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Abstract— We consider a broadcast channel with 3 receivers the second is the use of é {+ €)-codebook rather than an
and 2 message$Mo, M) where two of the three receivers need ¢.codebook to establish the capacity region.

to decode messageSVo, M1) while the remaining one just needs Bound 1: Th nion of the followin fr ir
to decode the messagé/,. We study the best known inner ound 1. . e_ union of the following set of rate pairs
(Ro, Ry) satisfying

and outer bounds under this setting, in an attempt to find

the deficiencies with the current techniques of establiship the Ro < I(U; Ys)
bounds. We produce a simple example where we are able to 0= o3
explicitly evaluate the inner bound and show that it differs from Ry <min{I(X;Y1|U), I(X;Y5|U)}
the general outer bound. For a class of channels where the geral . . .
inner and outer bounds differ, we use a new argument to show Ro + Ry < min{I(X; Y1), 1(X; Y2)}
that the inner bound is tight. over all pairs of random variablé#/, X ) such that/ — X —
. INTRODUCTION (Y1,Y2,Y3) forms a Markov chain constitutes an inner bound

\tﬁ the capacity region.
%Bound 2: The union over the set of rate paitgey, R1)
satisfying

The broadcast channel with degraded message sets
initially studied by Koérner and Marton [1] for two recerge
and more recently in [2], [3], [4] for three and more recesver
Koérner and Marton [1] established the capacity regiontfar Ry < min{I(Uy;Y3),1(Usz;Y3)}
degraded message sets with two receivers and some capacity Ro + Ry < min{I(Uy;Ys) + I(X; V1 |U7),
regions for three or more receivers were established [Phy3 B
showing that the straightforward extension of the innerrtabu I(U; Ys) + 1(X; Y2|Us)}
in [1] was optimal. In [4], an idea calleichdirect decoding was Ro + Ry < min{I(X;Y1), [(X;Y2)}
introduced and the authors showed that this could be used,t, g possible choices of random variab(es, Us, X) such

enhance (in some cases strictly) the straightforward eiden . (U1, Us) — X — (Y1,Ya,Y3) forms a Markov chain
of the inner bound by Korner and Marton. Unfortunatelye th.o . tittes an outer bound for this channel

new inner bounds [4] become quite messy and unwieldy due t0rg ghove hounds are traditional, i.e. can be obtained using
the introduction of many auxiliary random variables. HOR®V giq g techniques. The inner bound is a straightforward

there is still one class of _broadca_st c_;hannels Wi_th degradgflension of the achievability argument in [1] and the outer
message sets where the idea of indirect decoding does got4 can be deduced by arguments in [6], [7], etc.

yield any region better than the straightforward exten®ibn = porark 1: 1t is also possible to include the constraint
the Korner and Marton inner bound, and this is the scenario

of interest here. Ro <min{I(Uy; Y1), 1(Uz; Ya)}
Consider a 3-receiver broadcast channel with 2 messa

(Mo, My) with the following decoding requirement. Receiver

Y; and Y, need to decode both messadéd,, M;) while identical to the bound we presented

receiverys needs to decode only messatfg. The traditional These bounds are known to be tiéht in all of the following

inner and outer bounds presented below remain the best knoé%%cial cases

inner and outer bounds for this class of broadcast chanimels. . . . .

this paper we look at the general inner and outer bounds for® Recew_erYl IS _al& noisy receiver tharv andY; is a

this scenario in a greater detail. We show that these bounds less noisy receiver thanv; (2], [4],

differ in general, and that there is a class of channels where® Ys is a deterministic function oX,,

the inner bound is tight and the outer bound is weak. ¢ ijl IS amore capag:e recever :Eag (or ;/)ce-versa),
There are two main contributions in this paper: the first * *3 is amore capable receiver thari; (or 11),

one is the teChnique (Same spirit as Mrs. Gerberrs lemma [5])An n-codebook is used to denote a codebook whose probabilityrof e
used to evaluate the boundary of a particular inner bounslpounded above by.

#5t0 the outer bound. However, it is quite straightforwand t
3how that the region obtained by adding this inequality is



The last two cases are very straightforward and the proofAs Evaluation of the inner bound, 0 < p < Pras
omitted. WhenY3 is a deterministic function of, note that
it is not difficult to show that by taking the convex closure o
the regions obtained by settirg) U = Y3 and(iz) U = 0 in
the inner bound exhausts the following region,

n In the region) < p < pq. it is straightforward to see that
the inner bound reduces to the following region (obtained vi
a time-division between the two auxiliary chann€lg:U =
and (ii) U = X, and in each case, settiff X = 0) = 0.5),
Ry < H(Y3)

Ry + Ry < min{I(X;Y1),[(X;Y2)} Ro+ Ry Sh(i)—%,
ang this clearly forms an outer bound to the capacity region, Which clearly matches the outer bound (Bound Tus for

ne class of channels that does not fall into any of the ca W
. . S < p < Pmaz =~ 0.184, the inner and outer bounds are tight
is the following channel shown in Figure 1 below. The channel
X — (Y1,Y2) represents dinary skew-symmetric (BSSC) and give the capacity region.
broadcast channel [7], [8] and the chan’Xel- Y3 represents
a binary symmetric (BSC) with crossover probability, with B. Evaluation of the inner bound, pyae <p < 1

1
O<p=sz Letyf = {1,2,....m} and letP(U = i) = u; and P(X =
0|U =) = s,. Further, let
h(z) = —xloge x — (1 — ) logy (1 — )
denote the binary entropy function.
0 Using these notations we have,
X I(U;Y3) = h(z ui(si(1 —p) + (1 — si)p))
1 _Zui (si(1 —p) + (1 —s:)p)

I(X;1|U) = ZUZ Zulsl

P g
I(X;Y5|U) = Zul —Zui(l—si)
;S
“O1 I(X;Yl):h(z 9 )*Zuisi
Fig. 1. 3-receiver broadcast channel ' ui(1 — Si)l

A i

In the next section we evaluate Bound 1 for this channel.

Based on the symmetry, it is very natural to believe that theDeflneu = {1,2,..,m} x {1 2}, P(U = (3,1)) = %,
auxiliary channell' — X must be a BSC with some cross ove (X = 0|U (G, )) — i, P(U = (i, 2)) = & r;mdP X2:
probability s. In the next section, we prove that this is mdee s Tr:i,s induces an’ Wlt?] P(X =0) =
the case. This uses a technique similar in spirit to Wyner ariEU .

Ziv's technique of using Mrs. Gerber’s lemma [5]. We will2* Itis stra|ghtf0rward to see the following:

also show that the Bound 2 yields a strictly larger region for
this channel. Finally, we will show that the region représen

by Bound 1 constitutes theapacity region for this channel.  1(X;v;|U) = I(X;Y,|U) = %(I(X;Y1|U) + I(X; Y2|U))

[I. EVALUATION OF THE INNER BOUND > min{I(X;Y1|U), I(X;Y2|U)}

In the evaluation of the inner bound, we divide the range I(X: V) = [(X;Ys) > l(I(X-Yl) +I(X;Y3))
0 <p < 3 into two regions0 < p < praz ANAPras < p < 7 7 B ’ 7
%, wherep,,q, € [0, 3] is the unique solution of o i .

. ) From this it follows that for everyU replacingU by U

1—h(p)=h(>)— = leads to a larger achievable region. Hence to evaluate Bound
4 2 1, it suffices to maximize over all auxiliary random variable
i.e. the value ofp at which capacity of the BSC matches thef the formU defined byl/ = {1,2,...,m} x {1,2}, P(U =
term max,,,y min{7(X; Y1), I(X;Y2)}. The numerical value (i,1)) = %, P(X = 0|U = (i,1)) = s;, P(U = (4,2)) = %,
of Praz ~ 0.184. andP(X = 0|U = (,2)) = 1 — s,.



Under this notation we have the following expression faandy; € [z1, 23], let a;,: be uniquely defined according to

the rate region given in Bound 1, f(@ine) = >, uif(y:). Then the following holds
Ry < I(U;Y3) 9(@int) < Zuzg(%)
1 i
- h(ﬁ) B Zuih(si(l —p)+ (L= si)p), D. Determining the boundary rate pairs
Ry <min{I(X;V1|U), [(X;Y2|U)} We use the Corollary 1 to determine the boundary of the
B w s 1— s 1 region. We make the following identifications, l¢t{x) =
- Z 31 (h(é) + h( 5 Z)) -3 h(%)+h(15%)—1, andg(z) = h(z(1—p)+(1—x)p). Observe
i that f(«) and g(«) are increasing differentiable functions in
Ro + Ry <min{I(X;Y7),I(X;Y3)} the region[0, 3].
= h(l) ! Claim 1: For} < p < 1, the ratio of the derivativeé—g((;)gg
47 2 is a decreasing function.
Using the symmetry of the functiol(z) = k(1 —2) we note  The proof of this fact is found in the Appendix.
that (Numerical simulations indicate that this is true fgf;, <
p < % for p..in = 0.05, but for the purposes of establishing the
h(si(1 —p)+ (1 —s4)p) = h((1 — 53)(1 —p) + s:p) inner bound clearly this region of suffices, ast < piaz ~

o 0.184).
and thus the above region is constant under the transfamati R k 2: By combining Claim 1 and Corollary 1 note that
s; — 1 — s;, implying we can restrick; to take values only h(p* f~'(y)) is convex iny, and this is very similar to Mrs.

i <1
N0<si< 5. . . . Gerber's Lemma [5].
Before we proceed to determine the boundary of this region,\ ;. jet s. . be defined according to

we prove the following lemma.

Lemma 1: Let f(z) and g(z) be two non-negative and 2 2 i 2

strictly increasing functions that are c?if)ferentiablefhne tregion
1
x € [v1,25]. Further assume that~2 is a decreasing

i i i ; 1—s; : 1—s;
C. An inequality for a class of functions h(smt) + i Smt) _ Zuz (h(%) +h( Sz)) .

Then from Corollary 1, fop,,;, < p < % we have

g (z) 1
function, wheref () (z) and ¢ (z) denote the derivatives of h(i) - Zuih(si(l —p)+ (1 —s)p)
the function. Given any,0 < u < 1, let x;,; be uniquely i
defined according t¢f (zin:) = uf(z1) + (1 —u) f(z2). Then < s 1 1 — s,
the following holds, = (2) (sint(1 = p) + (1 = Sint)p)-

This implies that the optimal auxiliary chann€l — X is
9(wint) < ug(z1) + (1 —u)g(x2). a BSC with a cross-over probability and P(U = 0) = 1.
Proof: We haveu(f(zin:) — f(z1)) = (1 —u)(f(2z2) — Thus forpme, <p < 1, the boundary is characterized by the
f(zint)), and we wish to show that(g(zi,) — g(x1)) < Pair of points of the form,

(1—u)(g(z2) — g(xint)). Since all the terms are positive, this — 1 h(s(1— g

reduces to2showingt Ro=1 h(l(l I;) +a ) _)I;)’
f(ine) = f@1)  f@s) = (i) i min{g <h(§) +h(= )1), @)
9(wint) = g(x1) — 9(w2) = 9(@int) 1, 3

However, this is immediate as shown below. h(z) 2 Thls(l =p)+ (1 S>p>} ’

M (g - . .
From the fact thatf—g(l)ézg is a decreasing function, we haveg, < s < 1. The second term iz, comes from taking

2
. " into account the sum rate constraint,
lemf O (x)dzx - FO (2im4) - [ fO(z)dx

, Tint 1, 1
lemt g(l) (;p)dz - g(l)(wint) - fxit g(l)(;p)dz Ro+ Ry < h(z) — 5
n A simple calculation shows that fgr, < p < % one can
Repeated applications of Lemma 1 leads to the followingnore the sum rate constraint, where = ¥3=1 ~ 0.211.

. . . . 2f
corollary - potentially of independent interest. This p, corresponds to the smallest value pfwhere the

Corollary 1: Let f(z) andg(z) be two non-negative and ¢onyvex region characterized by the pairs
strictly increasing functions that are differentiablelie region

w

r € [r1,72]. Further assume thaﬁ%g; is a decreasing Ro=1=h(s(1=p)+ (1 —s)p),
function, where as beforg((z) and ¢(*)(x) denote the Ry = 1 (h(f) + h(l — 5) _ 1) _
derivatives of the function. Given any; > 0,3, u; = 1, 2 2 2



has a slope of-1 at the point(Ry, k1) = (0,h(3) — 1). [1l. REVISITING OUTER BOUND

Therefore the inner bound has three different eXPressions:, . o show that the inner bound is tight for the channel

e 0 < p < pmaz: the inner bound reduces W + R1 < shown in Figure 1.

h(1) — 3 _ o _ Letr: {01} — {0,1};7(0) = 1, 7(1) = 0.
* Pmax < P < po: the inner bound is given by equation (1) consider ane-codebook{z", . .1 < mo < 2"Fo 1 <
Where a” ir_]equa.“tles are neC.essary, . . mi S 2nR1;Am0,m1 g yilaBmo-,m1 g y;vcmo g yg};
e Do .S p < 5: the inner bound is characterized by pair ofynere the disjoint Sets,y i, » Bmg.m, »Cmo TEPresent the
points of the form decoding maps. From the skew symmetry of the channels
X — (Y1,Ys2) and the symmetry in channel — Y3, it
Ro=1-h(s(1-p)+(1-s)p), is clear that{r (2, ,,).1 < mo < 2" 1 < my; <
Ri= (&) + (=) 1), 2" 7 (Bing,my) S Vi 1(Amgumi) S V5. 7(Cmo) S Y5}
2 2 2 represents a valid-codebook as well.

From these two codes, construct a new codebook (with error

bounded byl + ¢) and size2"fo x 2nF1+1 as follows: The
To show that the outer bound gives a larger region, w@dewords are indexed by}, =, ) whereb = 0,1. When

produce a particular choice of the p&lr;, U», X). Consider b = 0 the codewordzy, .. ) = 27, ,,, and whenb =

a U, U, defined as follows, 1, we havez” = 7(z] ). The decoding maps

mo,(my,b=1) mo,mi

for this codebook are created as follows:ylf € A1 ;1 N

E. Comparison with the outer bound

P{U =1)=PUz;=1) =u, m(Bu2,m2) then the receiver chooses one of the two message
P(U; =2)=P(U>=2)=1—u, pairs(m{, mi), (m3, m?) with equal probability. Otherwise it
P(X =00 =1) = P(X = 1[Us = 1) = 1, picks the message pair correspondlr!gFo the unlq_ua,sbgjtm%

or W(Bmgmg) that it belongs to. A similar decoding strategy
P(X =0|U1 =2) = P(X = 1|U; = 2) = 5, applies for receivery, andY; as well.

The key feature is the symmetry of the codebook:"Ife C
thenn(z™) € C and correspond to the same message
where s = .01%“ for 0 < u < 0.5. E)_(istence_ of thg triple  Now observe that (M, M:|Y{") < H (Mo, My, b|Y) <
(U1, Uz, X) is guaranteed by the consistent distributionon 1 H(Mg, My|Y*,b) = 1+ n(Ry + Ry)e,. Therefore we
Substituting this choice into Bound 2 we obt&egion Agiven  gbtain the same outer bound (Bound 2) using Fano’s inegualit

by, and identification of the auxiliary random variables as befo
In particular, the identifications of the auxiliary random
Ry <1—(1—u)h(s(1—p)+ (1—s)p) —uh(p), variables remain the followingl/;; = (Mo,Y3{ ", Y;2,)

sy 1 andUs; = (Mo, Y31, Y52 ). Now for the skew-symmetric
Ry <(1- “)h(g) D) +u, channels and a symmetric codebook observe that
1 1 . )
Ro+ Ry < h(Z) Ty P(MO = m07Y311_1 = y;z),flvyuﬁl = Y1, Xi = ﬂﬁz)

) . = P(Mo =mo, X7 =a}, Yy ' =ys V10 = uif
Figure 2 plots Region A and Bound 1 fpr= 1. Observe .7, ( ' )

that RegionA is larger than Bound 1, and hence the Bounds 1 i1
and 2 do not match for the 3-receiver channel shown in Figur%) > P(Mo =mo, X' = :v?) [T POs; =us;1X; ==5)
1. This implies the following corollary. e\ i=1

n
< [T POk = yaxl Xi = 21)
k=it1

i—1
P (Mo = mo, Xi' = n(a1)) L1 PO = ()1, = w()

X H P(Yaor = m(y1x)| X = 7(x1))

| k=i+1
ay = Z P(Mo =mo, X' = n(z]), Yy, " = W(ygil_l)vyzﬁu = 7T(Z/1?+1)>
zP\z;
Fig. 2. Comparing Bound 1 and Region A fpr= i © P<Mo = mo, Y3f_1 = w(yé{l), Yoy = m(yiiy), Xi = ﬂ(xi)>.

Corollary 2: There exists a class of channels, given in Here (a) follows from the discrete memoryless property of
Figure 1, for which the inner and outer bounds (i.e. Boundstie channel; angb) follows from (i) symmetry of the code,
and 2) do not match. (i4) symmetry of the channeX — Y5 with respect tor(-),



and (ii7) the skew symmetry between receivéfs Y; i.e. APPENDIX
A. Proof of Claim 1
PO = m(y)|X =m(@)) = P11 = y|X = ); In this section we show that wheh < p < 3, the ratio
M (g .
and (c) is a consequence af(-) being a bijection. f(l)é g is a decreasing function of, = € [0, 3]. Recalling the
Therefore the random variablé#/’;, X) and (Us, X) are definitions, f(x) = h(§) + h(15%) — 1, andg(x) = h(z(1 —
identical up to re-labeling. Since the mutual informatiorda p) + (1 — z)p). As f(z) and g(x) are strictly increasing in
entropy do not depend on the labeling, it follows that z € [0, 1], it suffices to show that

12w _ @@
() = g0(@)’ @

where f(?)(z), ¢® (x) denote the second derivatives of the

function.
Remark 3: This technique can be extended to other skew- Let J(x) — 1og1’Tx, Uz) = 2(1 — 2) andz p = o(1 —

symmetric channels as well, i.e one for which suchr(e) p) + p(1 — x). Using this notation and substituting for the

I(Ul,Yg) = I(UQ,Yg)
I(X;Ys|Uh) = I(X; Ya|Us).

exists. derivatives, (2) reduces to showin
Therefore we obtain the following revised outer bound. ’ g
Bound 3: The union over the set of rate paif®y, 1) J(z * p)U(z * p) 2<J(%) - J(PTI))
satisfying ) > n . 3)
P ( ) U(121:)
Ro < 1(Uy;Y3) Now observe that ag — 1 both J(z % p) and J(%) —
Ro+ Ry < min{I(Uy;Ys) + I(X;Y;|Uy), J(l‘?”“) tend to zerlo and all cither terrr]ns re;nain positlive.fThus
) ) we have an equality at = 5. To show the inequality for
U1 Y 1(X; Y |U . - 2 L
.( 1 ¥a) + I( 2|U1)} z € [0, 3] it suffices to prove that thelerivative of the left
Ro + Ry < min{I(X; Y1), [(X;Y2)} hand side (L.H.S) of (3) is smaller tharerivative of the right

hand side (RH.S) of (3).

over all possible choices of random variab(€s, X) suchthat  The derivative of the L.H.S. is given by

Ui — X — (Y1,Y5,Y3) forms a Markov chain constitutes an dJ U

outer bound for this channel. _w
It is straightforward to see (using the boundary points) tha dx 1=2p

Bound 3 matches the inner bound and forms the capadci§t us definei(z) to be the derivative of the R.H.S., i.e

1+ J(z*p)(1 —2(z *p)).

region. J Q(J(%) _ J(1;z))
— = R(z).
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