI(W ;Y ) + (1− λ)I(W ;Z) + I(X;Y |W )

]
= I(X;Y ) + (1− λ) max

p(w|x)
(I(W ;Z)− I(W ;Y )).

The inequality marked (a) is justified by the more-capable assumption. On the other hand setting U = X ,
V = ∅ shows that λ-SRM (q, p(x)) ≥ I(X;Y ) + (1 − λ) maxp(w|x)(I(W ;Z) − I(W ;Y )). Thus, when
Y is more capable than Z,

λ-SRM (q, p(x)) = I(X;Y ) + (1− λ) max
p(w|x)

(I(W ;Z)− I(W ;Y )) (12)

and is linear in λ.
Less Noisy: Assume that Y is less noisy than Z; and hence Y is also more capable than Z. From (12)

λ-SRM (q, p(x)) = I(X;Y ) + (1− λ) max
p(w|x)

(I(W ;Z)− I(W ;Y ))

= I(X;Y ).

The second equality follows since I(W ;Z) ≤ I(W ;Y ), ∀ W → X → (Y, Z) (definition of less noisy)
and equality can be achieved by setting W = ∅.

Deterministic:

λ-SRM (q, p(x)) = max
p(u,v,w|x)

[
λI(W ;Y ) + (1− λ)I(W ;Z) + I(U ;Y |W ) + I(V ;Z|W )− I(U ;V |W )

]
≤ max

p(u,v,w|x)

[
λI(W ;Y ) + (1− λ)I(W ;Z) + I(U ;Y |W ) + I(V ;Z|U,W )

]
≤ max

p(u,v,w|x)

[
λI(W ;Y,Z) + (1− λ)I(W ;Y,Z) + I(U ;Y,Z|W ) + I(V ;Y,Z|U,W )

]
≤ I(X;Y,Z) = H(Y,Z).

One the other hand setting W = ∅, U = Y , V = Z shows that λ-SRM (q, p(x)) ≥ H(Y, Z). Hence
λ-SRM (q, p(x)) is a constant. (Note that these choices of auxiliaries, i.e. U = Y , V = Z, are permissible
for deterministic channels since (U, V )→ X → (Y, Z) is a Markov chain.)

Remark 6. In each of the cases above, it is clear that the minimizing λ for the λ-SRM (q) lies on
λ ∈ {0, 1}. Thus the optimality of SRM could be deduced alternately using Corollary 1.

C. On SRM for product channels

In this section we consider the behavior of SRM (q) for the product of two non-identical channels. An
interested reader may wonder why we considered factorization of λ-SRM (q) as opposed to factorization
of SRM (q). Indeed we will show that there are channels q1, q2 such that

SRM (q1 × q2) > SRM (q1) + SRM (q2).
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Lemma 8. Let p = 0.1, e = H(0.1) = log2 10 − 0.9 log2 9. Consider a product channel formed by the
following components: Let the channels X1 → Y1 and X2 → Z2 be BEC(e) and the channels X1 → Z1

and X2 → Y2 be BSC(p). For this product channel

SRM (q1 × q2) > SRM (q1) + SRM (q2).

Proof: From [12], since 1−e = 1−H(p) we know that Y1 is more capable than Z1 and Z2 is more
capable than Y2. Thus, from Theorem 3, we know that Marton’s inner bound is optimal for this channel.
Hence from Lemma 1 and Theorem 1, we have that

SRM (q1 × q2) = min
λ∈[0,1]

λ-SRM (q1) + λ-SRM (q2).

By the skew-symmetry we know that λ-SRM (q2) = (1 − λ)-SRM (q1). Further, from the symmetry, it
is easy to show that it suffices to consider P(X = 0) = 1

2 to compute λ-SRM (q1). In particular one can
show that

λ-SRM (q1) = C + (1− λ)d∗,

where C is the common capacity of the BSC(p) and BEC(e), and d∗ = maxp(x) I(X;Y )− I(X;Z).
For the chosen parameters d∗ ≈ 0.03877. The maximum sum rate of the channel q1(y1, z1|x1), since Y1

is more capable than Z1, is given by the capacity to receiver Y1; hence SRM (q1) = C, the common
capacity.

Thus SRM (q1 × q2)− SRM (q1)− SRM (q2) is given by

min
λ∈[0,1]

(
C + (1− λ)d∗ + C + λd∗

)
− C − C = d∗ > 0.

V. RANDOMIZED TIME-DIVISION STRATEGY

Randomized time-division refers to a strategy that generalizes the simple time-division strategy. In time-
division, the sender X transmits exclusively to receiver Y for a predetermined α fraction of the time, and
transmits exclusively to receiver Z for the remaining (1− α) fraction of the time. In randomized time-
division, the sender chooses the α fraction of the time that it wants to transmit to Y using a codebook,
thus conveying some commonly decodable information to the receivers when they decode the proper
(α, 1 − α) division of slots. This strategy can be shown to improve on naive time division for some
broadcast channels. For more details, an interested reader reader can refer to [2, pg. 216].

This is indeed a special (and much simpler) instance of Marton’s coding strategy that sets U = X,V =
∅ when W ∈ A and V = X,U = ∅ when W ∈ Ac. This strategy yields a λ-sum-rate given by

λ-SRRTD(q) = max
p(w,x)

λI(W ;Y ) + (1− λ)I(W ;Z) +
∑
w∈A

P(W = w)I(X;Y |W = w)

+
∑
w∈Ac

P(W = w)I(X;Z|W = w).

Using standard arguments it follows that it suffices to consider |W| ≤ |X | to compute the λ-sum-rate.
It was shown [13] that for all binary input broadcast channels the sum rate obtained using the simple

randomized time division strategy matches the sum rate obtained using Marton’s coding strategy, i.e.
SRM (q) = SRRTD(q) when |X | = 2. This result is based on the inequality that whenever |X | = 2 and
(U, V )→ X → (Y, Z) is Markov we have

I(U ;Y ) + I(V ;Z)− I(U ;V ) ≤ max{I(X;Y ), I(X;Z)}.
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Using this inequality it also immediately follows that λ-SRRTD(q) = λ-SRM (q).
For the product of two channels q1 × q2 one can define a slight generalization of the RTD strategy

(equivalently this is a natural generalization of RTD for the 2-letter channel q×q). This is again a special
instance of Marton’s coding strategy that sets

(U, V ) :=


U = (X1X2), V = ∅ w ∈ A1

U = X1, V = X2 w ∈ A2

U = X2, V = X1 w ∈ A3

U = ∅, V = (X1, X2) w ∈ A4

,

where A1,A2,A3,A4 denotes a partition of W . Let this scheme be called 2-RTD. We define

λ-SR2-RTD(q1 × q2)

= max
p(w,x1,x2)

λI(W ;Y1, Y2) + (1− λ)I(W ;Z1, Z2) +
∑
w∈A1

P(W = w)I(X1, X2;Y1, Y2|W = w)

+
∑
w∈A2

P(W = w)
(
I(X1;Y1, Y2|W = w) + I(X2;Z1, Z2|W = w)− I(X1;X2|W = w)

)
+
∑
w∈A3

P(W = w)
(
I(X1;Y1, Y2|W = w) + I(X2;Z1, Z2|W = w)− I(X1;X2|W = w)

)
+
∑
w∈A4

P(W = w)I(X1, X2;Z1, Z2|W = w).

Similarly define

SR2-RTD(q1 × q2)

= max
p(w,x1,x2)

min{I(W ;Y1, Y2), I(W ;Z1, Z2)}+
∑
w∈A1

P(W = w)I(X1, X2;Y1, Y2|W = w)

+
∑
w∈A2

P(W = w)
(
I(X1;Y1, Y2|W = w) + I(X2;Z1, Z2|W = w)− I(X1;X2|W = w)

)
+
∑
w∈A3

P(W = w)
(
I(X1;Y1, Y2|W = w) + I(X2;Z1, Z2|W = w)− I(X1;X2|W = w)

)
+
∑
w∈A4

P(W = w)I(X1, X2;Z1, Z2|W = w).

In a similar fashion to the proof of Lemma 1 one can show the following lemma.

Lemma 9. The following holds:

min
λ∈[0,1]

λ-SR2-RTD(q× q) = SR2-RTD(q).

The proof is given in Appendix B.

Remark 7. Suppose there is a binary input channel q(y, z|x) such that SR2-RTD(q× q) > 2SRRTD(q)
then it would immediately imply that

SR2M (q) ≥ 1

2
SR2-RTD(q× q) > SRRTD(q) = SRM (q),

where the last equality follows from the result about binary input broadcast channels. This would have
been an easy technique to establish the strict sub-optimality of Marton’s coding scheme if it had worked.
However the next lemma shows that this cannot happen. Indeed we show that λ-SR2-RTD(q1 × q2) =
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λ-SRRTD(q1) + λ-SRRTD(q2) for channels with arbitrary input cardinality. Hence from Lemma 9 it
will immediately follow that SR2-RTD(q× q) = 2SRRTD(q).

Theorem 4. The following holds:

λ-SR2-RTD(q1 × q2) = λ-SRRTD(q1) + λ-SRRTD(q2).

Proof: By taking the product of the optimizing distributions for λ-SRRTD(q1), λ-SRRTD(q2) one
can immediately see that

λ-SR2-RTD(q1 × q2) ≥ λ-SRRTD(q1) + λ-SRRTD(q2).

Hence it suffices to show that

λ-SR2-RTD(q1 × q2) ≤ λ-SRRTD(q1) + λ-SRRTD(q2).

Observe that

λI(W ;Y1, Y2) + (1− λ)I(W ;Z1, Z2) +
∑

w∈A1

P(W = w)I(X1, X2;Y1, Y2|W = w)

+
∑

w∈A2

P(W = w)
(
I(X1;Y1, Y2|W = w) + I(X2;Z1, Z2|W = w)− I(X1;X2|W = w)

)
+
∑

w∈A3

P(W = w)
(
I(X1;Y1, Y2|W = w) + I(X2;Z1, Z2|W = w)− I(X1;X2|W = w)

)
+
∑

w∈A4

P(W = w)I(X1, X2;Z1, Z2|W = w)

= λH(Y1, Y2) + (1− λ)H(Z1, Z2)

+
∑

w∈A1

P(W = w)
(
I(X1, X2;Y1, Y2|W = w)− λH(Y1, Y2|W = w)− (1− λ)H(Z1, Z2|W = w)

)
+
∑

w∈A2

P(W = w)
(
I(X1;Y1, Y2|W = w) + I(X2;Z1, Z2|W = w)− I(X1;X2|W = w)

− λH(Y1, Y2|W = w)− (1− λ)H(Z1, Z2|W = w)
)

(13)

+
∑

w∈A3

P(W = w)
(
I(X1;Y1, Y2|W = w) + I(X2;Z1, Z2|W = w)− I(X1;X2|W = w)

− λH(Y1, Y2|W = w)− (1− λ)H(Z1, Z2|W = w)
)

+
∑

w∈A4

P(W = w)
(
I(X1, X2;Z1, Z2|W = w)− λH(Y1, Y2|W = w)− (1− λ)H(Z1, Z2|W = w)

)
.

The idea of the proof is to factorize each of the four summation terms in (13) separately.
Consider the following manipulations of the terms.

I(X1, X2;Y1, Y2|W = w)− λH(Y1, Y2|W = w)− (1− λ)H(Z1, Z2|W = w)

= I(X1;Y1|W = w, Y2) + I(X2;Y2|W = w,Z1)− λH(Y1|W = w, Y2) (14)

− λH(Y2|W = w,Z1)− (1− λ)H(Z1|W = w, Y2)− (1− λ)H(Z2|W = w,Z1),
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I(X1;Y1, Y2|W = w) + I(X2;Z1, Z2|W = w)− I(X1;X2|W = w)

− λH(Y1, Y2|W = w)− (1− λ)H(Z1, Z2|W = w)

= I(X1;Y1|W = w, Y2) + I(X2;Z2|W = w,Z1)− λH(Y1|W = w, Y2)

− λH(Y2|W = w,Z1)− (1− λ)H(Z1|W = w, Y2)− (1− λ)H(Z2|W = w,Z1)

+ I(X2;Z1|W = w) + I(X1;Y2|W = w,Z1)− I(X1;X2|W = w)

≤ I(X1;Y1|W = w, Y2) + I(X2;Z2|W = w,Z1)− λH(Y1|W = w, Y2) (15)

− λH(Y2|W = w,Z1)− (1− λ)H(Z1|W = w, Y2)− (1− λ)H(Z2|W = w,Z1),

where the last inequality follows since I(X1;X2|W = w) = I(Z1, X1;X2|W = w) = I(Z1;X2|W =
w) + I(X1;X2|W = w,Z1) ≥ I(Z1;X2|W = w) + I(X1;Y2|W = w,Z1). Here we use the fact that
(W,X2)→ X1 → Z1 is Markov and (X1, Z1,W )→ X2 → Y2 is Markov.

In a similar fashion we have

I(X2;Y1, Y2|W = w) + I(X1;Z1, Z2|W = w)− I(X1;X2|W = w)

≤ I(X1;Z1|W = w,Z2) + I(X2;Y2|W = w, Y1)− λH(Y1|W = w,Z2) (16)

− λH(Y2|W = w, Y1)− (1− λ)H(Z1|W = w,Z2)− (1− λ)H(Z2|W = w, Y1)

Finally

I(X1, X2;Z1, Z2|W = w)− λH(Y1, Y2|W = w)− (1− λ)H(Z1, Z2|W = w)

= I(X1;Z1|W = w,Z2) + I(X2;Z2|W = w, Y1)− λH(Y1|W = w,Z2) (17)

− λH(Y2|W = w, Y1)− (1− λ)H(Z1|W = w,Z2)− (1− λ)H(Z2|W = w, Y1)

Define new random variables W1,W2 having alphabets given by

W1 =

{
(w, z2) w ∈ A1 ∪ A2, z2 ∈ Z
(w, y2) w ∈ A3 ∪ A4, y2 ∈ Y

and W2 =

{
(w, y1) w ∈ A1 ∪ A2, y1 ∈ Y
(w, z1) w ∈ A3 ∪ A4, z1 ∈ Z

.

Further partition W1 into two sets B and Bc according to B = {(w, z2) : w ∈ A1 ∪ A2, z2 ∈ Z}, and
partition W2 into two sets C and Cc according to C = {(w, y1) : w ∈ A1, y1 ∈ Y} ∪ {(w, z1) : w ∈
A3, z1 ∈ Z}.

Using (14), (15), (16), (17), and the definitions of W1,W2,B, C we can bound the expression in (13)
by

λI(W1;Y1) + (1− λ)I(W1;Z1) +
∑
w1∈B

P(W1 = w1)I(X1;Y1|W1 = w1)

+
∑
w1∈Bc

P(W1 = w1)I(X1;Z1|W1 = w1) + λI(W2;Y2) + (1− λ)I(W2;Z2)

+
∑
w2∈C

P(W2 = w2)I(X2;Y2|W2 = w2) +
∑
w2∈Cc

P(W2 = w2)I(X2;Z2|W2 = w2)

≤ λ-SRRTD(q1) + λ-SRRTD(q2).

This implies that

λ-SR2-RTD(q1 × q2) ≤ λ-SRRTD(q1) + λ-SRRTD(q2),

and completes the proof of the Lemma.
Remark 8. We wish to bring following unique feature to this proof to the attention of the readers: in
identifying the auxiliaries W1,W2 in terms of W , past or future of Z, past or future of Y , we actually
chose different terms depending on w ∈ W . This is a freedom that has never been exploited before (to
the best of the knowledge of the authors). A consistent choice does not seem to work here.
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VI. CONCLUSION

In this paper we show a variety of results related to Marton’s inner bound and its optimality. We
also show that the tightest known outer bound is strictly sub-optimal. An outer bound is presented for
product broadcast channels which is then shown to coincide with Marton’s inner bound for classes of
channels whose capacity regions were previously unknown. This outer bound turns out to be a strict
improvement over the previously known tightest outer bound for product broadcast channels. It would
be very interesting to extend this outer bound to non-product channels in a natural way. Further a variety
of other interesting results are also established which aid in the computation of Marton’s inner bound.
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APPENDIX

Theorem 5 (Theorem 3 of [9]). Let X be a compact connected space, let Y be a set, and let f :
X × Y 7→ R be a function satisfying:
(i) For any y1, y2 ∈ Y there exists y0 ∈ Y such that

f(x, y0) ≥ 1

2
(f(x, y1) + f(x, y2)) , ∀x ∈ X.

(ii) Every finite intersection of sets of the form {x ∈ X : f(x, y) ≤ α)} with (y, α) ∈ Y ×R is closed
and connected.
Then

sup
y∈Y

min
x∈X

f(x, y) = min
x∈X

sup
y∈Y

f(x, y).

We now present a Corollary of the above theorem that can be potentially used in many information
theory scenarios.

Corollary 2. Let Λd be the d-dimensional simplex, i.e. λi ≥ 0 and
∑d

i=1 λi = 1. Let P be a set of
probability distributions p(u). Let Ti(p(u)), i = 1, .., d be a set of functions such that the set A, defined
by

A = {(a1, a2, ..., ad) ∈ Rd : ai ≤ Ti(p(u)) for some p(u) ∈ P},

is a convex set.
Then

sup
p(u)∈P

min
λ∈Λd

d∑
i=1

λiTi(p(u)) = min
λ∈Λd

sup
p(u)∈P

d∑
i=1

λiTi(p(u)).

Proof: Let f(λ, p(u)) =
∑d

i=1 λiTi(p(u)). It suffices to verify that f(λ, p(u)) satisfies the conditions
of Theorem 5. Since the set A is convex, we know that for any p1(u), p2(u) ∈ P we have a distribution
pc(u) ∈ P such that

Ti(pc(u)) ≥ 1

2

(
Ti(p1(u)) + Ti(p2(u))

)
, i = 1, ..., d.

Hence (using linearity in λ and non-negativity of λi) we have

f(λ, pc(u)) ≥ 1

2

(
f(λ, p1(u)) + f(λ, p2(u))

)
, ∀λ ∈ Λd.

Since f(λ, p(u)) is a linear function of λ, it is immediate that the set

B(p(u), α) = {λ ∈ Λd : f(λ, p(u)) ≤ α}

is closed for every pair (p(u), α) ∈ P × R. Further, due to the linearity in λ, if λ1, λ2 ∈ B(p(u), α),
then the line segment joining λ1 and λ2 belongs to B(p(u), α). This implies that a finite intersection of
sets, each containing λ1 and λ2 will also contain the line segment joining λ1 and λ2, showing that the
finite intersection will be connected. Therefore finite intersections of the sets of the form B(p(u), α) are
closed and connected. Thus the Corollary 2 follows from Theorem 5.

We will now show how one can use the Corollary 2 to establish Lemma 1.
Proof: (Proof of Lemma 1) It is clear that

max
p(u,v,w,x)

min
λ∈[0,1]

λ-SRM (q, p(u, v, w, x)) ≤ max
p(x)

min
λ∈[0,1]

max
p(u,v,w|x)

λ-SRM (q, p(u, v, w, x))

≤ min
λ∈[0,1]

max
p(u,v,w,x)

λ-SRM (q, p(u, v, w, x)).
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Therefore suffices to show that

max
p(u,v,w,x)

min
λ∈[0,1]

λ-SRM (q, p(u, v, w, x)) = min
λ∈[0,1]

max
p(u,v,w,x)

λ-SRM (q, p(u, v, w, x)).

Here we take d = 2 and set

T1(p(u, v, w, x)) = I(W ;Y ) + I(U ;Y |W ) + I(V ;Z|W )− I(U ;V |W )

T2(p(u, v, w, x)) = I(W ;Z) + I(U ;Y |W ) + I(V ;Z|W )− I(U ;V |W )

It is clear that the set

A = {(a1, a2) : a1 ≤ T1(p(u, v, w, x)), a2 ≤ T2(p(u, v, w, x))}

is a convex set. (In the standard manner, choose W̃ = (W,Q), such that conditioned on Q = 0 set
(U, V,W,X) ∼ p1(u, v, w, x) and conditioned on Q = 1 set (U, V,W,X) ∼ p2(u, v, w, x)). Hence from
Corollary 2, we have the proof of Lemma 1.
Remark 9. The proof of this lemma in section 3.1.1 of [10] is very similar in flavor and uses the convexity
of the set A. However here we recover it from an application of some general theorems, and this technique
and Corollary 2 may be helpful in other situations as well.

A. Maximum of λ-SRM is obtained at the uniform input distribution

Consider the semi-deterministic channel q1 corresponding to the upper component of the product
broadcast channel in Figure 2. In this appendix we show that for any λ ∈ [0, 1], λ-SRM (q1, p(x)) is less
than or equal to λ-SRM (q1, u(x)) where u is the uniform distribution on X1. From Lemma 3 note that
λ-SRM (q, p(x)) is concave in p(x).

Take an arbitrary p(x) ∼ (a, b, c, d). Here a, b, c, d denote the probabilities assigned (in order) to
variables from top to botton in the upper half of Figure 2. Because of the symmetry in the component
channels q1(y1|x1), q1(z1|x1) in Figure 2, we have

λ-SRM (q1, p(x) ∼ (a, b, c, d)) = λ-SRM (q1, p(x) ∼ (b, a, d, c))

= λ-SRM (q1, p(x) ∼ (c, d, a, b))

= λ-SRM (q1, p(x) ∼ (d, c, b, a)).

Here we have used the symmetry between inputs 1 and 2, and the symmetry between inputs 3 and 4,
and the symmetry between the pair of inputs (1, 2) and (3, 4). Using the concavity of F , we have

4λ-SRM (q, p(x) ∼ (a, b, c, d)) = λ-SRM (q, p(x) ∼ (a, b, c, d)) + λ-SRM (q, p(x) ∼ (b, a, d, c))+

λ-SRM (q, p(x) ∼ (c, d, a, b)) + λ-SRM (q, p(x) ∼ (d, c, b, a))

≤ 4λ-SRM (q, p(x) ∼ (
1

4
(a+ b+ c+ d),

1

4
(a+ b+ c+ d),

1

4
(a+ b+ c+ d),

1

4
(a+ b+ c+ d)))

= 4λ-SRM (q, u(x)).

B. Computing the λ-sum-rate at the uniform input distribution

In this appendix we compute λ-SRM (q1, u(x)) at the uniform input distribution for the semi-deterministic
q1 corresponding to the upper component of the product broadcast channel given in Figure 2.

Claim 5. The λ 7→ λ-SRM (q1, u(x)) curve for the channel under consideration consists of two lines,

λ-SRM (q1, u(x)) =

{
5
3 −

2
3λ λ ∈ [0, 1

2 ]
4
3 λ ∈ [1

2 , 1]
.
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Proof: Note that

λ-SRM (q1, u(x)) = max
p(u,v,w|x)

{
λI(W ;Y ) + (1− λ)I(W ;Z) + I(U ;Y |W ) + I(V ;Z|W )− I(U ;V |W )

}
= max

p(u,w|x)

{
λI(W ;Y ) + (1− λ)I(W ;Z) + I(U ;Y |W ) +H(Z|UW )

}
.

In the last step we have used the inequality I(V ;Z|W ) − I(U ;V |W ) ≤ H(Z|UW ) together with
the fact that I(Z;Z|W ) − I(U ;Z|W ) = H(Z|UW ) (thus setting V = Z, permissible under the semi-
deterministic channel setting, is an optimal choice for V ). Therefore λ-SRM (q1, u(x)) can be written
as

max
p(u,w|x)

{
λH(Y ) + (1− λ)H(Z) + (1− λ)

(
H(Y |W )−H(Z|W )

)
+H(Z|UW )−H(Y |UW )

}
,

which is equal to

λH(Y ) + (1− λ)H(Z) + max
p(w|x)

{
(1− λ)

(
H(Y |W )−H(Z|W )

)
+

max
p(u|w,x)

(
H(Z|UW )−H(Y |UW )

)}
. (18)

Let P(X|W = i) = (ai, bi, ci, di), and f(ai, bi, ci, di) = maxp(u|x)H(Z|U)−H(Y |U) conditioned on
P(X) = (ai, bi, ci, di). Observe that f is concave. The argument is similar to the one given in Lemma
3 and we will not repeat it here. Further, observe that f(ai, bi, ci, di) = f(bi, ai, di, ci) because the
symmetry between inputs 1 and 2, and the symmetry between inputs 3 and 4.

Consider the transformation (ai, bi, ci, di) → (bi, ai, di, ci), for all i while leaving P(W = i) un-
changed. This preserves expression in equation (18) because of the symmetry between inputs 1 and 2, and
the symmetry between inputs 3 and 4. Thus the transformation (ai, bi, ci, di)→ (ai+bi

2 , ai+bi
2 , ci+di2 , ci+di2 ),

for all i while leaving P(W = i) unchanged, does not decrease the λ-sum-rate since H(Y |W ) and f are
concave functions in (ai, bi, ci, di), and H(Z|W ) that appears with a negative sign remains constant under
this transformation. Therefore without loss of generality assume that P(X|W = i) = (xi

2 ,
xi

2 ,
1−xi

2 , 1−xi

2 )
when optimizing the expression in equation (18). Let P(W = i) = wi. Then we require

∑
wixi = 1

2 .
Hence we can work out λ-SRM (q1, u(x)) as the maximum over wi, xi of the expression

λ log 6 + (1− λ) + (1− λ)
∑
i

wi[log 3 +
2

3
− 2

3
H(xi, 1− xi)] +

∑
i

wif(
xi
2
,
xi
2
,
1− xi

2
,
1− xi

2
),

over (wi, xi) that satisfy
∑
wixi = 1

2 .
We now compute f(xi

2 ,
xi

2 ,
1−xi

2 , 1−xi

2 ). Observe that

H(Z)−H(Y ) = H(a+ b, c+ d)−H(
a+ b

3
,
a+ c

3
,
a+ d

3
,
b+ c

3
,
b+ d

3
,
c+ d

3
)

(a)

≤ H(a+ b, c+ d)−H(
a+ b

3
,
a+ c+ d

3
,
a

3
,
b+ c+ d

3
,
b

3
,
c+ d

3
)

(b)

≤ H(a+ b, c+ d)−H(
a+ b

3
,
a+ b+ c+ d

3
,
a+ b

3
,
c+ d

3
,
0

3
,
c+ d

3
)

=
1

3
H(a+ b, c+ d)− log 3.

The step (a) holds because the expression is convex in c and d once we fix c+d, therefore its maximum
must occur at the boundaries. The step (b) holds because the expression is convex in a and b once we
fix a+ b, therefore its maximum must occur at the boundaries.
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Therefore H(Z)−H(Y ) ≤ 1
3H(a+ b, c+ d)− log 3 for all permissible (a, b, c, d). Since the function

1
3H(a+ b, c+ d)− log 3 is concave, we conclude that f(ai, bi, ci, di) ≤ 1

3H(a+ b, c+ d)− log 3 for all
permissible (a, b, c, d). Hence, at (a, b, c, d) = (xi

2 ,
xi

2 ,
1−xi

2 , 1−xi

2 ), we have

f(
xi
2
,
xi
2
,
1− xi

2
,
1− xi

2
) ≤ 1

3
H(xi, 1− xi)− log 3.

The equality can be indeed achieved by taking with probability half (0, xi, 0, 1−xi) and with probability
half (xi, 0, 1− xi, 0). Thus, f(xi

2 ,
xi

2 ,
1−xi

2 , 1−xi

2 ) = 1
3H(xi, 1− xi)− log 3.

Substituting this in we get

1 + (1− λ)
2

3
+ (

1

3
− 2

3
(1− λ))

∑
i

wiH(xi, 1− xi).

We need to maximize this subject to
∑
wixi = 1

2 . Clearly when (1 − λ) ≤ 1
2 the optimal choice is to

set xi = 1
2 . This yields a value of 4

3 when λ ≥ 1
2 . In the other interval, it is optimal to set xi = 0 w.p.

1
2 and xi = 1 w.p. 1

2 . In this case, i.e. λ ∈ [0, 1
2 ], we get 1 + (1− λ)2

3 = 5
3 −

2
3λ.

Proof: Take a code of length n. Let Q be a random variable independent of the code book such that
Q is uniform in [1 : n]. Identify

W1 = (M0, Z
1:n
2 , Y 1:Q−1

1 , ZQ+1:n
1 , Q),

W2 = (M0, Y
1:n

1 , Y 1:Q−1
2 , ZQ+1:n

2 , Q),

U1 = U2 = M1,

V1 = V2 = M2,

X1 = X1Q,

X2 = X2Q.

We need to verify that these choice of auxiliaries work. We begin with the sum rate. Using the Fano
inequality and some manipulations we can write

n(R0 +R1 +R2)− nf1(εn)

≤ λI(M0;Y 1:n
1 , Y 1:n

2 ) + (1− λ)I(M0;Z1:n
1 , Z1:n

2 ) + I(M1;Y 1:n
1 , Y 1:n

2 |M0) + I(M2;Z1:n
1 , Z1:n

2 |M0)− I(M1;M2|M0)

= λI(M0;Y 1:n
1 , Y 1:n

2 ) + (1− λ)I(M0;Z1:n
1 , Z1:n

2 ) + I(M1;Y 1:n
1 , Y 1:n

2 |M0) + I(M2;Z1:n
1 , Z1:n

2 |M1,M0)

− I(M1;M2|M0, Z
1:n
1 , Z1:n

2 )

= λI(M0;Y 1:n
2 |Y 1:n

1 ) + (1− λ)I(M0;Z1:n
2 ) + I(M1;Y 1:n

2 |M0, Y
1:n
1 ) + I(M2;Z1:n

2 |M1,M0)

+ λI(M0;Y 1:n
1 ) + (1− λ)I(M0;Z1:n

1 |Z1:n
2 ) + I(M1;Y 1:n

1 |M0) + I(M2;Z1:n
1 |M1, Z

1:n
2 ,M0)− I(M1;M2|M0, Z

1:n
1 , Z1:n

2 )

= λI(M0;Y 1:n
2 |Y 1:n

1 ) + (1− λ)I(M0;Z1:n
2 ) + I(M1;Y 1:n

2 |M0, Y
1:n
1 ) + I(M2;Z1:n

2 |M1,M0)

+ λI(M0;Y 1:n
1 ) + (1− λ)I(M0;Z1:n

1 |Z1:n
2 ) + I(M1;Y 1:n

1 |M0) + I(M2;Z1:n
1 |Z1:n

2 ,M0)− I(M1;M2|M0, Z
1:n
2 )

≤ λI(M0;Y 1:n
2 |Y 1:n

1 ) + (1− λ)I(M0, Y
1:n
1 ;Z1:n

2 ) + I(M1;Y 1:n
2 |M0, Y

1:n
1 ) + I(M2;Z1:n

2 |M1,M0, Y
1:n
1 )

+ λI(M0, Z
1:n
2 ;Y 1:n

1 ) + (1− λ)I(M0;Z1:n
1 |Z1:n

2 ) + I(M1;Y 1:n
1 |M0, Z

1:n
2 ) + I(M2;Z1:n

1 |Z1:n
2 ,M0)− I(M1;M2|M0, Z

1:n
2 )

≤ λI(M0;Y 1:n
2 |Y 1:n

1 ) + (1− λ)I(M0, Y
1:n
1 ;Z1:n

2 ) + I(M1;Y 1:n
2 |M0, Y

1:n
1 ) + I(X1:n

2 ;Z1:n
2 |M1,M0, Y

1:n
1 )

+ λI(M0, Z
1:n
2 ;Y 1:n

1 ) + (1− λ)I(M0;Z1:n
1 |Z1:n

2 ) + I(M1;Y 1:n
1 |M0, Z

1:n
2 ) + I(M2;Z1:n

1 |Z1:n
2 ,M0)− I(M1;M2|M0, Z

1:n
2 )

≤ λI(M0, Y
1:n
1 ;Y 1:n

2 ) + (1− λ)I(M0, Y
1:n
1 ;Z1:n

2 ) + I(M1;Y 1:n
2 |M0, Y

1:n
1 ) + I(X1:n

2 ;Z1:n
2 |M1,M0, Y

1:n
1 )

+ λI(M0, Z
1:n
2 ;Y 1:n

1 ) + (1− λ)I(M0, Z
1:n
2 ;Z1:n

1 ) + I(M1;Y 1:n
1 |M0, Z

1:n
2 ) + I(M2;Z1:n

1 |M0, Z
1:n
2 )− I(M1;M2|M0, Z

1:n
2 )

where f1(ε) is a function that converges to zero as ε converges to zero. Thus,

n(R0 +R1 +R2)− nf1(εn)

≤ λI(M0, Y
1:n
1 ;Y 1:n

2 ) + (1− λ)I(M0, Y
1:n
1 ;Z1:n

2 ) + I(M1;Y 1:n
2 |M0, Y

1:n
1 ) + I(X1:n

2 ;Z1:n
2 |M1,M0, Y

1:n
1 )

+ λI(M0, Z
1:n
2 ;Y 1:n

1 ) + (1− λ)I(M0, Z
1:n
2 ;Z1:n

1 ) + I(M1;Y 1:n
1 |M0, Z

1:n
2 ) + I(M2;Z1:n

1 |M0, Z
1:n
2 )− I(M1;M2|M0, Z

1:n
2 ).
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Similarly

n(R0 +R1 +R2)− nf2(εn)

≤ λI(M0, Y
1:n
1 ;Y 1:n

2 ) + (1− λ)I(M0, Y
1:n
1 ;Z1:n

2 ) + I(M1;Y 1:n
2 |M0, Y

1:n
1 ) + I(M2;Z1:n

2 |M0, Y
1:n
1 )− I(M1;M2|M0, Y

1:n
1 )

+ λI(M0, Z
1:n
2 ;Y 1:n

1 ) + (1− λ)I(M0, Z
1:n
2 ;Z1:n

1 ) + I(M2;Z1:n
1 |M0, Z

1:n
2 ) + I(X1:n

1 ;Y 1:n
1 |M0,M2, Z

1:n
2 ).

These lead to the following single letter bounds:

R0 +R1 +R2 ≤ λI(W2;Y2) + (1− λ)I(W2;Z2) + I(U2;Y2|W2) + I(X2;Z2|U2,W2)

+ λI(W1;Y1) + (1− λ)I(W1;Z1) + min
{
I(U1;Y1|W1) + I(X1;Z1|U1,W1),

I(V1;Z1|W1) + I(X1;Y1|V1,W1)
}
,

R0 +R1 +R2 ≤ λI(W2;Y2) + (1− λ)I(W2;Z2) + min
{
I(U2;Y2|W2) + I(X2;Z2|U2,W2),

I(V2;Z2|W2) + I(X2;Y2|V2,W2)
}

+ λI(W1;Y1) + (1− λ)I(W1;Z1) + I(V1;Z1|W1) + I(X1;Y1|V1,W1).

Since the choice of the auxiliaries do not depend on λ, we conclude that

R0 +R1 +R2 ≤ min{I(W1;Y1) + I(W2;Y2), I(W1;Z1) + I(W2;Z2)}+ I(U2;Y2|W2) + I(X2;Z2|U2,W2)

+ min
{
I(U1;Y1|W1) + I(X1;Z1|U1,W1), I(V1;Z1|W1) + I(X1;Y1|V1,W1)

}
,

R0 +R1 +R2 ≤ min{I(W1;Y1) + I(W2;Y2), I(W1;Z1) + I(W2;Z2)}+ I(V1;Z1|W1) + I(X1;Y1|V1,W1)

+ min
{
I(U2;Y2|W2) + I(X2;Z2|U2,W2), I(V2;Z2|W2) + I(X2;Y2|V2,W2)

}
.

It remains to verify the following inequalities

R0 ≤ I(W1;Y1) + I(W2;Y2),

R0 ≤ I(W1;Z1) + I(W2;Z2),

R0 +R1 ≤ I(W1;Y1) + I(W2;Y2) + I(U1;Y1|W1) + I(U2;Y2|W2),

R0 +R1 ≤ I(W1;Z1) + I(W2;Z2) + I(U1;Y1|W1) + I(U2;Y2|W2),

R0 +R2 ≤ I(W1;Y1) + I(W2;Y2) + I(V1;Z1|W1) + I(V2;Z2|W2),

R0 +R2 ≤ I(W1;Z1) + I(W2;Z2) + I(V1;Z1|W1) + I(V2;Z2|W2).

The first single-letter formula holds because one can verify that I(W1;Y1) ≥ 1
nI(M0;Y 1:n

1 ) and
I(W2;Y2) ≥ 1

nI(M0;Y 1:n
2 |Y 1:n

1 ). These imply that I(W1;Y1) + I(W2;Y2) ≥ I(M0;Y 1:n
2 , Y 1:n

1 ). One
can finish the proof using the Fano inequality. The second inequality on R0 can be proved similarly. The
third inequality holds because I(U1W1;Y1) ≥ 1

nI(M0M1;Y 1:n
1 ), I(U2W2;Y2) ≥ 1

nI(M0M1;Y 1:n
2 |Y 1:n

1 )
and (M0,M1) can be recovered from (Y 1:n

1 , Y 1:n
2 ) with high probability. The fourth inequality holds
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because:

n(R0 +R1)− nf3(ε)

≤ I(M0;Z1:n
1 , Z1:n

2 ) + I(M1;Y 1:n
1 , Y 1:n

2 |M0)

≤ I(M0;Z1:n
1 , Z1:n

2 ) + I(M1, Z
1:n
2 ;Y 1:n

1 |M0) + I(M1;Y 1:n
2 |M0, Y

1:n
1 )

= I(M0;Z1:n
1 |Z1:n

2 ) + I(M0;Z1:n
2 ) + I(Y 1:n

1 ;Z1:n
2 |M0) + I(M1;Y 1:n

1 |M0, Z
1:n
2 ) + I(M1;Y 1:n

2 |M0, Y
1:n
1 )

≤ I(M0, Z
1:n
2 ;Z1:n

1 ) + I(M0, Y
1:n
1 ;Z1:n

2 ) + I(M1;Y 1:n
1 |M0, Z

1:n
2 ) + I(M1;Y 1:n

2 |M0, Y
1:n
1 )

=

n∑
i=1

(
I(M0, Z

1:n
2 ;Zi

1|Zi+1:n
1 ) + I(M0, Y

1:n
1 ;Zi

2|Zi+1:n
2 ) + I(M1;Y i

1 |M0, Z
1:n
2 , Y 1:i−1

1 ) + I(M1;Y i
2 |M0, Y

1:n
1 , Y 1:i−1

2 )
)

≤
n∑

i=1

(
I(M0, Z

1:n
2 , Zi+1:n

1 ;Zi
1) + I(M0, Y

1:n
1 , Zi+1:n

2 ;Zi
2) + I(M1;Y i

1 |M0, Z
1:n
2 , Y 1:i−1

1 ) + I(M1;Y i
2 |M0, Y

1:n
1 , Y 1:i−1

2 )
)

=

n∑
i=1

(
I(M0, Z

1:n
2 , Y 1:i−1

1 , Zi+1:n
1 ;Zi

1) + I(M0, Y
1:n
1 , Y 1:i−1

2 , Zi+1:n
2 ;Zi

2) + I(M1;Y i
1 |M0, Z

1:n
2 , Y 1:i−1

1 )

− I(Y 1:i−1
1 ;Zi

1|M0, Z
1:n
2 , Zi+1:n

1 ) + I(M1;Y i
2 |M0, Y

1:n
1 , Y 1:i−1

2 )− I(Y 1:i−1
2 ;Zi

2|M0, Y
1:n
1 , Zi+1:n

2 )
)

=

n∑
i=1

(
I(M0, Z

1:n
2 , Y 1:i−1

1 , Zi+1:n
1 ;Zi

1) + I(M0, Y
1:n
1 , Y 1:i−1

2 , Zi+1:n
2 ;Zi

2) + I(M1;Y i
1 |M0, Z

1:n
2 , Y 1:i−1

1 )

− I(Zi+1:n
1 ;Y i

1 |M0, Z
1:n
2 , Y 1:i−1

1 ) + I(M1;Y i
2 |M0, Y

1:n
1 , Y 1:i−1

2 )− I(Zi+1:n
2 ;Y i

2 |M0, Y
1:n
1 , Y 1:i−1

2 )
)

=

n∑
i=1

(
I(M0, Z

1:n
2 , Y 1:i−1

1 , Zi+1:n
1 ;Zi

1) + I(M0, Y
1:n
1 , Y 1:i−1

2 , Zi+1:n
2 ;Zi

2) + I(M1;Y i
1 |M0, Z

1:n
2 , Y 1:i−1

1 , Zi+1:n
1 )

+ I(M1;Y i
2 |M0, Y

1:n
1 , Y 1:i−1

2 , Zi+1:n
2 )

)
= n(I(W1;Z1) + I(W2;Z2) + I(U1;Y1|W1) + I(U2;Y2|W2)).

The fifth inequality follows in a similar fashion, and the sixth one is similar to the third one. Hence the
outer bound is valid.

Proof of Lemma 9: This is a consequence of Corollary 2. Let d = 2, let

T1(p(w, x1, x2))

= I(W ;Y1, Y2) +
∑
w∈A1

P(W = w)I(X1, X2;Y1, Y2|W = w)

+
∑
w∈A2

P(W = w)
(
I(X1;Y1, Y2|W = w) + I(X2;Z1, Z2|W = w)− I(X1;X2|W = w)

)
+
∑
w∈A3

P(W = w)
(
I(X1;Y1, Y2|W = w) + I(X2;Z1, Z2|W = w)− I(X1;X2|W = w)

)
+
∑
w∈A4

P(W = w)I(X1, X2;Z1, Z2|W = w).
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T2(p(w, x1, x2))

= I(W ;Z1, Z2) +
∑
w∈A1

P(W = w)I(X1, X2;Y1, Y2|W = w)

+
∑
w∈A2

P(W = w)
(
I(X1;Y1, Y2|W = w) + I(X2;Z1, Z2|W = w)− I(X1;X2|W = w)

)
+
∑
w∈A3

P(W = w)
(
I(X1;Y1, Y2|W = w) + I(X2;Z1, Z2|W = w)− I(X1;X2|W = w)

)
+
∑
w∈A4

P(W = w)I(X1, X2;Z1, Z2|W = w).

It is clear that the set

G = {(g1, g2) : g1 ≤ T1(p(w, x1, x2)), g2 ≤ T2(p(w, x1, x2))}

is a convex set. (In the standard manner, choose W̃ = (W,Q); When Q = 0 choose (W,X1, X2) ∼
p1(w, x1, x2) and when Q = 1 choose (W,X1, X2) ∼ p2(w, x1, x2)). Hence from Corollary 2, we have
the proof of Lemma 9.
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