
On 3-receiver broadcast channels with 2-degraded
message sets

Chandra Nair
Department of Information Engineering

Chinese University of Hong Kong
Sha Tin, N.T., Hong Kong

Email: chandra@ie.cuhk.edu.hk

Zizhou Vincent Wang
Department of Information Engineering

Chinese University of Hong Kong
Sha Tin, N.T., Hong Kong

Email: zzwang6@ie.cuhk.edu.hk

Abstract— We consider a broadcast channel with 3 receivers
and 2 messages(M0, M1) where two of the three receivers need
to decode messages(M0, M1) while the remaining one just needs
to decode the messageM0. We study the best known inner
and outer bounds under this setting, in an attempt to find
the deficiencies with the current techniques of establishing the
bounds. We produce a simple example where we are able to
explicitly evaluate the inner bound and show that it differs from
the general outer bound. For a class of channels where the general
inner and outer bounds differ, we use a new argument to show
that the inner bound is tight.

I. I NTRODUCTION

The broadcast channel with degraded message sets was
initially studied by Kórner and Märton [1] for two receivers
and more recently in [2], [3], [4] for three and more receivers.
Kórner and Märton [1] established the capacity region forthe
degraded message sets with two receivers and some capacity
regions for three or more receivers were established [2], [3] by
showing that the straightforward extension of the inner bound
in [1] was optimal. In [4], an idea calledindirect decoding was
introduced and the authors showed that this could be used to
enhance (in some cases strictly) the straightforward extension
of the inner bound by Kórner and Märton. Unfortunately, the
new inner bounds [4] become quite messy and unwieldy due to
the introduction of many auxiliary random variables. However
there is still one class of broadcast channels with degraded
message sets where the idea of indirect decoding does not
yield any region better than the straightforward extensionof
the Kórner and Märton inner bound, and this is the scenario
of interest here.

Consider a 3-receiver broadcast channel with 2 messages
(M0, M1) with the following decoding requirement. Receivers
Y1 and Y2 need to decode both messages(M0, M1) while
receiverY3 needs to decode only messageM0. The traditional
inner and outer bounds presented below remain the best known
inner and outer bounds for this class of broadcast channels.In
this paper we look at the general inner and outer bounds for
this scenario in a greater detail. We show that these bounds
differ in general, and that there is a class of channels where
the inner bound is tight and the outer bound is weak.

There are two main contributions in this paper: the first
one is the technique (same spirit as Mrs. Gerber’s lemma [5])
used to evaluate the boundary of a particular inner bound;

the second is the use of a (1
2 + ǫ)-codebook1 rather than an

ǫ-codebook to establish the capacity region.
Bound 1: The union of the following set of rate pairs

(R0, R1) satisfying

R0 ≤ I(U ; Y3)

R1 ≤ min{I(X ; Y1|U), I(X ; Y2|U)}

R0 + R1 ≤ min{I(X ; Y1), I(X ; Y2)}

over all pairs of random variables(U, X) such thatU → X →
(Y1, Y2, Y3) forms a Markov chain constitutes an inner bound
to the capacity region.

Bound 2: The union over the set of rate pairs(R0, R1)
satisfying

R0 ≤ min{I(U1; Y3), I(U2; Y3)}

R0 + R1 ≤ min{I(U1; Y3) + I(X ; Y1|U1),

I(U2; Y3) + I(X ; Y2|U2)}

R0 + R1 ≤ min{I(X ; Y1), I(X ; Y2)}

over all possible choices of random variables(U1, U2, X) such
that (U1, U2) → X → (Y1, Y2, Y3) forms a Markov chain
constitutes an outer bound for this channel.

The above bounds are traditional, i.e. can be obtained using
standard techniques. The inner bound is a straightforward
extension of the achievability argument in [1] and the outer
bound can be deduced by arguments in [6], [7], etc.

Remark 1: It is also possible to include the constraint

R0 ≤ min{I(U1; Y1), I(U2; Y2)}

into the outer bound. However, it is quite straightforward to
show that the region obtained by adding this inequality is
identical to the bound we presented.

These bounds are known to be tight in all of the following
special cases,

• ReceiverY1 is a less noisy receiver thanY3 andY2 is a
less noisy receiver thanY3 [2], [4],

• Y3 is a deterministic function ofX ,
• Y1 is a more capable receiver thanY2 (or vice-versa),
• Y3 is a more capable receiver thanY2 (or Y1),

1An η-codebook is used to denote a codebook whose probability of error
is bounded above byη.



The last two cases are very straightforward and the proof is
omitted. WhenY3 is a deterministic function ofX , note that
it is not difficult to show that by taking the convex closure of
the regions obtained by setting(i) U = Y3 and(ii) U = ∅ in
the inner bound exhausts the following region,

R0 ≤ H(Y3)

R0 + R1 ≤ min{I(X ; Y1), I(X ; Y2)}

and this clearly forms an outer bound to the capacity region.
One class of channels that does not fall into any of the cases

is the following channel shown in Figure 1 below. The channel
X → (Y1, Y2) represents abinary skew-symmetric (BSSC)
broadcast channel [7], [8] and the channelX → Y3 represents
a binary symmetric (BSC) with crossover probabilityp, with
0 ≤ p ≤ 1

2 .
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Fig. 1. 3-receiver broadcast channel

In the next section we evaluate Bound 1 for this channel.
Based on the symmetry, it is very natural to believe that the
auxiliary channelU → X must be a BSC with some cross over
probabilitys. In the next section, we prove that this is indeed
the case. This uses a technique similar in spirit to Wyner and
Ziv’s technique of using Mrs. Gerber’s lemma [5]. We will
also show that the Bound 2 yields a strictly larger region for
this channel. Finally, we will show that the region represented
by Bound 1 constitutes thecapacity region for this channel.

II. EVALUATION OF THE INNER BOUND

In the evaluation of the inner bound, we divide the range
0 ≤ p ≤ 1

2 into two regions,0 ≤ p ≤ pmax andpmax ≤ p ≤
1
2 , wherepmax ∈ [0, 1

2 ] is the unique solution of

1 − h(p) = h(
1

4
) −

1

2
;

i.e. the value ofp at which capacity of the BSC matches the
term maxp(x) min{I(X ; Y1), I(X ; Y2)}. The numerical value
of pmax ≈ 0.184.

A. Evaluation of the inner bound, 0 ≤ p ≤ pmax

In the region0 ≤ p ≤ pmax it is straightforward to see that
the inner bound reduces to the following region (obtained via
a time-division between the two auxiliary channels:(i) U = ∅
and (ii) U = X , and in each case, settingP(X = 0) = 0.5),

R0 + R1 ≤ h(
1

4
) −

1

2
,

which clearly matches the outer bound (Bound 2).Thus for
0 ≤ p ≤ pmax ≈ 0.184, the inner and outer bounds are tight
and give the capacity region.

B. Evaluation of the inner bound, pmax ≤ p ≤ 1
2

Let U = {1, 2, ..., m} and letP(U = i) = ui and P(X =
0|U = i) = si. Further, let

h(x) = −x log2 x − (1 − x) log2(1 − x)

denote the binary entropy function.
Using these notations we have,

I(U ; Y3) = h(
∑

i

ui(si(1 − p) + (1 − si)p))

−
∑

i

uih(si(1 − p) + (1 − si)p)

I(X ; Y1|U) =
∑

i

uih(
si

2
) −

∑

i

uisi

I(X ; Y2|U) =
∑

i

uih(
1 − si

2
) −

∑

i

ui(1 − si)

I(X ; Y1) = h(
∑

i

uisi

2
) −

∑

i

uisi

I(X ; Y2) = h(
∑

i

ui(1 − si)

2
) −

∑

i

ui(1 − si).

Define Ũ = {1, 2, ..., m} × {1, 2}, P(Ũ = (i, 1)) = ui

2 ,
P(X = 0|Ũ = (i, 1)) = si, P(Ũ = (i, 2)) = ui

2 , andP(X =

0|Ũ = (i, 2)) = 1− si. This induces añX with P (X̃ = 0) =
1
2 . It is straightforward to see the following:

I(Ũ ; Ỹ3) ≥ I(U ; Y3)

I(X̃ ; Ỹ1|Ũ) = I(X̃ ; Ỹ2|Ũ) =
1

2
(I(X ; Y1|U) + I(X ; Y2|U))

≥ min{I(X ; Y1|U), I(X ; Y2|U)}

I(X̃ ; Ỹ1) = I(X̃ ; Ỹ2) ≥
1

2
(I(X ; Y1) + I(X ; Y2))

From this it follows that for everyU replacingU by Ũ

leads to a larger achievable region. Hence to evaluate Bound
1, it suffices to maximize over all auxiliary random variables
of the formU defined by:U = {1, 2, ..., m}× {1, 2}, P(U =
(i, 1)) = ui

2 , P(X = 0|U = (i, 1)) = si, P(U = (i, 2)) = ui

2 ,
andP(X = 0|U = (i, 2)) = 1 − si.



Under this notation we have the following expression for
the rate region given in Bound 1,

R0 ≤ I(U ; Y3)

= h
(1

2

)

−
∑

i

uih(si(1 − p) + (1 − si)p),

R1 ≤ min{I(X ; Y1|U), I(X ; Y2|U)}

=
∑

i

ui

2

(

h(
si

2
) + h(

1 − si

2
)

)

−
1

2
,

R0 + R1 ≤ min{I(X ; Y1), I(X ; Y2)}

= h
(1

4

)

−
1

2
.

Using the symmetry of the functionh(x) = h(1−x) we note
that

h(si(1 − p) + (1 − si)p) = h((1 − si)(1 − p) + sip)

and thus the above region is constant under the transformation
si → 1 − si, implying we can restrictsi to take values only
in 0 ≤ si ≤

1
2 .

Before we proceed to determine the boundary of this region,
we prove the following lemma.

C. An inequality for a class of functions

Lemma 1: Let f(x) and g(x) be two non-negative and
strictly increasing functions that are differentiable in the region
x ∈ [x1, x2]. Further assume thatf

(1)(x)
g(1)(x)

is a decreasing

function, wheref (1)(x) andg(1)(x) denote the derivatives of
the function. Given anyu, 0 ≤ u ≤ 1, let xint be uniquely
defined according tof(xint) = uf(x1) + (1− u)f(x2). Then
the following holds,

g(xint) ≤ ug(x1) + (1 − u)g(x2).

Proof: We haveu(f(xint)− f(x1)) = (1 − u)(f(x2)−
f(xint)), and we wish to show thatu(g(xint) − g(x1)) ≤
(1−u)(g(x2)− g(xint)). Since all the terms are positive, this
reduces to showing

f(xint) − f(x1)

g(xint) − g(x1)
≥

f(x2) − f(xint)

g(x2) − g(xint)
.

However, this is immediate as shown below.
From the fact thatf

(1)(x)
g(1)(x)

is a decreasing function, we have

∫ xint

x1
f (1)(x)dx

∫ xint

x1
g(1)(x)dx

≥
f (1)(xint)

g(1)(xint)
≥

∫ x2

xint

f (1)(x)dx
∫ x2

xint

g(1)(x)dx

Repeated applications of Lemma 1 leads to the following
corollary - potentially of independent interest.

Corollary 1: Let f(x) and g(x) be two non-negative and
strictly increasing functions that are differentiable in the region
x ∈ [x1, x2]. Further assume thatf

(1)(x)
g(1)(x)

is a decreasing

function, where as beforef (1)(x) and g(1)(x) denote the
derivatives of the function. Given anyui ≥ 0,

∑

i ui = 1,

and yi ∈ [x1, x2], let xint be uniquely defined according to
f(xint) =

∑

i uif(yi). Then the following holds

g(xint) ≤
∑

i

uig(yi).

D. Determining the boundary rate pairs

We use the Corollary 1 to determine the boundary of the
region. We make the following identifications, letf(x) =
h(x

2 )+h(1−x
2 )−1, andg(x) = h(x(1−p)+(1−x)p). Observe

that f(x) and g(x) are increasing differentiable functions in
the region[0, 1

2 ].

Claim 1: For 1
6 ≤ p ≤ 1

2 , the ratio of the derivativesf
(1)(x)

g(1)(x)
is a decreasing function.

The proof of this fact is found in the Appendix.
(Numerical simulations indicate that this is true forpmin ≤

p ≤ 1
2 for pmin ≈ 0.05, but for the purposes of establishing the

inner bound clearly this region ofp suffices, as16 ≤ pmax ≈
0.184).

Remark 2: By combining Claim 1 and Corollary 1 note that
h(p ∗ f−1(y)) is convex iny, and this is very similar to Mrs.
Gerber’s Lemma [5].

Now let sint be defined according to

h(
sint

2
) + h(

1 − sint

2
) =

∑

i

ui

(

h
(si

2

)

+ h
(1 − si

2

)

)

.

Then from Corollary 1, forpmin ≤ p ≤ 1
2 we have

h
(1

2

)

−
∑

i

uih(si(1 − p) + (1 − si)p)

≤ h
(1

2

)

− h(sint(1 − p) + (1 − sint)p).

This implies that the optimal auxiliary channelU → X is
a BSC with a cross-over probabilitys and P(U = 0) = 1

2 .
Thus forpmax ≤ p ≤ 1

2 , the boundary is characterized by the
pair of points of the form,

R0 = 1 − h(s(1 − p) + (1 − s)p),

R1 = min

{

1

2

(

h
(s

2

)

+ h
(1 − s

2

)

− 1

)

, (1)

h
(1

4

)

−
3

2
+ h(s(1 − p) + (1 − s)p)

}

,

for 0 ≤ s ≤ 1
2 . The second term inR1 comes from taking

into account the sum rate constraint,

R0 + R1 ≤ h
(1

4

)

−
1

2
.

A simple calculation shows that forpo ≤ p ≤ 1
2 one can

ignore the sum rate constraint, wherepo =
√

3−1
2
√

3
≈ 0.211.

This po corresponds to the smallest value ofp where the
convex region characterized by the pairs

R0 = 1 − h(s(1 − p) + (1 − s)p),

R1 =
1

2

(

h
(s

2

)

+ h
(1 − s

2

)

− 1

)

.



has a slope of−1 at the point(R0, R1) =
(

0, h
(

1
4

)

− 1
2

)

.
Therefore the inner bound has three different expressions:

• 0 ≤ p ≤ pmax: the inner bound reduces toR0 + R1 ≤
h
(

1
4

)

− 1
2 ,

• pmax ≤ p ≤ po: the inner bound is given by equation (1)
where all inequalities are necessary,

• po ≤ p ≤ 1
2 : the inner bound is characterized by pair of

points of the form

R0 = 1 − h(s(1 − p) + (1 − s)p),

R1 =
1

2

(

h
(s

2

)

+ h
(1 − s

2

)

− 1

)

.

E. Comparison with the outer bound

To show that the outer bound gives a larger region, we
produce a particular choice of the pair(U1, U2, X). Consider
a U1, U2 defined as follows,

P(U1 = 1) = P(U2 = 1) = u,

P(U1 = 2) = P(U2 = 2) = 1 − u,

P(X = 0|U1 = 1) = P(X = 1|U2 = 1) = 1,

P(X = 0|U1 = 2) = P(X = 1|U2 = 2) = s,

where s = 0.5−u
1−u

for 0 ≤ u ≤ 0.5. Existence of the triple
(U1, U2, X) is guaranteed by the consistent distribution onX .
Substituting this choice into Bound 2 we obtainRegion A given
by,

R0 ≤ 1 − (1 − u)h
(

s(1 − p) + (1 − s)p
)

− uh
(

p
)

,

R1 ≤ (1 − u)h
(s

2

)

−
1

2
+ u,

R0 + R1 ≤ h
(1

4

)

−
1

2
.

Figure 2 plots Region A and Bound 1 forp = 1
4 . Observe

that RegionA is larger than Bound 1, and hence the Bounds 1
and 2 do not match for the 3-receiver channel shown in Figure
1. This implies the following corollary.
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Fig. 2. Comparing Bound 1 and Region A forp = 1
4

Corollary 2: There exists a class of channels, given in
Figure 1, for which the inner and outer bounds (i.e. Bounds 1
and 2) do not match.

III. R EVISITING OUTER BOUND

We now show that the inner bound is tight for the channel
shown in Figure 1.

Let π : {0, 1} 7→ {0, 1}; π(0) = 1, π(1) = 0.
Consider anǫ-codebook{xn

m0,m1
, 1 ≤ m0 ≤ 2nR0 , 1 ≤

m1 ≤ 2nR1 ,Am0,m1 ⊆ Yn
1 ,Bm0,m1 ⊆ Yn

2 , Cm0 ⊆ Yn
3 },

where the disjoint setsAm0,m1 ,Bm0,m1 , Cm0 represent the
decoding maps. From the skew symmetry of the channels
X → (Y1, Y2) and the symmetry in channelX → Y3, it
is clear that{π(xn

m0,m1
), 1 ≤ m0 ≤ 2nR0 , 1 ≤ m1 ≤

2nR1 , π(Bm0,m1) ⊆ Yn
1 , π(Am0,m1) ⊆ Yn

2 , π(Cm0) ⊆ Yn
3 }

represents a validǫ-codebook as well.
From these two codes, construct a new codebook (with error

bounded by1
2 + ǫ) and size2nR0 × 2nR1+1 as follows: The

codewords are indexed byxn
m0,(m1,b) whereb = 0, 1. When

b = 0 the codewordxn
m0,(m1,b=0) = xn

m0,m1
and whenb =

1, we havexn
m0,(m1,b=1) = π(xn

m0,m1
). The decoding maps

for this codebook are created as follows: Ifyn
1 ∈ Am1

0,m1
1
∩

π(Bm2
0,m2

1
) then the receiver chooses one of the two message

pairs(m1
0, m

1
1), (m

2
0, m

2
1) with equal probability. Otherwise it

picks the message pair corresponding to the unique setAm1
0,m1

1

or π(Bm2
0,m2

1
) that it belongs to. A similar decoding strategy

applies for receiversY2 andY3 as well.
The key feature is the symmetry of the codebook. Ifxn ∈ C

thenπ(xn) ∈ C and correspond to the same messageM0.
Now observe thatH(M0, M1|Y n

1 ) ≤ H(M0, M1, b|Y n
1 ) ≤

1 + H(M0, M1|Y n
1 , b) = 1 + n(R0 + R1)ǫn. Therefore we

obtain the same outer bound (Bound 2) using Fano’s inequality
and identification of the auxiliary random variables as before.

In particular, the identifications of the auxiliary random
variables remain the following:U1i = (M0, Y

i−1
31 , Y n

1i+1)
andU2i = (M0, Y

i−1
31 , Y n

2i+1). Now for the skew-symmetric
channels and a symmetric codebook observe that

P
“

M0 = m0, Y i−1
31 = yi−1

31 , Y n
1i+1 = y n

1i+1, Xi = xi

”

=
X

xn

1 \xi

P
“

M0 = m0, Xn
1 = xn

1 , Y i−1
31 = y i−1

31 , Y n
1i+1 = y n

1i+1

”

(a)
=

X

xn

1 \xi

P
“

M0 = m0, Xn
1 = xn

1

”

i−1
Y

j=1

P(Y3j = y3j |Xj = xj)

×
n

Y

k=i+1

P(Y1k = y1k |Xk = xk)

(b)
=

X

xn

1 \xi

P
“

M0 = m0, Xn
1 = π(xn

1 )
”

i−1
Y

j=1

P(Y3j = π(y3j)|Xj = π(xj))

×
n

Y

k=i+1

P(Y2k = π(y1k)|Xk = π(xk))

=
X

xn

1 \xi

P
“

M0 = m0, Xn
1 = π(xn

1 ), Y i−1
31 = π(y i−1

31 ), Y n
2i+1 = π(y n

1i+1)
”

(c)
= P

“

M0 = m0, Y i−1
31 = π(yi−1

31 ), Y n
2i+1 = π(y n

1i+1), Xi = π(xi)
”

.

Here(a) follows from the discrete memoryless property of
the channel; and(b) follows from (i) symmetry of the code,
(ii) symmetry of the channelX → Y3 with respect toπ(·),



and (iii) the skew symmetry between receiversY1, Y2 i.e.

P(Y2 = π(y)|X = π(x)) = P(Y1 = y|X = x);

and (c) is a consequence ofπ(·) being a bijection.
Therefore the random variables(U1, X) and (U2, X) are

identical up to re-labeling. Since the mutual information and
entropy do not depend on the labeling, it follows that

I(U1; Y3) = I(U2; Y3)

I(X ; Y2|U1) = I(X ; Y2|U2).

Remark 3: This technique can be extended to other skew-
symmetric channels as well, i.e one for which such aπ(·)
exists.

Therefore we obtain the following revised outer bound.
Bound 3: The union over the set of rate pairs(R0, R1)

satisfying

R0 ≤ I(U1; Y3)

R0 + R1 ≤ min{I(U1; Y3) + I(X ; Y1|U1),

I(U1; Y3) + I(X ; Y2|U1)}

R0 + R1 ≤ min{I(X ; Y1), I(X ; Y2)}

over all possible choices of random variables(U1, X) such that
U1 → X → (Y1, Y2, Y3) forms a Markov chain constitutes an
outer bound for this channel.

It is straightforward to see (using the boundary points) that
Bound 3 matches the inner bound and forms the capacity
region.
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APPENDIX

A. Proof of Claim 1

In this section we show that when16 ≤ p ≤ 1
2 , the ratio

f(1)(x)

g(1)(x)
is a decreasing function ofx, x ∈ [0, 1

2 ]. Recalling the

definitions,f(x) = h(x
2 ) + h(1−x

2 ) − 1, andg(x) = h(x(1 −
p) + (1 − x)p). As f(x) and g(x) are strictly increasing in
x ∈ [0, 1

2 ], it suffices to show that

f (2)(x)

f (1)(x)
≤

g(2)(x)

g(1)(x)
, (2)

where f (2)(x), g(2)(x) denote the second derivatives of the
function.

Let J(x) = log 1−x
x

, U(x) = x(1 − x) andx ∗ p = x(1 −
p) + p(1 − x). Using this notation and substituting for the
derivatives, (2) reduces to showing

J(x ∗ p)U(x ∗ p)

1 − 2p
≥

2
(

J
(

x
2

)

− J
(

1−x
2

)

)

1
U( x

2 ) + 1
U( 1−x

2 )

. (3)

Now observe that asx → 1
2 both J(x ∗ p) and J

(

x
2

)

−
J
(

1−x
2

)

tend to zero and all other terms remain positive. Thus
we have an equality atx = 1

2 . To show the inequality for
x ∈ [0, 1

2 ] it suffices to prove that thederivative of the left
hand side (L.H.S.) of (3) is smaller thanderivative of the right
hand side (R.H.S.) of (3).

The derivative of the L.H.S. is given by

d

dx

J(x ∗ p)U(x ∗ p)

1 − 2p
= −1 + J(x ∗ p)(1 − 2(x ∗ p)).

Let us defineR(x) to be the derivative of the R.H.S., i.e.

d

dx

2
(

J
(

x
2

)

− J
(

1−x
2

)

)

1
U( x

2 ) + 1
U( 1−x

2 )

= R(x).

We wish to show that

−1 + J(x ∗ p)(1 − 2(x ∗ p)) ≤ R(x), (4)

for all 1
6 ≤ p ≤ 1

2 and x ∈ [0, 1
2 ]. Given anyx ∈ [0, 1

2 ],
observe thatJ(x ∗ p)(1− 2(x ∗ p)) is a decreasing function of
p for 0 ≤ p ≤ 1

2 . Thus establishing (4) forp = 1
6 suffices.

Let S(x) = −1 + J(x ∗ 1
6 )(1 − 2(x ∗ 1

6 )). Figure 3 plots
S(x) andR(x).
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Fig. 3. ComparingR(x) andS(x)

Thus we haveS(x) ≤ R(x) for 0 ≤ x ≤ 1
2 . This completes

the proof of Claim 1.


