
Unifying the Brascamp-Lieb Inequality and the Entropy Power

Inequality

Venkat Anantharam∗, Varun Jog †, and Chandra Nair‡

Abstract

The entropy power inequality (EPI) and the Brascamp-Lieb inequality (BLI) are fundamental
inequalities concerning the differential entropies of linear transformations of random vectors.
The EPI provides lower bounds for the differential entropy of linear transformations of random
vectors with independent components. The BLI, on the other hand, provides upper bounds
on the differential entropy of a random vector in terms of the differential entropies of some
of its linear transformations. In this paper, we define a family of entropy functionals, which
we show are subadditive. We then establish that Gaussians are extremal for these functionals
by mimicking the idea in Geng and Nair (2014). As a consequence, we obtain a new entropy
inequality that generalizes both the BLI and EPI. By considering a variety of independence
relations among the components of the random vectors appearing in these functionals, we also
obtain families of inequalities that lie between the EPI and the BLI.1

1 Introduction

Information inequalities provide some of the most powerful mathematical tools in an information
theorist’s toolbox and are therefore a vital part of information theory. Inequalities such as the
non-negativity of mutual information and the data processing inequality are so fundamental to
information theory that they are inseparable from information-theoretic notation. These basic in-
equalities, combined with Fano’s inequality, are powerful enough to yield the converse of Shannon’s
channel coding theorem. For harder problems in network information theory, it is necessary to de-
velop more nuanced information inequalities. Not surprisingly, it is often the case that discovering
new inequalities leads to breakthroughs in network information theory problems. Some examples
of information inequalities that spurred such breakthroughs include the entropy power inequality
[1, 2], numerous strengthened forms of the entropy power inequality [3, 4, 5], strong data processing
inequalities [6], and inequalities that established certain continuity properties of entropy [7].

On a related note, “single-letter characterizations” of a capacity region or outer bounds to a
capacity region in network information theory are induced by subadditive functionals that reduce
the characterization of the region to one governed by a single channel use. In this paper, we identify
a new functional that is sub-additive and for which Gaussian distributions are extremal. Conse-
quently, we obtain a new class of information inequalities that unifies two fundamental inequalities:
the entropy power inequality (EPI) and the Brascamp-Lieb inequality (BLI). In what follows, we
provide a brief introduction to the EPI and the BLI and state our main results.
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As notational conventions in what follows, := and =: denote equality by definition depending on
whether the expression being defined is on the left or on the right respectively, while, for an integer
n > 0, [n] denotes {1, . . . , n} and In×n denotes the n × n identity matrix. We use the notation
|A| for the determinant of a square matrix A. We use the term “entropy” as synonymous with
“differential entropy” in this document. All vectors are assumed to be column vectors, and we will
adopt the convention that if X is an Rk-valued vector and Y is an Rl-valued vector, then (X,Y )
denotes the Rk+l-valued vector that would normally be written as (XT , Y T )T . Given a random
vector (Z1, . . . , Zn), we use the notation Za:b to denote the random vector (Za, Za+1, . . . , Zb), where
1 ≤ a ≤ b ≤ n. The notation X → U → Y for random vectors X, U , and Y indicates that X and
Y are conditionally independent given U .

Entropy power inequality: The EPI states that for any independent Rn-valued random vari-
ables X and Y , the following inequality holds:

e
2h(X+Y )

n ≥ e
2h(X)

n + e
2h(Y )

n . (1)

Here, h(·) refers to the differential entropy function and all the differential entropies in equation
(1) are assumed to exist. Equality holds if and only if X and Y are Gaussian random variables
with proportional covariance matrices. The EPI was proposed by Shannon [1] and was first proved
by Stam [8]. This proof was later simplified by Blachman [2]. A variety of simple and ingenious
proofs have been discovered since; see Rioul [9] for a discussion.

The EPI has an equivalent formulation due to Lieb [10] which is that for λ ∈ (0, 1) we have:

h(
√
λX +

√
1− λY ) ≥ λh(X) + (1− λ)h(Y ). (2)

Equality holds in the above inequality if and only if X and Y are Gaussian random variables
with identical covariance matrices. Note that

√
λX +

√
1− λY may be interpreted as a linear

transformation of an R2n-valued random variable Z := (X,Y ) with some independence constraints
on the components of Z, namely X ⊥⊥ Y . Another result along such lines is Zamir and Feder’s
EPI [4] for linear transformations of random vectors with independent components. This EPI has
an equivalent formulation, discovered in [9, 11], that is analogous to the one in equation (2): For an
Rn-valued random vector X := (X1, . . . , Xn) with independent scalar components and any k × n
matrix A satisfying AAT = Ik, we have

h(AX) ≥
n∑
j=1

α2
jh(Xj), (3)

where α2
j is the squared-norm of the j-th column of A; i.e., α2

j :=
∑k

i=1 a
2
ij .

Brascamp-Lieb inequality: The BLI [12] is actually a family of functional inequalities that
lies, in some sense, at the intersection of information and functional inequalities. Many well-known
and commonly used inequalities are special cases of the BLI, including Hölder’s inequality, the
Loomis-Whitney inequality, the Prékopa-Leindler inequality, and sharp forms of Young’s convolu-
tion inequalities [13]. In Gardner’s extensive survey [14], the author describes relationships between
popular functional and information inequalities using a pyramid-like sketch, where inequalities at
the top imply those below. The BLI and its reverse lie at the very apex of this inequality pyramid.
A simple statement of the BLI is as follows:

2



Theorem 1 (Functional form of the BLI). For j ∈ [m], let E, Ej be Euclidean spaces, Aj : E → Ej
be linear maps, cj be positive real numbers, and fj be nonnegative integrable functions on Ej. Define
the function F via

F(f1, . . . , fm) :=

∫
E

∏m
j=1 f

cj
j (Ajx)dx∏m

j=1

(∫
Ej
fj(xj)dxj

)cj .
Then the supremum of F over all nonnegative and integrable fj is equal to the supremum of F
when fj are centered Gaussian functions; i.e., for all j ∈ [m], we have fj(xj) ∝ e−x

T
j Bjxj for some

positive semidefinite Bj.

Surprisingly, a direct connection exists between the functional form of the BLI and a generalized
subadditivity result for entropy. This link was first discovered in Carlen, Lieb, and Loss [15], and
has since led to newer proofs and generalizations of the original BLI [16, 17, 18, 19, 20]. The
information-theoretic form of the BLI is the following:

Theorem 2 (Information-theoretic form of the BLI, Theorem 2.1 in Carlen and Cordero-Er-
ausqin [16]). For i ∈ [m], let E, Ei, Ai, and ci be as in Theorem 1. For a random variable X
on E with a well-defined differential entropy (see Definition 1) and satisfying E[‖X‖2]2 < ∞,
define f(X) as

f(X) := h(X)−
m∑
j=1

cjh(AjX). (4)

Then the supremum of f over all such random variables X is equal to the supremum of f over all
Gaussian random variables.

This information-theoretic form is completely equivalent to the functional form: For a fixed
choice of the aj and the cj , the supremums in both problems have a direct relationship and the
cases of equality are also in correspondence [16, Theorem 2.1]. A defining feature of the BLI is
that it reduces an infinite-dimensional optimization problem to a finite-dimensional optimization
problem over a set of positive definite matrices. When the supremum in Theorem 2 is finite, random
variables that achieve the supremum are called extremizers, and Gaussian random variables that
achieve the supremum are called Gaussian extremizers. 2 The existence of extremizers or Gaussian
extremizers and the finiteness of D are not addressed by Theorem 2, as stated above. However,
this is well-understood in the literature [21, 16, 13].

Our contributions: The classical EPI and the EPI of Zamir and Feder are valid only under
certain independence assumptions. To be precise, for an R2n-valued random vector Z, the EPI re-
quires independence of Z1:n and Zn+1:n and considers the sum of these two vectors, whereas Zamir
and Feder’s EPI requires all the components to be independent and considers linear transforma-
tions of Z. It is natural to consider more general “mixed” independence constraints, for instance,
independence of Z1:k1 , Zk1+1:k2 , . . . , Zkr+1:n for suitable choices of ki, and establish lower bounds
on h(AZ) for a matrix A. This is indeed a special case of the setting considered in our work.

Consider an Rn-valued random vector X := (X1, . . . , Xk), where k ≤ n and Xi are mutually
independent Rri-valued random variables. Note that

∑k
i=1 ri = n. We consider the following

function:

f(X) :=
k∑
i=1

dih(Xi)−
m∑
j=1

cjh(AjX), (5)

2In [13] a Gaussian extremizer is defined as a distribution that extremizes among the class of Gaussian distributions,
but it turns out that this definition is identical to the one used here.
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for positive constants di and cj where i ∈ [k] and j ∈ [m] for some m ≥ 1, and surjective linear
transformations Aj from Rn to Rnj . Just as in Theorem 2, our main result in Theorem 3 states that
the supremum of f(·) over all random variables X satisfying the stated independence constraints is
the same as the supremum evaluated over Gaussian random variables. In Theorem 4, we identify
necessary and sufficient conditions on n, k, m and the ri, di, cj , nj and Aj , such that this supremum
is finite. We show that the EPI, BLI, and Zamir and Feder’s EPI easily follow from Theorem 3.
Theorem 3 also provides a generalization of Zamir and Feder’s result for certain kinds of dependent
random variables.

Our main technical contribution is identifying new entropic functionals and proving that they
satisfy a certain subadditivity property. The work of Geng and one of the authors [22] high-
lighted the critical role played by subadditivity in information inequalities. How subadditivity of
information theoretic functionals—which is established using the chain rule and data processing
relations—can be used to determine the capacity of the Gaussian vector broadcast channel was
demonstrated in that work. Once subadditivity is ascertained, a technique from functional analy-
sis called the “doubling trick” may be used to establish Gaussian optimality. The doubling trick,
attributed to Ball [23], appeared in Lieb [24] to prove that Gaussian kernels have Gaussian opti-
mizers, and in Carlen [25] to show Gaussian optimality in the log-Sobolev inequality. Subadditivity
followed by the doubling trick has been used to prove numerous information inequalities in recent
years [26, 27, 28, 29, 30, 5].

Related work: The EPI may be thought of as a limiting special case of the BLI. Gardner [14]
showed that the EPI follows from the sharp form of Young’s inequality, which in turn is a spe-
cial case of the BLI. This proof strategy is further clarified using a more geometric approach by
Cordero-Erausquin and Ledoux [18]. The authors of [18] establish the EPI directly from Theorem
2 by carefully choosing the aj and cj as a function of a parameter ε that tends to 0 and yields the
EPI in the limit. While these are intriguing connections, they do not suggest concrete approaches
for developing information inequalities for random vectors under more general independence con-
straints.

Various information-theoretic analogues of hypercontractive inequalities and reverse Brascamp-
Lieb inequalities in finite alphabet spaces have been studied in [31, 19, 32]. A closely related work
is that of Liu et al. [20], where a novel functional inequality called the forward-reverse Brascamp-
Lieb inequality is formulated, and it is shown that there exists an analogous information-theoretic
version of this inequality. Most relevant to us is the forward-reverse Brascamp-Lieb inequality with
linear maps that was introduced in Liu et al. [20]. Define a function F of the marginal densities of
an Rn-valued random variable X:

F (X1, . . . , Xn) := inf
{Y |Yi

d
=Xi, i∈[n]}

n∑
i=1

dih(Yi)−
m∑
j=1

cjh(AjY ). (6)

Here, by Yi
d
= Xi we mean that the distribution of Yi is identical to that of Xi. Theorem 8 in [20]

states that the supremum of F is obtained when each Xi is a centered Gaussian random variable,
in which case the infimum in the definition in equation (6) is attained when the optimal coupling
Y is a jointly Gaussian random vector. The expressions in equations (5) and (6) look very similar.
The main difference is that equation (6) has an infimum over all possible couplings Y , whereas
our definition in equation (5) enforces the unique coupling where the components Yi are mutually
independent.
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Structure of the paper: In Section 2, we introduce some preliminaries and set up the notation
to be used in the rest of the paper. In Section 3 we state our main result in Theorem 3 and show
that the EPI, BLI, and Zamir and Feder’s EPI may be proved as special cases of this result. In
Section 4, we prove Theorem 3. In Section 5, we establish necessary and sufficient conditions for
the supremum of f in the expression in equation (5) to be finite. In Section 6, we provide a concrete
example that demonstrates the utility of Theorem 3 in obtaining EPI-like results for dependent
random variables. Finally, in Section 7 we conclude the paper and describe some open problems.

2 Preliminaries and notation

Definition 1. For n > 0, let X be an Rn-valued random variable with density fX that lies in the
convex set of probability densities{

f
∣∣∣ ∫

Rn

f(x) log(1 + f(x))dx <∞
}
. (7)

Then we define the entropy of X as

h(X) := −
∫
Rn

fX(x) log fX(x)dx. (8)

The entropy of a 0-dimensional random variable is defined to be 0.

Remark 2.1. The integral in equation (7) is well-defined since the integrand is non-negative.
The condition in equation (7) implies that the differential entropy integral in equation (8) is well-
defined and lower-bounded away from −∞. Also note that the condition in equation (7) is inherited
by marginalization, i.e. if f satisfies the condition and g is a (multidimensional) marginal of f ,
then g also satisfies the condition.

Definition 2 (BL datum). For an integer m > 0, define an m-transformation as a triple

A := (n, {nj}j∈[m], {Aj}j∈[m]),

where for each j ∈ [m], Aj : Rn → Rnj is a surjective linear transformation, and nj ≥ 0. An
m-exponent is defined as an m-tuple c = {cj}j∈[m], such that cj ≥ 0 for j ∈ [m]. A Brascamp-
Lieb datum (BL datum) is defined as a pair (A, c) where A is an m-transformation and c is an
m-exponent, for an integer m > 0.

Definition 3 (EPI datum). For an integer k > 0, define a k-partition of n as r = {ri}i∈[k], such
that ri > 0 are integers and

∑
i∈[k] ri = n. Let d = {di}i∈[k] such that di ≥ 0 for all i be a

k-exponent. An EPI datum is a pair (r,d) where r is a k-partition and d is a k-exponent, for an
integer k > 0.

Definition 4 (BL-EPI datum). For an integer n > 0, a BL-EPI datum is defined as (A, c, r,d)
where (A, c) is a BL datum for an integer m > 0, and (r,d) is an EPI datum for an integer k > 0.

Definition 5. Let (A, c, r,d) be a BL-EPI datum where r is a k-partition of n. Define P(r) to be
the set of all Rn-valued random vectors X := (X1, X2, . . . , Xk) such that:

1. For i ∈ [k], the random vectors Xi take values in Rri and their densities satisfy the condition
in equation (7);
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2. X1, X2, . . . , Xk are independent;

3. EX = 0 and E ‖X‖22 <∞.

Since entropy expressions are not affected by adding constants, the 0-mean assumption in Definition
5 may be made without loss of generality. Define Pg(r) ⊆ P(r) as the set of random variables X
that satisfy the properties above, while, in addition, each Xi, i ∈ [k] is Gaussian.

Remark 2.2. Whether an Rn-valued random vector X lies in P(r) or not is a property of its
distribution. The finite variance assumption on random variables in P(r) implies that the entropies
h(Xi) for i ∈ [k] and h(AjX) for j ∈ [m] are bounded away from ∞. However, with only the
variance assumption in place, it may happen that some of these entropies equal −∞, which happens,
for instance, when X is a constant. In this paper, we shall be dealing with differences of entropies
of the form

k∑
i=1

dih(Xi)−
m∑
j=1

cjh(AjX). (9)

The condition in equation (7) together with the finite variance assumption has the effect of ensuring
that the absolute values of the differential entropies are finite, which ensures that the above difference
is well-defined for X ∈ P(r). This is a technical assumption made for ease of presentation. In
cases where the expression in equation (9) is not well-defined, we may redefine it to equal the limit

lim sup
δ→0+

k∑
i=1

dih(X̃i)−
m∑
j=1

cjh(AjX̃ +
√
δZj), (10)

where X̃ := X+
√
δW for a standard normal W independent of X and the Zj are standard normal

random vectors independent of (X,W ). With this modification, our results continue to hold for
random variables that satisfy all the conditions in Definition 5 except the condition in equation (7).

The following two concepts are required for Theorem 4.

Definition 6. Let (A, c, r,d) be a BL-EPI datum. Define a subspace V ⊆ Rn as being of r-product
form if V may be written as V = V1 × V2 × · · · × Vk for subspaces Vi ⊆ Rri , for i ∈ [k].

Definition 7. Let (A, c, r,d) be a BL-EPI datum. An r-product form subspace V ⊆ Rn is called
a critical subspace if

k∑
i=1

di dim(Vi) =
m∑
j=1

cj dim(AjV ).

Definition 8. For a BL-EPI datum (A, c, r,d), define M(A, c, r,d) as

M(A, c, r,d) := sup
X∈P(r)

k∑
i=1

dih(Xi)−
m∑
j−1

cjh(AjX).

Similarly, define Mg(A, c, r,d) as the above supremum taken over Gaussian inputs X ∈ Pg(r).
When the BL-EPI datum is fixed, we shall omit the (A, c, r,d) argument and use the simplified
notation M and Mg.

6



3 Main results

We are now in a position to state our main result:

Theorem 3 (Unified EPI and BLI). Let (A, c, r,d) be a BL-EPI datum. Recall the definition

Mg := sup
Z∈Pg(r)

k∑
i=1

dih(Zi)−
m∑
j=1

cjh(AjZ). (11)

Then for any X ∈ P(r), the following inequality holds:

k∑
i=1

dih(Xi)−
m∑
j=1

cjh(AjX) ≤Mg. (12)

Recall that in Definition 8 we introduced the quantity (with a simplified notation):

M := sup
X∈P(r)

k∑
i=1

dih(Xi)−
m∑
j=1

cjh(AjX). (13)

Naturally, we have M ≥Mg. Thus, if Mg is +∞, then so is M . If Mg <∞, then the above result
implies M ≤ Mg, and thus M = Mg. An equivalent way of stating the above result is asserting
M = Mg. Theorem 3 does not address the following points, which are worth investigating:

1. Finiteness: When is Mg (and therefore M) finite?

2. Extremizability and Gaussian extremizability: Assuming M is finite, when do extrem-
izers exist for the supremum in equation (13), and when do Gaussian extremizers exist for
the supremum in equation (12)? In particular, does extremizability imply Gaussian extrem-
izability? (Clearly, the reverse implication is true because of Theorem 3.)

3. Uniqueness of extremizers: Assuming extremizers exists, are they unique in some appro-
priate sense?

The answers to all these questions will depend on the BL-EPI datum (A, c, r,d). In this paper,
we resolve the first question by identifying necessary and sufficient conditions on (A, c, r,d) that
ensure finiteness of M and Mg. We do not address the latter two questions here. We show the
following result:

Theorem 4. For a BL-EPI datum (A, c, r,d), we have M(A, c, r,d) < ∞ if and only if the
following conditions are satisfied:

k∑
i=1

di dim(Vi) ≤
m∑
j=1

cj dim(AjV ) for all r-product form V, and (14)

k∑
i=1

diri =
m∑
j=1

cjnj . (15)

As we show below, Theorem 3 readily implies the EPI, BLI, and Zamir and Feder’s EPI. For this
reason, we choose to interpret the inequality in Theorem 3 as a unified version of the Brascamp-Lieb
inequality and the entropy power inequality.
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Entropy Power Inequality: We will prove the EPI in Lieb’s form (2) using Theorem 3. Let
X and Y be independent Rd-valued random variables with zero means and bounded variances, and
let λ ∈ (0, 1). The expression λh(X) + (1− λ)h(Y )− h(

√
λX +

√
1− λY ) corresponds to n = 2d,

k = 2, r1 = r2 = d, d1 = λ, d2 = 1− λ, c1 = 1, and A1 = [
√
λId,
√

1− λId]. Note that it is enough
to prove Mg = 0 by explicit calculation. Consider Gaussian random variables Z1 ∼ N (0,Σ1) and
Z2 ∼ N (0,Σ2). Plugging in the entropies of these Gaussian random variables and simplifying, we
see that we need to evaluate the supremum

Mg = sup
Σ1,Σ2�0

λ log det(Σ1) + (1− λ) log det Σ2 − log det(λΣ1 + (1− λ)Σ2).

This supremum is seen to be 0 via the concavity of the log det function.

Brascamp-Lieb Inequality: When k = 1, r1 = n, and d1 = 1, we recover the setting of the
Brascamp-Lieb inequality in its equivalent form of subadditivity of entropy:

h(X) ≤
m∑
j=1

cjh(AjX) +Mg, (16)

for all Rn-valued random variables X with EX = 0 and E||X||22 <∞.

Zamir and Feder’s Inequality: Let A be a k×n matrix satisfying AAT = Ik×k. For 1 ≤ j ≤ n,
let the squared norm of the j-th column of A be denoted by α2

j ; i.e.,

α2
j :=

k∑
i=1

a2
ij .

Just as we did for the EPI, it is enough to show that Mg ≤ 0 by explicitly computing the supremum
of
∑n

j=1 α
2
jh(Xj) − h(AX) over Gaussian X. Let Λ = Diag(λ1, λ2, . . . , λn) be a positive definite

matrix. Define a function F from the space of positive definite diagonal matrices to R as follows:

F (Λ) = log|AΛAT | −
n∑
j=1

α2
j log λj .

If we show that F (Λ) ≥ 0, then Theorem 3 will immediately imply Zamir and Feder’s EPI for
random vectors with independent components. Let B := AΛ1/2, so that AΛAT = BBT . Using the
Cauchy-Binet formula for the determinant of BBT , we obtain

|BBT | =
∑

1≤i1<···<ik≤n
|Bi1i2...ik ||B

T
i1i2...ik

|,

where Bi1i2...ik consists of the k columns of B corresponding to the indices i1, . . . , ik. The right
hand side of the above equality may be written explicitly as

∑
1≤i1<···<ik≤n

 k∏
j=1

λij

 |Ai1i2...ik |2.
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Noting that
∑

1≤i1<···<ik≤n |Ai1i2...ik |
2 = |AAT | = |Ik| = 1 (again via the Cauchy-Binet formula),

we may take logarithms and use Jensen’s inequality to obtain

log |AΛAT | ≥
∑

1≤i1<···<ik≤n
|Ai1i2...ik |

2 log

 k∏
j=1

λij

 .

We now gather the coefficients of log λj for a fixed j. The coefficient of log λ1 is given by∑
1=i1<···<ik≤n

|Ai1i2...ik |
2 = 1− |A2,3,...,nA

T
2,3,...,n| = 1− |In −A1A

T
1 | = α2

1.

Here, the first equality follows by using the Cauchy-Binet formula again, the second equality
follows from the orthogonality of the rows of A, and the third equality is true because |In−uuT | =
1− ‖u‖2 for any vector u. A similar calculation can be done to show that the coefficient of log λj
is α2

j for all 1 ≤ j ≤ n, which completes the proof of F (Λ) ≥ 0.

4 Proof of Theorem 3

Our proof strategy relies on the technique of Geng and Nair [22] which was developed to solve
optimization problems of the form supCov(X)�Σ s(X). A rough sketch of this proof strategy is
outlined below:

• Concave envelope: Define the concave envelope of s, denoted by S, as the smallest concave
function that pointwise dominates s. It can be seen that

S(X) = sup
U
s(X|U) = sup

U

∑
u∈U

s(X|U = u)pU (u),

where the supremum is over finite auxiliary random variables U with support U .

• Subadditivity of S: This step consists of defining S on the larger space of pairs of ran-
dom variables (X1, X2). A straightforward extension often exists for information-theoretic
functions S. The subadditivity result shows that

S(X1, X2) ≤ S(X1) + S(X2).

The ingredients for establishing the subadditivity result developed in this paper stems from
the ideas to establish converses to coding theorems and outer bounds in network information
theory. An argument with a flavor similar to that employed here can be found outlined in
[33].

• Optimizers of S: In this step (also known as the doubling trick), we consider two i.i.d. copies
of any optimizer X of S(X), say (X1, X2), and show that (X1 +X2)/

√
2 and (X1 −X2)/

√
2

are also optimizers of S(X). From here, we may use Gaussian characterization results [34]
or the central limit theorem [22] to conclude that it is enough to consider only Gaussian
optimizers.

• Optimizers of s: In this final step, we show that the optimal value for S(X) is attained by
a single Gaussian distribution; i.e., we may assume without loss of generality that |U| = 1,
and thus this Gaussian also maximizes s(X).
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The crux of the proof is establishing the subadditivity of S. Our proof relies on the expanding
the joint entropy h(X1, X2) in two separate ways as follows:

(A) h(X1, X2) = h(X1) + h(X2)− I(X1;X2),

(B) h(X1, X2) = h(X1|X2) + h(X2|X1) + I(X1;X2).

To highlight the main ideas, we present a proof sketch of the subadditivity result for the EPI using
our new technique.

4.1 Proving the EPI via subadditivity

Consider the function

s(X1, Y1) := λh(X1) + (1− λ)h(Y1)− h(
√
λX1 +

√
1− λY1), (17)

where X1 ⊥⊥ Y1. Define the lifting of s to the space of pairs of random variables by

s(X1:2, Y1:2) := λh(X1:2) + (1− λ)h(Y1:2)− h(
√
λX1:2 +

√
1− λY1:2), (18)

where X1:2 ⊥⊥ Y1:2. Let S(X1, Y1) and S(X1:2, Y1:2) be the respective concave envelopes of s and
its lifting. 3 We would like to show the subadditivity relation

S(X1:2, Y1:2) ≤ S(X1, Y1) + S(X2, Y2). (19)

Notice that
S(X1, Y1) = sup

X1→U→Y1
s(X1, Y1|U), (20)

and similarly for S(X1:2, Y1:2). For any auxiliary random variable U satisfying X1:2 → U → Y1:2,
applying expansion (A) to each entropy term in equation (18) (conditioned on U) yields

s(X1:2, Y1:2 | U) = λh(X1:2|U) + (1− λ)h(Y1:2|U)− h(
√
λX1:2 +

√
1− λY1:2|U)

=
[
λh(X1|U) + (1− λ)h(Y1|U)− h(

√
λX1 +

√
1− λY1|U)

]
+
[
λh(X2|U) + (1− λ)h(Y2|U)− h(

√
λX2 +

√
1− λY2|U)

]
+
[
− λI(X1;X2|U)− (1− λ)I(Y1;Y2|U) + I(

√
λX1 +

√
1− λY1;

√
λX2 +

√
1− λY2|U)

]
.

(21)

For simplicity, call the terms in the brackets T1(U), T2(U), and T3(U) respectively, even though
they actually depend on pU |X1:2,Y1:2 . Observing that Xi → U → Yi for i = 1, 2, we may conclude
T1(U) ≤ S(X1, Y1) and T2(U) ≤ S(X2, Y2). Substituting these inequalities, we arrive at

s(X1:2, Y1:2|U) ≤ S(X1, Y1) + S(X2, Y2) + T3(U). (22)

3 To get S(X1, Y1) from s(X1, Y1), we can think of the domain of s(X1, Y1) as being the product of the convex set
of probability densities on x satisfying (7) and the convex set of probability densities on y satisfying (7), and take
the concave hull on this product space; similarly for getting S(X1:2, Y1:2) from s(X1:2, Y1:2). It can be checked that
any product distribution on (X1, Y1) got by a mixture of product distributions can be viewed as having the mixing
done on the marginals, basically because if p(x)q(y) =

∑
i λipi(x)qi(y) where λi ≥ 0 and

∑
i λi = 1 then summing

over y on both sides gives p(x) =
∑

i λipi(x) and similarly q(y) =
∑

i λiqi(y). This justifies why we can write (20)
and the analogous expression for S(X1:2, Y1:2).
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We now expand the expression in equation (18) (conditioned on U) using expansion (B) for
each entropy term:

s(X1:2, Y1:2|U) = λh(X1:2|U) + (1− λ)h(Y1:2|U)− h(
√
λX1:2 +

√
1− λY1:2|U)

=
[
λh(X1|U,X2) + (1− λ)h(Y1|U, Y2)− h(

√
λX1 +

√
1− λY1|U,

√
λX2 +

√
1− λY2)

]
+
[
λh(X2|U,X1) + (1− λ)h(Y2|U, Y1)− h(

√
λX2 +

√
1− λY2|U,

√
λX1 +

√
1− λY1)

]
+
[
λI(X1;X2|U) + (1− λ)I(Y1;Y2|U)− I(

√
λX1 +

√
1− λY1;

√
λX2 +

√
1− λY2|U)

]
.

(23)

For ease of notation, call the three terms R1(U), R2(U), and R3(U) = −T3(U), even though they
actually depend on pU |X1:2,Y1:2 . Similar to inequality (22), we would like to upper bound R1(U) and
R2(U) by S(X1, Y1) and S(X2, Y2) respectively. However, the conditioning for the entropy terms
in each of the Ri(U) is not the same so we cannot directly conclude such a bound. Using the chain
rule of mutual information and data-processing relations, we may make the conditioning in R1(U)
and R2(U) uniform by introducing some extra mutual information terms:

R1(U) =
[
λh(X1|U,X2) + (1− λ)h(Y1|U, Y2)− h(

√
λX1 +

√
1− λY1|U,

√
λX2 +

√
1− λY2)

]
=
[
λh(X1|U,X2, Y2) + (1− λ)h(Y1|U, Y2, X2)− h(

√
λX1 +

√
1− λY1|U,X2, Y2)

]
− I(
√
λX1 +

√
1− λY1;X2, Y2|U,

√
λX2 +

√
1− λY2)

=: R̃1(U)− I1(U),

where the notational conventions R̃1(U) and I1(U) are used even though the respective terms
actually depend on pU |X1:2,Y1:2 . The main step in the preceding equation is justified as follows.
First, it it easy to check using the Markov relation (X1, X2)→ U → (Y1, Y2) that

h(X1|U,X2) = h(X1|U,X2, Y2), and h(Y1|U, Y2) = h(Y1|U,X2, Y2).

Also, we may verify that

h(
√
λX1 +

√
1− λY1|U,

√
λX2 +

√
1− λY2)

= h(
√
λX1 +

√
1− λY1|U,X2, Y2) + I(

√
λX1 +

√
1− λY1;X2, Y2|U,

√
λX2 +

√
1− λY2).

Similar reasoning for R2(U) gives

R2(U) =
[
λh(X2|U,X1) + (1− λ)h(Y2|U, Y1)− h(

√
λX2 +

√
1− λY2|U,

√
λX1 +

√
1− λY1)

]
=
[
λh(X2|U,X1, Y1) + (1− λ)h(Y2|U, Y1, X1)− h(

√
λX2 +

√
1− λY2|U,X1, Y1)

]
− I(
√
λX2 +

√
1− λY2;X1, Y1|U,

√
λX1 +

√
1− λY1)

=: R̃2(U)− I2(U),

where the notational conventions R̃2(U) and I2(U) are used even though the respective terms
actually depend on pU |X1:2,Y1:2 . Substituting the expressions for R1(U) and R2(U) in the expansion
in equation (23), we arrive at

s(X1:2, Y1:2|U) = R̃1(U) + R̃2(U)− T3(U)− I1(U)− I2(U)

(a)

≤ S(X1, Y1) + S(X2, Y2)− T3(U)− I1(U)− I2(U)

(b)

≤ S(X1, Y1) + S(X2, Y2)− T3(U). (24)
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Here, in step (a) we used the Markov chains X1 → (U,X2, Y2) → Y1 and X2 → (U,X1, Y1) → Y2.
Step (b) follows by noticing that I1(U) and I2(U) are non-negative, being mutual information
expressions.

Inequalities (22) and (24) may now be used in tandem to conclude

s(X1:2, Y1:2|U) ≤ S(X1, Y1) + S(X2, Y2). (25)

Taking the supremum over all auxiliary random variables U satisfying X1:2 → U → Y1:2 leads to

S(X1:2, Y1:2) ≤ S(X1, Y1) + S(X2, Y2). (26)

Notice that the above proof not only gives us subadditivity, but also states that if there is equality
in equation (25) for some optimal U∗, then I1(U∗) = I2(U∗) = T3(U∗) = 0. This leads to several
independence conditions that can be used establish Gaussian optimality. We do not sketch this
part of the proof here.

In what follows, we develop this outline into a rigorous proof for a more general result in two
stages. In Section 4.2 we establish the key subadditivity inequality and the independence relations
that follow from the conditions for equality in that inequality, and in Section 4.3 we complete the
proof of Theorem 3 by proving Gaussian optimality.

4.2 Subadditivity lemma

4.2.1 Preliminaries

Let (A, c, r,d) be a BL-EPI datum. Let X := (X1, X2, . . . , Xk) ∈ P(r), where Xi ∼ pXi . A natural
definition for s(X) would be

s(X) :=
k∑
i=1

dih(Xi)−
m∑
j=1

cjh(AjX),

and one might then work with its concave envelope S. However, for technical reasons we consider
Gaussian-smoothed random variables in defining s as follows:

Definition 9. Let Wi ∼ N (0, Iri×ri), i ∈ [k] be mutually independent standard normal random
variables on Rri , and let W := (W1, . . . ,Wk). For j ∈ [m], define independent Gaussian random
variables Zj ∼ N (0, Inj×nj ), and let Z := (Z1, Z2, . . . , Zm). Assume that the random variables X,
W and Z are mutually independent. For ε, δ ≥ 0 define sε,δ : P(r)→ R as

sε,δ(X) :=

k∑
i=1

dih(Xi +
√
δWi)−

m∑
j=1

cjh(Aj(X +
√
δW ) +

√
εZj). (27)

Let Sε,δ be the concave envelope of sε,δ. Let U be an auxiliary random variable taking values
in a finite set U such that we have pX|U (·|U) ∈ P(r). It is easy to see that the concave envelope
has an equivalent definition in terms of such choices of U :

Sε,δ(X) := sup
U : pX|U (·|U)∈P(r)

k∑
i=1

dih(Xi +
√
δWi|U)−

m∑
j=1

cjh(Aj(X +
√
δW ) +

√
εZj | U), (28)
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where, on the right hand side of equation (28), we can assume that W , Z and (U,X) are mutually
independent. For a particular choice of U , define

sε,δ(X | U) :=

k∑
i=1

dih(Xi +
√
δWi|U)−

m∑
j=1

cjh(Aj(X +
√
δW ) +

√
εZj |U). (29)

Analogous to P(r), define P(2r) to be the set of random variables that take values in R2r1 ×
· · ·×R2rk and satisfy the conditions in Definition 5. More precisely, a random vector (X1, X2) is in
P(2r) if X1 := (X11, . . . , Xk1) and X2 := (X12, . . . , Xk2) are Rn-valued random vectors such that
the random vectors (Xi1, Xi2) ∈ R2ri , i ∈ [k] are mutually independent, satisfy the condition in
equation (7), and condition 3 of Definition 5 holds for (X1, X2). Since the condition in equation (7)
is inherited by marginalization, we have that if (X1, X2) ∈ P(2r) then X1 ∈ P(r) and X2 ∈ P(r).

We will need to define an extension of Sε,δ to the larger space P(2r). Consider a random vector
(X1, X2) ∈ P(2r) as in the preceding paragraph. Define

sε,δ(X1, X2) :=

k∑
i=1

dih(Xi1 +
√
δWi1, Xi2 +

√
δWi2)

−
m∑
j=1

cjh(Aj(X1 +
√
δW1) +

√
εZj1, Aj(X2 +

√
δW2) +

√
εZj2), (30)

where (W1,W2, Z1, Z2) are mutually independent standard normal distributions of the appropriate
dimensions that are independent of (X1, X2). The concave envelope of sε,δ(X1, X2) can be written
as:

Sε,δ(X1, X2) = sup
U : pX1X2|U (·,·|U)∈P(2r)

k∑
i=1

dih(Xi1 +
√
δWi1, Xi2 +

√
δWi2 | U)

−
m∑
j=1

cjh(Aj(X1 +
√
δW1) +

√
εZj1, Aj(X2 +

√
δW2) +

√
εZj2 | U), (31)

where W1, W2, Z1, Z2 and (U,X1, X2) are mutually independent, with U taking values in finite
sets U and pX1,X2|U (·, ·|U) ∈ P(2r). Figure 1 illustrates the relations between the random variables
via a graphical model.

4.2.2 Proof of subadditivity

Lemma 4.1 (Subadditivity lemma). For any ε, δ ≥ 0, the function Sε,δ is subadditive; i.e., if
(X1, X2) ∈ P(2r) then

Sε,δ(X1, X2) ≤ Sε,δ(X1) + Sε,δ(X2). (32)

Corollary 4.1. For any ε, δ ≥ 0, the function Sε,δ tensorizes; i.e., if X1, X2 ∈ P(r) and if X1 ⊥⊥
X2, then

Sε,δ(X1, X2) = Sε,δ(X1) + Sε,δ(X2). (33)

Proof of Lemma 4.1. Let U be an auxiliary random variable taking values in a finite set U , such that
pX1,X2|U (·, ·|U) ∈ P(2r). Consider the following expansion, which comes from applying expansion

13



X1 X2

X11 X12

X21 X22

...
...

Xk1 Xk2

U

Figure 1: Illustration of the Markov relationship

(A) term by term:

sε,δ(X1, X2 | U) =

[
k∑
i=1

dih(Xi1 +
√
δWi1|U)−

m∑
j=1

cjh(Aj(X1 +
√
δW1) +

√
εZj1|U)

]

+

[
k∑
i=1

dih(Xi2 +
√
δWi2|U)−

m∑
j=1

cjh(Aj(X2 +
√
δW2) +

√
εZj2|U)

]

+

[
−

k∑
i=1

diI(Xi1 +
√
δWi1;Xi2 +

√
δWi2|U)

+
m∑
j=1

cjI(Aj(X1 +
√
δW1) +

√
εZj1;Aj(X2 +

√
δW2) +

√
εZj2|U)

]
.

(34)

For simplicity, denote the terms in the square brackets by T1(U), T2(U), and T3(U), respectively,
even though they actually depend on pU |X1,X2

. Observe that that pX1|U (·|U), pX2|U (·|U) ∈ P(r)
(see Figure 1). Thus, we conclude that T1(U) ≤ Sε,δ(X1) and T2(U) ≤ Sε,δ(X2), using the definition
in equation (28). Substituting these inequalities, we arrive at

sε,δ(X1, X2|U) ≤ Sε,δ(X1) + Sε,δ(X2) + T3(U). (35)

We now expand sε,δ(X1, X2 | U) in a different way, which comes from applying expansion (B) term
by term:

sε,δ(X1, X2 | U) (36)

=
[ k∑
i=1

dih(Xi1 +
√
δWi1|U,Xi2 +

√
δWi2)−

m∑
j=1

cjh(Aj(X1 +
√
δW1) +

√
εZj1|U,Aj(X2 +

√
δW2) +

√
εZj2)

]

+
[ k∑
i=1

dih(Xi2 +
√
δWi2|U,Xi1 +

√
δWi1)−

m∑
j=1

cjh(Aj(X2 +
√
δW2) +

√
εZj2|U,Aj(X1 +

√
δW1) +

√
εZj1)

]

+
[ k∑
i=1

diI(Xi1 +
√
δWi1;Xi2 +

√
δWi2|U)−

m∑
j=1

cjI(Aj(X1 +
√
δW1) +

√
εZj1;Aj(X2 +

√
δW2) +

√
εZj2|U)

]
.

(37)
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For ease of notation, call the three terms in the square brackets R1(U), R2(U), and R3(U) =
−T3(U), respectively, even though each term actually depends on pU |X1,X2

. Similar to inequality
(35), we would like to upper bound R1(U) and R2(U) by Sε,δ(X1) and Sε,δ(X2) respectively. How-
ever, the conditioning in each of the two differential entropy terms in each Ra(U), a = 1, 2 is not
the same, so we cannot directly conclude such a bound. Using the chain rule of mutual informa-
tion and data-processing relations, we may make the conditioning in R1(U) and R2(U) uniform by
introducing some extra mutual information terms:

R1(U)

=
[ k∑
i=1

dih(Xi1 +
√
δWi1|U,Xi2 +

√
δWi2)−

m∑
j=1

cjh(Aj(X1 +
√
δW1) +

√
εZj1|U,Aj(X2 +

√
δW2) +

√
εZj2)

]

=
[ k∑
i=1

dih(Xi1 +
√
δWi1|U,X2 +

√
δW2)−

m∑
j=1

cjh(Aj(X1 +
√
δW1) +

√
εZj1|U,X2 +

√
δW2)

]
−

m∑
j=1

cjI(Aj(X1 +
√
δW1) +

√
εZj1;X2 +

√
δW2|U,Aj(X2 +

√
δW2) +

√
εZj2)

=: R̃1(U)− I1(U),

where we write R̃1(U) and I1(U) for simplicity, even thought the corresponding terms depend on
pU |X1,X2

. The above steps are justified as follows. First, it is easy to check that (Xi1 +
√
δWi1) ⊥⊥

{Xl2 +
√
δWl2}l 6=i conditioned on (U,Xi2 +

√
δWi2). This means that, for all 1 ≤ i ≤ k,

h(Xi1 +
√
δWi1|U,Xi2 +

√
δWi2)

= h(Xi1 +
√
δWi1|U,X12 +

√
δW12, . . . , Xi2 +

√
δWi2, . . . , Xk2 +

√
δWk2)

= h(Xi1 +
√
δWi1|U,X2 +

√
δW2).

Also, we may verify the Markov chain (conditioned on U)[
Aj(X2 +

√
δW2) +

√
εZj2

]
→
[
X2 +

√
δW2

]
→
[
Aj(X1 +

√
δW1) +

√
εZj1

]
,

which gives the equality

h(Aj(X1 +
√
δW1) +

√
εZj1|U,Aj(X2 +

√
δW2) +

√
εZj2)

= h(Aj(X1 +
√
δW1) +

√
εZj1|U,X2 +

√
δW2)

+ I(Aj(X1 +
√
δW1) +

√
εZj1;X2 +

√
δW2|U,Aj(X2 +

√
δW2) +

√
εZj2).

Similar reasoning for R2(U) gives

R2(U)

=
[ k∑
i=1

dih(Xi2 +
√
δWi2|U,Xi1 +

√
δWi1)−

m∑
j=1

cjh(Aj(X2 +
√
δW2) +

√
εZj2|U,Aj(X1 +

√
δW1) +

√
εZj1)

]

=
[ k∑
i=1

dih(Xi2 +
√
δWi2|U,X1 +

√
δW1)−

m∑
j=1

cjh(Aj(X2 +
√
δW2) +

√
εZj2|U,X1 +

√
δW1)

]
−

m∑
j=1

cjI(Aj(X2 +
√
δW2) +

√
εZj2;X1 +

√
δW1|U,Aj(X1 +

√
δW1) +

√
εZj1)

=: R̃2(U)− I2(U),
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where we use the notation R̃2(U) and I2(U) for simplicity, even though the corresponding terms
depend on pU |X1,X2

. Substituting the expressions for R1(U) and R2(U) in the expansion in equation
(37), we arrive at

sε,δ(X1, X2 | U) = R̃1(U) + R̃2(U)− T3(U)− I1(U)− I2(U)

(a)

≤ Sε,δ(X1) + Sε,δ(X2)− T3(U)− I1(U)− I2(U)

(b)

≤ Sε,δ(X1) + Sε,δ(X2)− T3(U). (38)

Here, in step (a) we used the fact that pX1|U,X2+
√
δW2

(·|U,X2 +
√
δW2), pX2|U,X1+

√
δW1

(·|U,X1 +
√
δW1) ∈ P(r) and the definition in equation (28). Step (b) follows by noticing that the cj are

non-negative, and so are I1(U) and I2(U) since they are nonnegative linear combinations of mutual
informations.

We can combine inequalities (35) and (38) to get

sε,δ(X1, X2|U) ≤ Sε,δ(X1) + Sε,δ(X2). (39)

Taking the supremum on the left hand side of this inequality over all auxiliary variables U taking
values in finite sets U , such that pX1,X2|U (·, ·|U) ∈ P(2r), yields the claimed subadditivity result.

Proof of Corollary 4.1. When X1 ⊥⊥ X2, we have the inequality

Sε,δ(X1, X2) ≥ Sε,δ(X1) + Sε,δ(X2). (40)

This is because we can always choose U := (U1, U2) such that (U1, X1) ⊥⊥ (U2, X2) and pX1|U1
(·|U1),

pX2|U2
(·|U2) ∈ P(r). The supremum in equation (31) over this restricted class of auxiliaries is simply

Sε,δ(X1) + Sε,δ(X2), which therefore is a lower bound on Sε,δ(X1, X2). Inequality (40) combined
with Lemma 4.1 completes the proof of Corollary 4.1.

Our next lemma serves to some extent as a converse to Corollary 4.1. In particular, we show
that if Sε,δ(X1, X2) = Sε,δ(X1) + Sε,δ(X2), then X1 and X2 are independent conditioned on the
optimal auxiliary U∗, assuming it exists. We point out that this converse requires ε and δ to be
strictly bounded away from 0, unlike Lemma 4.1. The formal statement is as follows:

Lemma 4.2 (Independence relations). Fix ε, δ > 0. Given (X1, X2) ∈ P(2r), suppose that
Sε,δ(X1, X2) = Sε,δ(X1) + Sε,δ(X2). Suppose that U∗ is such that pX1,X2|U∗(·, ·|U∗) ∈ P(2r) and
sε,δ(X1, X2 | U∗) = Sε,δ(X1, X2). Then the following results hold:

(a) For all u∗ ∈ U∗, we have that X1 ⊥⊥ X2 conditioned on U∗ = u∗,

(b) sε,δ(X1|U∗) = Sε,δ(X1) and sε,δ(X2|U∗) = Sε,δ(X2).

Proof. Notice that the proof of Lemma 4.1 implies that the optimizing U∗, if it exists, must satisfy
I1(U∗) = I2(U∗) = T3(U∗) = 0. The first two equalities yield the Markov chains (conditioned on
U∗ = u∗)[

Aj(X1 +
√
δW1) +

√
εZj1

]
→
[
Aj(X2 +

√
δW2) +

√
εZj2

]
→
[
X2 +

√
δW2

]
, and[

Aj(X2 +
√
δW2) +

√
εZj2

]
→
[
Aj(X1 +

√
δW1) +

√
εZj1

]
→
[
X1 +

√
δW1

]
.
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However, we have the obvious Markov chains[
Aj(X1 +

√
δW1) +

√
εZj1

]
→
[
X2 +

√
δW2

]
→
[
Aj(X2 +

√
δW2) +

√
εZj2

]
, and[

Aj(X2 +
√
δW2) +

√
εZj2

]
→
[
X1 +

√
δW1

]
→
[
Aj(X1 +

√
δW1) +

√
εZj1

]
.

Using Lemma A.1, we may conclude that, conditioned on U∗, we have[
Aj(X1 +

√
δW1) +

√
εZj1

]
⊥⊥
[
X2 +

√
δW2

]
, and[

Aj(X2 +
√
δW2) +

√
εZj2

]
⊥⊥
[
X1 +

√
δW1

]
.

Recall that T3(U∗) is given by

T3(U∗) =

[
−

k∑
i=1

diI(Xi1 +
√
δWi1;Xi2 +

√
δWi2|U∗)

+
m∑
j=1

cjI(Aj(X1 +
√
δW1) +

√
εZj1;Aj(X2 +

√
δW2) +

√
εZj2|U∗)

]
.

Substituting the above independence relations in T3(U∗) = 0, we conclude that, conditioned on U∗,
we have

X1 +
√
δW1 ⊥⊥ X2 +

√
δW2,

which by Lemma A.2 implies that, conditioned on U∗, we have

X1 ⊥⊥ X2,

and concludes the proof of (a).
Having proved (a), rewrite equation (34), with U∗ for U , as

sε,δ(X1, X2|U∗) = sε,δ(X1|U∗) + sε,δ(X2|U∗). (41)

The above inequality, combined with the assumed equality sε,δ(X1, X2|U∗) = Sε,δ(X1) + Sε,δ(X2),
immediately yields

sε,δ(X1|U∗) = Sε,δ(X1) , and

sε,δ(X2|U∗) = Sε,δ(X2).

4.2.3 A general subadditivity result

A closer inspection of the proof of Lemma 4.1 reveals that the linear functions mapping X to AjX
could be replaced with general channels. To be precise, let X = (X1, X2, . . . , Xk) ∈ P(r) and for
j ∈ [m], consider m channels pYj |X from X to Yj . Define the function s : P(r)→ R as

s(X) :=
k∑
i=1

dih(Xi)−
m∑
j=1

cjh(Yj), (42)
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and let S be its concave envelope. The function s is lifted to pairs of random variables (X1, X2) ∈
P(2r) as

s(X1, X2) :=

k∑
i=1

dih(Xi1, Xi2)−
m∑
j=1

cjh(Yj1, Yj2),

where the channel from (X1, X2) to (Yj1, Yj2) is given by pYj1,Yj2|X1,X2
= pYj1|X1

pYj2|X2
. Let

S(X1, X2) be the concave envelope of s(X1, X2).

Claim 4.1. The function S is subadditive; i.e., S(X1, X2) ≤ S(X1) + S(X2).

Proof. Let U be an auxiliary random variable taking values in a finite set U , such that pX1,X2|U (·, ·|U) ∈
P(2r). Note that

k∑
i=1

dih(Xi1, Xi2|U)−
m∑
j=1

cjh(Yj1, Yj2|U)

=

k∑
i=1

dih(Xi1|U)−
m∑
j=1

cjh(Yj1|U) +

k∑
i=1

dih(Xi2|U,Xi1)−
m∑
j=1

cjh(Yj2|U, Yj1)

(a)

≤
k∑
i=1

dih(Xi1|U)−
m∑
j=1

cjh(Yj1|U) +

k∑
i=1

dih(Xi2|U,X1)−
m∑
j=1

cjh(Yj2|U,X1)

≤ S(X1) + S(X2).

To verify step (a) it suffices to show that h(Xi2|U,Xi1) ≤ h(Xi2|U,X1) for each i ∈ [k]. In fact
we have equality here because, as is easily verified, we have (Xl1, l 6= i) conditionally independent of
Xi2 given Xi1 and U . To verify the last inequality, observe that (Xi1, 1 ≤ i ≤ k) are conditionally
independent given U and (Xi2, 1 ≤ i ≤ k) are conditionally independent given (U,X1). Taking a
supremum over U completes the proof.

We make several remarks. First, observe that only the cj need to be non-negative; no such
condition is necessary for the di.

4 Second, while this proof is very simple compared to that of
Lemma 4.1, the independence relations in Lemma 4.2—which are critical to the proof of Gaussian
optimality—cannot be directly deduced from the above proof. However, this is not such a big
impediment. Instead of s(X), we could consider a slightly modified function sε(X) defined by

sε(X) =

k∑
i=1

dih(Xi)−
m∑
j=1

cjh(Yj)− εI(X;X + Z),

where Z is a standard Gaussian that is independent of X and Yj = AjX. It is not hard to show
that the concave envelope of sε is subadditive; in fact, the same steps as in the proof of Claim 4.1
suffice. Further, including the extra mutual information term allows one to deduce independence
relations analogous to those in Lemma 4.2. This approach provides an alternate route to proving
Theorem 3.

4However, studying the maximum over P(r) of an expression like (9) when some of the di are negative is not
interesting because the maximum over Pg(r) is ∞, as can be seen by letting the covariance matrix of the component
corresponding to any factor with negative di tend to 0.
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4.3 Proof of Theorem 3

Having proved the key subadditivity step, the rest of the proof closely follows the steps outlined in
[22, Appendix II].

Definition 10. Let Σ := Diag(Σ1,Σ2, . . . ,Σk) be an n × n block diagonal matrix such that each
Σi is an ri × ri positive definite matrix. For ε, δ > 0, define

v(Σ) := sup
X∈P(r),EXXT =Σ

sε,δ(X), and (43)

V (Σ) := sup
X∈P(r),EXXT�Σ

Sε,δ(X), (44)

where � denotes ordering in the positive semidefinite partial order.

Lemma 4.3. There exist random variables X∗ and U∗ satisfying (1) |U∗| ≤
∑k

i=1
ri(ri+1)

2 + 1; (2)

X∗ ∈ P(r); and (3) EX∗X∗T � Σ, such that the following holds:

V (Σ) = sε,δ(X
∗ | U∗). (45)

Proof of Lemma 4.3. Let (X(t), t ≥ 1) be a sequence of random variables such that EX(t)(X(t))T =
Σ̂ and sε,δ(X

(t)) ↑ v(Σ̂) as t→∞. This sequence of random variables is tight due to the covariance
constraint [22, Proposition 17], and thus we may assume without loss of generality that the X(t)

converge weakly to a random variable XΣ̂ as t → ∞. Since X(t) +
√
δW satisfies the necessary

regularity conditions as in [22, Proposition 18], we also have h(X
(t)
i +

√
δWi)→ h(XΣ̂

i +
√
δWi) for

i ∈ [k], and h(Aj(X
(t) +

√
δW ) +

√
εZj)→ h(Aj(X

Σ̂ +
√
δW ) +

√
εZj) for j ∈ [m]. Hence we may

conclude sε,δ(X
Σ̂) = v(Σ̂).

Recall that V (Σ) is defined as

V (Σ) = sup
X∈P(r),EXXT�Σ

Sε,δ(X)

= sup
(U,X),pX|U (·|U)∈P(r),EXXT�Σ

sε,δ(X | U)

(a)
= sup

αl≥0,Σ̂l:
∑M

l=1 αl=1,
∑M

l=1 αlΣ̂l�Σ

M∑
l=1

αlv(Σ̂l), (46)

where, for the moment, M ranges over positive integers of arbitrary size. The equality in (a)

is because we may restrict pX|U (·|U) to the class of optimizers XΣ̂ for Σ̂ � 0. We now show

that we can fix M to be
∑k

i=1

(
ri+1

2

)
+ 1 in (46). Let T denote the connected subset of positive

definite matrices Σ of the form Diag(Σ1, . . . ,Σk) where Σi is an ri × ri positive definite matrix for
i ∈ [k]. Consider the connected compact subset, V, of the M -dimensional Euclidean space obtained
using the continuous mapping Φ : T 7→ RM , defined by Φ(Σ) = ({Σi(j, k)1≤j≤k≤ri}, v(Σ)), where

M :=
∑k

i=1

(
ri+1

2

)
+ 1. Fenchel’s extension of Carathéodory’s Theorem [35, Theorem 1.3.7] states

that any finite convex combination of points in V, can be represented as a convex combination of at
most M points in V. Hence for any (U,XΣU ) we can find a pair (U ′, XΣU′ ) with U ′ taking at most
M values, such that E(ΣU ) = E(ΣU ′) and E(v(ΣU )) = E(v(ΣU ′)). Thus from this point onwards
in the proof we define M :=

∑k
i=1

(
ri+1

2

)
+ 1 in (46).

Consider any sequence of convex combinations
(
{α(t)

l }
M
l=1, {Σ̂

(t)
l }

M
l=1

)
with

∑M
l=1 α

(t)
l Σ̂

(t)
l � Σ for

all t ≥ 1, and such that
∑M

l=1 α
(t)
l v(Σ̂

(t)
l ) converges to v(Σ) as t→∞. Appealing to the compactness
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of the M -dimensional simplex, we may assume without loss of generality that α
(t)
l → α∗l for all

i ∈ [M ]. If any of the α∗l equals 0, then noticing that α
(t)
l Σ̂

(t)
l � Σ gives us

v(Σ̂
(t)
l )

(a)

≤
k∑
i=1

di
2

log(2πe)ri |Σ̂(t)
li + δIri×ri | −

m∑
j=1

cjnj
2

log(2πeε)

≤
k∑
i=1

di
2

log(2πe)ri

∣∣∣∣∣ Σli

α
(t)
l

+ δIri×ri

∣∣∣∣∣−
m∑
j=1

cjnj
2

log(2πeε)

=

k∑
i=1

di
2

log

∣∣∣∣∣ Σli

α
(t)
l

+ δIri×ri

∣∣∣∣∣+ C0,

where C0 is some constant that does not depend on t. In (a), we used the fact that each h(Xi +√
δWi) is upper-bounded by the entropy of a Gaussian random variable with the same covariance

matrix as Xi +
√
δWi, and h(Aj(X +

√
δW ) +

√
εZj) ≥ h(

√
εZj).

It is now clear that the limit α
(t)
l v(Σ̂

(t)
l ) as t → ∞ is equal to 0 whenever α

(t)
l → 0. Thus,

we may assume that minl∈[M ] α
∗
l = αmin > 0, by splitting a component α

(t)
l v(Σ̂

(t)
l ) into multiple

components if necessary. This implies that Σ̂
(t)
l �

2Σ
αmin

for all large enough t. Hence, we can find a

convergent subsequence such that Σ̂
(t)
l → Σ∗l for each l ∈ [M ] when t→∞ along this subsequence.

We arrive at

V (Σ) =

M∑
l=1

α∗l v(Σ∗l ), (47)

or, in other words, we can find a pair of random variables (X∗, U∗) with |U∗| ≤ M such that
V (Σ) = sε,δ(X

∗|U∗). This completes the proof.

Lemma 4.4. Consider random variables (X1, X2, U) such that (X1, X2) ∈ P(2r) for some r-
partition of n > 0. Define new random variables X+ and X− via

X+ :=
X1 +X2√

2
, and X− :=

X1 −X2√
2

.

Then sε,δ(X1, X2|U) = sε,δ(X+, X−|U).

Proof. We have the equality

sε,δ(X1, X2|U) =
k∑
i=1

dih(Xi1 +
√
δWi1, Xi2 +

√
δWi2|U)

−
m∑
j=1

cjh(Aj(X1 +
√
δW1) +

√
εZj1, Aj(X2 +

√
δW2) +

√
εZj2|U), (48)

Further, defining Wi+ := Wi1+Wi2√
2

, Wi− := Wi1−Wi2√
2

, Zj+ :=
Zj1+Zj2√

2
, and Zj− :=

Zj1−Zj2√
2

, we have

h(Xi1 +
√
δWi1, Xi2 +

√
δWi2|U) = h(Xi+ +

√
δWi+, Xi− +

√
δWi−|U), (49)

and

h(Aj(X1 +
√
δW1) +

√
εZj1, Aj(X2 +

√
δW2) +

√
εZj2|U)

= h(Aj(X+ +
√
δW+) +

√
εZj+, Aj(X− +

√
δW−) +

√
εZj−|U). (50)
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(W1,W2, Z1, Z2) and (W+,W−, Z+, Z−) are equal in distribution. Multiplying the equations in (49)
by di and those in (50) by cj and subtracting the sum of the latter from the sum of the former, we
may conclude that sε,δ(X1, X2|U) = sε,δ(X+, X−|U).

Lemma 4.5. Fix ε, δ > 0. Let the random variables X∗ and U∗ be as in Lemma 4.3; i.e., satisfying
the equality V (Σ) = sε,δ(X

∗|U∗), and with |U∗| ≤ M . Consider two independent and identically
distributed copies of (X∗, U∗), denoted by (X1, U1) and (X2, U2). Define new random variables X+

and X− as follows:

X+ :=
X1 +X2√

2
, and X− :=

X1 −X2√
2

.

Also, define U := (U1, U2). Then the following results hold:

(a) X+ and X− are conditionally independent given U ,

(b) V (Σ) = sε,δ(X+|U) and V (Σ) = sε,δ(X−|U).

Proof. We have the following sequence of inequalities:

2V (Σ)
(a)
= sε,δ(X1|U1) + sε,δ(X2|U2)

(b)
= sε,δ(X1, X2|U1, U2)

(c)
= sε,δ(X+, X−|U1, U2)

(d)

≤ Sε,δ(X+, X−)

(e)

≤ Sε,δ(X+) + Sε,δ(X−)

(f)

≤ V (Σ) + V (Σ) = 2V (Σ).

Here (a) follows from the assumption that sε,δ(X
∗|U∗) = V (Σ). Equality (b) follows from the

independence (X1, U1) ⊥⊥ (X2, U2). Equality (c) holds because of Lemma 4.4. Inequality (d)
follows from the definition of Sε,δ(·). Inequality (e) follows from the tensorization result in Lemma
4.1. Finally, inequality (f) follows from the definition in equation (44), and the fact that X+ and
X− have the same covariance as X∗, which is bounded above by Σ in the positive semidefinite
partial order.

Since the first and last expressions match, all the inequalities in the above sequence of inequal-
ities must be equalities. In particular, equalities (d) and (e) combined with Lemma 4.2 imply
that X+ ⊥⊥ X− conditioned on (U1, U2), thus establishing part (a) of the lemma. Lemma 4.2 also
gives sε,δ(X+|U1, U2) = Sε,δ(X+) and sε,δ(X−|U1, U2) = Sε,δ(X−). Finally, equality in (f) gives
Sε,δ(X+) = V (Σ) and Sε,δ(X−) = V (Σ). This completes the proof of part (b).

Lemma 4.6. There exists G∗ ∼ N (0,Σ∗) ∈ P(r) such that Σ∗ � Σ and V (Σ) = sε,δ(G
∗). Further-

more, the random variable G∗ is the unique element of the set P(r)∩{X : EXXT � Σ} satisfying
sε,δ(X) = V (Σ).

Proof. Consider the setting as in Lemma 4.5. Using Lemma 4.5, we have that X+ ⊥⊥ X− con-
ditioned on U = (u1, u2) for any u1, u2 ∈ U∗. However, we also have X1 ⊥⊥ X2 conditioned on
U = (u1, u2). The characterization theorem for Gaussian distributions [34] implies that X1 and
X2 must be Gaussian with identical covariance matrices, conditioned on U = (u1, u2). Recall that
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(X1, U1) is independent of (X2, U2), and the covariance matrix of Xi conditioned on U = (u1, u2)
is simply the covariance matrix of Xi conditioned on Ui = ui for i ∈ {1, 2}. Since u1 and u2 may
be chosen arbitrarily, we conclude that the covariance matrix of X1 is some fixed Σ∗ � Σ for all
u1 ∈ U∗. Let G∗ ∼ N (0,Σ∗). Thus,

V (Σ) =
∑
u1∈U∗

pU1(u1)sε,δ(X1|U1 = u1)

=
∑
u1∈U∗

pU1(u1)sε,δ(G
∗)

= sε,δ(G
∗).

To establish uniqueness, first note that it is enough to only consider Gaussian random variables X
satisfying sε,δ(X) = V (Σ), since our argument above shows that any X that achieves this equality
must be Gaussian. Now suppose that G1 ∼ N (0,Σ1) and G2 ∼ N (0,Σ2) are two distinct random
variables such that sε,δ(G1) = sε,δ(G2) = V (Σ) with Σ1,Σ2 � Σ. Define (X,U) such that X = G1

when U = 1 and X = G2 when U = 2. Suppose also that U takes values 1 and 2 with probability
1/2, each. It is easy to check that X satisfies the covariance constraint, and that sε,δ(X|U) = V (Σ).
As in Lemma 4.5, consider two i.i.d. copies of (X1, U1) and (X2, U2) of (X,U). Lemma 4.5 states
that conditioned on (U1 = u1, U2 = u2), we have X1 + X2 ⊥⊥ X1 − X2, for any values of u1 and
u2. Conditioned on u1 = 1 and u2 = 2, we have X1 + X2 = G1 + G2 and X1 − X2 = G1 − G2.
This implies G1 +G2 ⊥⊥ G1−G2, which is impossible since Σ1 6= Σ2, and thus there cannot be two
distinct Gaussian maximizers.

Proof of Theorem 3. We now complete the proof of Theorem 3. Recall the definition of Mg:

Mg := sup
X∈Pg(r)

k∑
i=1

dih(Xi)−
m∑
j=1

cjh(AjX).

Clearly, there is nothing to prove if Mg is infinite, so we assume Mg < ∞. Let X ∈ P(r) be an
arbitrary random vector. By choosing a large enough Σ such that EXXT � Σ, we may conclude
that

sε,δ(X) ≤ V (Σ). (51)

Let G∗ ∼ N (0,Σ∗) ∈ P(r), where Σ∗ � Σ, be the unique maximizer such that sε,δ(G
∗) = V (Σ), as

in Lemma 4.6. Thus, we have the sequence of inequalities

V (Σ) =
k∑
i=1

dih(G∗i +
√
δWi)−

m∑
j=1

cjh(Aj(G
∗ +
√
δW ) +

√
εZj)

(a)

≤
k∑
i=1

dih(G∗i +
√
δWi)−

m∑
j=1

cjh(Aj(G
∗ +
√
δW ))

(b)

≤ Mg. (52)

Here, inequality (a) follows from the entropy inequality

h(Aj(G
∗ +
√
δW ) +

√
εZj) ≥ h(Aj(G

∗ +
√
δW )),
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for all j ∈ [m]. The inequality in (b) is true because the random variable G̃∗ defined by G̃∗i :=
G∗i +

√
δWi for i ∈ [k] is a Gaussian random variable in Pg(r). Thus, by the definition of Mg, we

must have

k∑
i=1

dih(G̃∗i )−
m∑
j=1

cjh(AjG̃∗) ≤ sup
X∈Pg(r)

k∑
i=1

dih(Xi)−
m∑
j=1

cjh(AjX)

= Mg.

Combining inequalities (51) and (52), we have

sε,δ(X) ≤Mg. (53)

Recall that sε,δ(X) is given by

sε,δ(X) =
k∑
i=1

dih(Xi +
√
δWi)−

m∑
j=1

cjh(Aj(X +
√
δW ) +

√
εZj).

If X satisfies certain mild conditions (such as bounded second moments) provided in Lemma A.3,
we have that

lim
ε,δ→0

sε,δ(X) =

k∑
i=1

dih(Xi)−
m∑
j=1

cjh(AjX).

This means that we may take the limit in inequality (53) as ε, δ → 0 to conclude

k∑
i=1

dih(Xi)−
m∑
j=1

cjh(AjX) ≤Mg,

and conclude the proof of Theorem 3.

5 Conditions for M(A, c, r,d) <∞
Theorem 3 shows that it is enough to find necessary and sufficient conditions for Mg(A, c, r,d)
to be finite, since M = Mg. We prove Theorem 4 by finding necessary conditions on the BL-EPI
datum for such finiteness in Claim 5.1, and showing that the necessary conditions are also sufficient
in Claim 5.2.

Claim 5.1. If Mg(A, c, r,d) is finite, then the conditions in equations (14) and (15) must be
satisfied.

Proof. The necessity of the condition in equation (15) is seen as follows. Choose Z ∼ λN (0, In×n)

for some λ > 0. It is easy to see that
∑k

i=1 dih(Zi)−
∑m

j=1 cjh(AjZ) scales as
(∑k

i=1 diri −
∑m

j=1 cjnj

)
log(λ)

as a function of λ as λ→∞. Since λ is arbitrary, the above expression is finite only if the condition
in equation (15) is satisfied.

To show that the condition in equation (14) is necessary, let V be a subspace of Rn of r-product
form. Consider a Gaussian random variable Z := (ZV , ZV ⊥) such that ZV ⊥⊥ ZV ⊥ , and ZV is
supported on V and ZV ⊥ is supported on V ⊥. Furthermore, assume ZV ∼ N (0, λIdim(V )×dim(V ))
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and ZV ⊥ ∼ N (0, Idim(V ⊥×dim(V ⊥))). Taking the limit as λ → ∞ and gathering the coefficients of
log λ, we see that Mg(A, c, r,d) scales as k∑

i=1

di dim(Vi)−
k∑
j=1

cj dim(AjV )

 log(λ),

as λ→∞. Thus, Mg is finite only if the condition in equation (14) is satisfied.

The proof of sufficiency of the conditions in equations (14) and (15) relies on two lemmas which
we prove below.

Lemma 5.1. Let (A, c, r,d) be a BL-EPI datum. Let U := (U1, . . . , Uk) be an arbitrary r-product
form subspace such that dim(Ui) = r̃i ≤ ri for i ∈ [k]. Let r̃ := (r̃1, . . . , r̃k) and r̃c := r− r̃. Define
two BL-EPI data as follows:

(a) (Ã, c, r̃,d) is a BL-EPI datum defined on U . For each j ∈ [m], define the linear maps
Ãj : U → (AjU) by Ãjx = Ajx for x ∈ U .

(b) ( ˜̃A, c, r̃c,d) is a BL-EPI datum defined on U⊥. For j ∈ [m], the linear maps ˜̃Aj : U⊥ →
(AjU)⊥ are defined by

˜̃Ajx = Π(AjU)⊥Ajx.

We also define the linear maps Γj : U⊥ → (AjU) as

Γjx = Π(AjU)Ajx.

Here ΠV denotes the orthogonal projection on to a subspace V . Note that Ajx = ˜̃Ax + Γjx
is an orthogonal decomposition.

Then the following relation holds:

M(A, c, r,d) ≤M(Ã, c, r̃,d) +M( ˜̃A, c, r̃c,d). (54)

Remark 5.1. Note that it may happen that dim(Ui) = 0 for some i ∈ [k]. It may also happen that
for some j ∈ [m], we have dim((AjU)⊥) = 0. We do not rule out such cases, and keep our notation
the same by instead defining entropy on a 0-dimensional subspace as 0.

Proof of Lemma 5.1. By definition, the linear transformations in Ã and ˜̃A are surjective. Also,∑
i r̃i = dim(U) and

∑
i r̃
c
i = dim(U⊥). This verifies that (Ã, c, r̃,d) and ( ˜̃A, c, r̃c,d) are indeed

valid BL-EPI data on U and U⊥, respectively. Every vector x ∈ Rn may be expressed as x =
ΠUx + ΠU⊥x := x̃ + ˜̃x. We use the notation x̃ = (x̃1, . . . , x̃k) where x̃i = ΠUixi, and similarly for
˜̃xi. We have the equality

Ajx = Aj(ΠUx+ ΠU⊥x)

= Aj(ΠUx) +Aj(ΠU⊥x)

= Ãj x̃+ Π(AjU)Aj ˜̃x+ Π(AjU)⊥Aj ˜̃x

= Ãj x̃+ Γj ˜̃x+ ˜̃Aj ˜̃x.
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For any X ∈ P(r),

k∑
i=1

dih(Xi)−
m∑
j=1

cjh(AjX) =
k∑
i=1

dih(Xi)−
m∑
j=1

cjh(ÃjX̃ + Γj
˜̃X + ˜̃Aj

˜̃X)

=
k∑
i=1

dih(X̃i,
˜̃Xi)−

m∑
j=1

cjh(ÃjX̃ + Γj
˜̃X, ˜̃Aj

˜̃X)

=
k∑
i=1

dih( ˜̃Xi)−
m∑
j=1

cjh( ˜̃Aj
˜̃X) +

k∑
i=1

dih(X̃i | ˜̃Xi)−
m∑
j=1

cjh(ÃjX̃ + Γj
˜̃X | ˜̃Aj

˜̃X)

≤
k∑
i=1

dih( ˜̃Xi)−
m∑
j=1

cjh( ˜̃Aj
˜̃X) +

k∑
i=1

dih(X̃i | ˜̃Xi)−
m∑
j=1

cjh(ÃjX̃ | ˜̃X)

=
k∑
i=1

dih( ˜̃Xi)−
m∑
j=1

cjh( ˜̃Aj
˜̃X) +

k∑
i=1

dih(X̃i | ˜̃X)−
m∑
j=1

cjh(ÃjX̃ | ˜̃X)

≤M(Ã, c, r̃,d) +M( ˜̃A, c, r̃c,d).

Taking the supremum over all X ∈ P(r) completes the proof.

Lemma 5.2. Suppose that a BL-EPI datum (A, c, r,d) satisfies the conditions in equations (14)
and (15), and suppose that U is an r-product form critical subspace. Then the BL-EPI data

(Ã, c, r̃,d) and ( ˜̃A, c, r̃c,d) defined as in Lemma 5.1 also satisfy the conditions in equations (14)
and (15).

Proof. Verifying the conditions for (Ã, c, r̃,d) is immediate: the condition in equation (14) re-
stricted to r̃ product form subspaces of U yields the first condition, and the criticality of U yields
the second condition.

For j ∈ [m], it is not hard to verify that dim( ˜̃AjU
⊥) is nj − dim(ÃjU). We may now check the

second condition for ( ˜̃A, c, r̃c,d) by observing the equality

k∑
i=1

di(ri − dim(Ui)) =
m∑
j=1

cj(nj − dim(ÃjU)),

using the criticality of U and the fact that
∑k

i=1 diri =
∑m

j=1 cjnj . Let V be an arbitrary r̃c-product

form subspace of U⊥. Consider the new subspace V+ = V ⊕ U ⊂ Rn, which is the direct sum of
the subspace V with the subspace U . Note that V+ is an r-product form subspace of Rn. Using
the condition in equation (14) for V+, we have

k∑
i=1

di dim(V+i) ≤
m∑
j=1

cj dim(AjV+).

Note that dim(V+i) = dim(Vi) + dim(Ui), for all 1 ≤ i ≤ k. Moreover, dim(AjV+) = dim(AjU) +

dim( ˜̃AjVi). Substituting these equalities in the above inequality, we arrive at

k∑
i=1

di(dim(Vi) + dim(Ui)) ≤
m∑
j=1

cj(dim(AjU) + dim( ˜̃AjVi)).
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The criticality of U then implies

k∑
i=1

di dim(Vi) ≤
m∑
j=1

cj dim( ˜̃AjVi),

and this completes the proof.

We are now in a position to prove the following sufficiency result:

Claim 5.2. If the conditions in equations (14) and (15) are satisfied, then M(A, c, r,d) is finite.

Proof. The proof proceeds via a double induction on the dimension n and the number of linear
maps m. We first prove the result for n = 1 and arbitrary m, and for m = 1 and arbitrary n. For
n = 1, it must be that r = {1} and d = {d1}. The conditions in equations (14) and (15) imply
that d1 =

∑m
j=1,nj>0 cj , because nj > 0 =⇒ nj = 1. Thus, M(A, c, r,d) equals

sup
X∈P(r)

d1h(X)−
m∑
j=1

cjh(AjX) = sup
X∈P(r)

d1h(X)−
m∑

j=1,nj>0

cjh(AjX)

= sup
X∈P(r)

−
m∑

j=1,nj>0

cj log |Aj |

= −
m∑

j=1,nj>0

cj log |Aj | <∞,

since h(AjX) = h(X) + log |Aj | for all j ∈ [m] such that nj > 0, and Aj is a nonzero scalar for
each such j.

Now fix m = 1 and let n1 > 0, k > 0, r, d, c1, and n =
∑k

i=1 ri be arbitrary, subject to
satisfying the conditions in equations (14) and (15). We write

A1 = [A11 . . . A1k]

where A1i is an n1×ri matrix for 1 ≤ i ≤ k (and A is an n1×n matrix). Recall that, by assumption,
di > 0 for 1 ≤ i ≤ k and c1 > 0.

Let N (A1) denote the null space of A1. For every r-product form subspace V := V1 × . . .× Vk
we must have N (A1)∩Vi = {0} for all 1 ≤ i ≤ k. This is because if we have 0 6= vi ∈ N (A1)∩Vi for
some 1 ≤ i ≤ k, then letting Vi := span({vi}) and Vj = {0} for 1 ≤ j 6= i ≤ k, the corresponding

r-product form subspace V := V1× . . .×Vk will violate the condition
∑k

i=1 disi ≤ dim(A1V ), where
si = 1 = dim(Vi) and sj = 0 = dim(Vj) for 1 ≤ j 6= i ≤ k.

We can therefore assume that rk(A1i) = ri for 1 ≤ i ≤ k. Under this assumption, we will now
show that Mg <∞, where Mg denotes the supremum of

k∑
i=1

dih(Xi)− c1h(A1X)

over independent Xi ∼ N (0,Σi) taking values in Rri with Σi positive definite for each for 1 ≤ i ≤ k,
and where

X := [X1 . . . Xk]
T .
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We have

h(Xi) =
1

2
log ((2πe)ri det(Σi)) ,

for 1 ≤ i ≤ k, and

h(X) =
1

2
log

(
(2πe)n1 det(

k∑
i=1

A1iΣiA
T
1i)

)
.

It is therefore equivalent to show that the supremum of

k∑
i=1

di log (det(Σi))− c1 log

(
det(

k∑
i=1

A1iΣiA
T
1i)

)
,

over Σi ∈ Rri×ri positive definite for each for 1 ≤ i ≤ k is finite.
Let A1i = WiΛiU

T
i be a singular value decomposition of A1i for 1 ≤ i ≤ k. Since rk(A1i) = ri

by assumption, here Λi is a diagonal ri × ri matrix with strictly positive diagonal entries, Ui is an
ri × ri orthogonal matrix and Wi is an n1 × ri matrix with orthonormal columns. Note that span
of the columns of Wi equals the range space of A1i.

With Σ̃i denoting UiΣiU
T
i for 1 ≤ i ≤ k, it is equivalent to show that the supremum of

k∑
i=1

di log
(

det(Σ̃i)
)
− c1 log

(
det(

k∑
i=1

WiΛiΣ̃iΛiW
T
i )

)
,

over Σ̃i ∈ Rri×ri positive definite for each for 1 ≤ i ≤ k is finite.
Note that the entries of Λi depend only on A1i, which is fixed, and note that the di are fixed.

Therefore, with Σ̂i denoting ΛiΣ̃iΛi, it is equivalent to show that the supremum of

k∑
i=1

di log
(

det(Σ̂i)
)
− c1 log

(
det(

k∑
i=1

WiΣ̂iW
T
i )

)
,

over Σ̂i ∈ Rri×ri positive definite for each for 1 ≤ i ≤ k is finite. Let Σ̂i = Q̂iΠiQ̂
T
i be the spectral-

decomposition of Σ̂i and let σi1, . . . , σ1ri denote the eigenvalues of Σ̂i in any order. By assumption
these are all strictly positive. Let

σ1 > σ2 > . . . > σn′ > 0 =: σn′+1,

denote the ordered list of all the distinct values among these eigenvalues (note that n =
∑k

i=1 ri,
so here 1 ≤ n′ ≤ n).

Starting with σn′ and working towards the larger eigenvalues step by by step we can build up
each Σ̂i, for 1 ≤ i ≤ k, in layer-cake fashion as

Σ̂i = Σ̂i1 + Σ̂i2 + . . .+ Σ̂in′

where each Σ̂il for 1 ≤ l ≤ n′ is a positive semidefinite matrix, with a spectral decomposition given
by Q̂iΠilQ̂

T
i , and each of whose eigenvalues is either 0 or σj − σj+1 (recalling the convention that

σn′+1 = 0). Thus each Σ̂il corresponds to a subspace of Rri , whose dimension we denote as sil.
Note that sin′ = ri and sil is nonincreasing as l decreases, but it can become 0 for l < n′; however
we have si1 > 0 for at least one choice of 1 ≤ i ≤ k. We also have

k∑
i=1

di log
(

det(Σ̂i)
)

=
n′−1∑
l=1

(
k∑
i=1

disil log
σl
σl+1

)
+

k∑
i=1

diri log σn′ .
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Observe that log σl
σl+1

is strictly positive for 1 ≤ l ≤ n′ − 1.

Let V̂il denote the subspace of Rri corresponding to Σ̂il, i.e. the subspace spanned by the
eigenvectors of Σ̂il. Then Ṽil := Λ−1

i V̂il is the subspace corresponding to Σ̃il in the same sense,

where Σ̃il := Λ−1
i Σ̂ilΛ

−1
i , and Vil := UTi Ṽil is the subspace corresponding to Σil in the same sense,

where Σil := UTi Σ̃ilUi. Note that

dim(Vil) = dim(Ṽil) = dim(V̂il) =: sil.

By assumption, for each 1 ≤ l ≤ n′ we therefore have

k∑
i=1

disil ≤ c1dim(A1Vl),

where Vl := V1l × . . .× Vkl is an r-product subspace of Rn.
For each 1 ≤ l ≤ n′, since

∑k
i=1A1iΣilA

T
1i =

∑k
i=1WiΣ̂ilW

T
i , we see that the subspace corre-

sponding to
∑k

i=1WiΣ̂ilW
T
i is A1Vl. In particular, the subspace corresponding to

∑k
i=1WiΣ̂in′W

T
i

is Rn1 = A1Vn′ = A1Rn.
We also note that for each 1 ≤ i ≤ k we have

V̂i1 ⊆ V̂i2 ⊆ . . . ⊆ V̂in′ = Rri .

Since Σ̂i = Q̂iΠiQ̂
T
i =

∑ri
m=1 σimq̂imq̂

T
im, let us relabel the eigenvectors into bim (according to

decreasing values of the eigenvalues) such that we have

Σ̂il = (σl − σl+1)

sil∑
ui=1

biuib
T
iui ,

where we recall that σn′+1 = 0 by definition. We can also write

WiΣ̂ilW
T
i = (σl − σl+1)

sil∑
ui=1

Wibiuib
T
iuiW

T
i = (σl − σl+1)

sil∑
ui=1

b̃iui b̃
T
iui ,

where b̃iui := Wibiui for 1 ≤ i ≤ k and 1 ≤ ui ≤ ri. Note that b̃iui ∈ Rn1 .
Now we have

k∑
i=1

WiΣ̂iW
T
i =

k∑
i=1

n′∑
l=1

WiΣ̂ilW
T
i

=
n′∑
l=1

(σl − σl+1)
k∑
i=1

sil∑
ui=1

b̃iui b̃
T
iui

=

n′∑
l=1

(σl − σl+1)Ml,

where Ml :=
∑k

i=1

∑sil
ui=1 b̃iui b̃

T
iui

. Note that the subspace corresponding to Ml is A1Vl. Since
the range space of Ml is non-decreasing, there exists an orthonormal basis q̃1, ..., q̃n1 for Rn1 such
that the range space of Ml matches the span of {qi}i∈Sl

for some appropriate Sl ⊆ [1 : n1]. Thus
dim(A1Vl) = |Sl|.
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By construction we have S1 ⊆ S2 ⊆ · · · ⊆ Sn′ = [1 : n1]. Let Cl =
∑

i∈Sl
q̃iq̃

T
i = Q̃ΘlQ̃

T where

Q̃ is the orthonormal matrix formed by q̃’s and Θl is a diagonal matrix with diagonal entries being
0 or 1, where 1 occurs at the indices corresponding to the membership in Sl.

We now claim that there is positive constant δ2 > 0 depending only on W1, . . . ,Wk (and in
particular not depending on the (Σ̂i, 1 ≤ i ≤ k) or the choices of the bases {bi1, bi2, . . . , biri} for
1 ≤ i ≤ k) such that, for all 1 ≤ l ≤ n′, we have

Ml � δ2Cl.

This is a consequence of Lemma B.1 and is established in Corollary B.1.
We therefore have

k∑
i=1

WiΣ̂iW
T
i � δ2

n′∑
l=1

(σl − σl+1)Cl = δ2
n′∑
l=1

(σl − σl+1)QΘlQ
T � 0.

From this it follows that

c1 log

(
det(

k∑
i=1

WiΣ̂iW
T
i )

)
≥ c1 log

(
det(

n′∑
l=1

(σl − σl+1)Θl)

)
+ κ,

(a)
= c1

n′−1∑
l=1

dim(AVl) log
σl
σl+1

+ c1n1 log σn′ + κ,

for a fixed constant κ. Here, to justify step (a), due to the nested nature of Sl,
∑n′

l=1(σl − σl+1)Θl

is a diagonal matrix with dim(AVl)− dim(AVl−1) entries equal to σl. We take dim(AV0) = 0.
Since

∑k
i=1 disil ≤ c1dim(AVl) and log σl

σl+1
is strictly positive for 1 ≤ l ≤ n′ − 1, and since∑k

i=1 diri = c1n1, we can conclude that

k∑
i=1

di log
(

det(Σ̂i)
)
− c1 log

(
det(

k∑
i=1

WiΣ̂iW
T
i )

)
≤ −κ

for all choices of Σ̂i ∈ Rri×ri positive definite for each for 1 ≤ i ≤ k. This establishes what was
desired, when m = 1.

We have shown that the claim is true for n = 1 and all m. Assume that claim is true for all
n < n0 and all m. Our goal is to establish the claim for n = n0 and all m > 0. To do so, we induct
on m. The case of n = n0 and m = 1 follows from our calculations above. Now we assume that
the claim is true for n = n0 and all m < m0, and show that it also holds for n = n0 and m = m0.

Let (A, c, r,d) be a BL-EPI datum in Rn0 with m = m0. We may assume that nj > 0 for
all j ∈ [m], since otherwise we could have treated the scenario as a BL-EPI datum in Rn0 with
m < m0, which is already covered by the inductive hypothesis. For fixed A, r, and d, consider the
function defined on c ∈ Rm0

+ as

M(c) = sup
X∈P(r)

k∑
i=1

dih(Xi)−
m∑
j=1

cjh(AjX). (55)

Since M is a pointwise supremum of linear functions, M is convex. Let K be the region of all
c ∈ Rm0

+ such that (A, c, r,d) satisfy the conditions in equations (14) and (15). Note that K is
a compact, convex set. By Claim 5.1, we have that M takes +∞ values outside K. We wish to
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show that M takes finite values everywhere on K. Since M is convex and K is closed, it is enough
to show finiteness of M at all points on the boundary of K. Since nj > 0 for all j ∈ [m], a point
c is a boundary point of K if and only if at least one of the following two conditions is satisfied:
(1) cj0 = 0 for some j0 ∈ [m]; or (2) there exists a proper r-product form subspace of Rn0 that
is critical. If a boundary point satisfies (1), then our induction assumption (on m) ensures the
finiteness of M evaluated at that BL-EPI datum, since we could have treated the scenario as a
BL-EPI datum in Rn0 with m < m0.

Now consider a boundary point that satisfies (2), assuming that cj 6= 0 for all j ∈ [m]. Let
V = (V1, . . . , Vk) be an r-product form critical subspace of Rn0 ; i.e., a subspace that satisfies the
equality

k∑
i=1

di dim(Vi) =
m∑
j=1

cj dim(AjV ), (56)

with dim(V ) < n0. Lemma 5.1 shows that given any r-product form subspace V , it is possible to
define BL-EPI data on V and V ⊥ in terms of the original BL-EPI datum (A, c, r,d) that satisfy a
certain subadditivity property. In particular, if the datum on V is denoted by (Ã, c, r̃,d) and that

on V ⊥ is denoted by ( ˜̃A, c, r̃c,d), then Lemma 5.1 states that

M(A, c, r,d) ≤M(Ã, c, r̃,d) +M( ˜̃A, c, r̃c,d).

Thus, to show that M(A, c, r,d) is finite, is enough to show that M(Ã, c, r̃,d) and M( ˜̃A, c, r̃c,d)
are finite. Lemma 5.2 asserts that since V is a critical r-product form subspace, the BL-EPI

data (Ã, c, r̃,d) and ( ˜̃A, c, r̃c,d) satisfy both the conditions in equations (14) and (15). Since
dim(V ),dim(V ⊥) < n0, we may use the induction assumption (on the dimension) to assertM(Ã, c, r̃,d) <

∞ and M( ˜̃A, c, r̃c,d) <∞, and conclude the proof.

6 A special case

We examine a special case here to see what kinds of new inequalities may result from Theorem 3.
Let X1, X2, and Y be real valued random variables such that (X1, X2) ⊥⊥ Y . We would like to lower
bound the entropy h(X1 + Y,X2 + Y ). Note that the regular EPI applied with the independent
random vectors (X1, X2) and (Y, Y ) yields the trivial lower bound

eh(X1+Y,X2+Y ) ≥ eh(X1,X2) + eh(Y,Y ) = eh(X1,X2).

Note also that (
X1 + Y
X2 + Y

)
=

(
1 0 1
0 1 1

)X1

X2

Y

 .

However, it is not possible to use Zamir and Feder’s EPI to provide lower bounds on h(X1 +Y,X2 +
Y ) because of the dependency between X1 and X2. We show that Theorem 3 may be used to obtain
a family of nontrivial lower bounds that account for this dependency.

Lemma 6.1. Let α, β, δ1, δ2 ≥ 0. Consider the inequality

αh(X1, X2) + βh(Y ) ≤ h(X1 + Y,X2 + Y ) + δ1h(X1) + δ2h(X2) + C(α, β, δ1, δ2), (57)

where C(α, β, δ1, δ2) is some constant that depends only on α, β, δ1, δ2. The above inequality holds
for all (X1, X2) ⊥⊥ Y if and only if α, β, δ1, δ2 satisfy the following inequalities:
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1. 2α+ β = 2 + δ1 + δ2;

2. β ≤ 1;

3. α ≤ 1 + δ1, and α ≤ 1 + δ2;

4. α+ β ≤ 1 + δ1 + δ2, which, combined with condition (1), is equivalent to α ≥ 1.

Proof. We shall use Theorem 4 to show this result. The above inequality is easily seen to be of
the form in Theorem 3, where A1 = [1, 0, 1; 0, 1, 1], A2 = [1, 0, 0], A3 = [0, 1, 0], r = (2, 1), d1 = α,
and d2 = β. An exhaustive search of all possible subspaces V that are in r-product form where
r = (2, 1) is not hard to do. For simplicity, we refer to the axes in R3 as X1, X2, Y . Thus, the
subspace X1 is simply the subspace spanned by (1, 0, 0).

1. Equality (1) follows directly from equation (15) of Theorem 4;

2. Inequality (2) follows from equation (14) of Theorem 4, by choosing V = φ× Y ;

3. Inequality (3) follows from equation (15) of Theorem 4, by choosing V = X1 × φ and V =
X2 × φ;

4. Inequality (4) is obtained from equation (15) of Theorem 4, by a careful choice of V =
(X1 +X2)× Y , i.e. the subspace spanned by (1, 1, 0) and (0, 0, 1).

Claim 6.1. For α, β < 1, δ1 = δ2 = δ satisfying the conditions in Lemma 6.1, the following
inequality holds:

h(X1 + Y,X2 + Y ) ≥ (α− δ)h(X1, X2) + βh(Y )− δI(X1;X2)−D,

where

D =
1

2
log

(
ββ(1− β)1−β

2β

(
1 +

β

2δ

)α+β−1(
1− β

2δ

)α−1
)
.

Proof. For α, β, δ1, δ2, the optimal constant C is given by

e2C = sup
K1,K2,K3,ρ

(
det

(
K1 ρ

√
K1K2

ρ
√
K1K2 K2

))α
·Kβ

3

det

(
K1 +K3 ρ

√
K1K2 +K3

ρ
√
K1K2 +K3 K2 +K3

)
Kδ1

1 K
δ2
2

= sup
K1,K2,K3,ρ

Kα−δ1
1 Kα−δ2

2 (1− ρ2)α ·Kβ
3

K1K2(1− ρ2) +K3(K1 +K2 − 2ρ
√
K1K2)

.

Calculating the above supremum for arbitrary α, β, δ1, δ2 is cumbersome so we assume δ1 = δ2 = δ.
The supremum simplifies to

e2C = sup
K1,K2,K3,ρ

(K1K2)α−δ(1− ρ2)α ·Kβ
3

K1K2(1− ρ2) +K3(K1 +K2 − 2ρ
√
K1K2)

.
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For a fixed K1K2 and fixed K3, it is clear that the optimal choice of K1 = K2 =
√
K1K2 maximizes

the above expression. Thus, we assume that K1 = K2 = K and obtain

e2C = sup
K,K3,ρ

(K)2α−2δ−1(1− ρ2)α ·Kβ
3

K(1− ρ2) + 2K3(1− ρ)
.

Let x := K3/K, and noting that 2α− 2δ − 1 = 1− β, we obtain

e2C = sup
x≥0,ρ

xβ(1− ρ2)α

(1− ρ2) + 2x(1− ρ)

= sup
x≥0,ρ

xβ(1− ρ)α(1 + ρ)α

(1− ρ)(1 + ρ) + 2x(1− ρ)

= sup
x≥0,ρ

xβ(1− ρ)α−1(1 + ρ)α

(1 + ρ) + 2x
.

For a fixed ρ, the maximum of the above expression is attained when

x =
β(1 + ρ)

2(1− β)
.

Substituting this value of x,

e2C = sup
ρ

(1 + ρ)α(1− ρ)α−1
(
β(1+ρ)
2(1−β)

)β
β(1+ρ)
(1−β) + (1 + ρ)

= sup
ρ

(1 + ρ)α(1− ρ)α−1
(
β(1+ρ)
2(1−β)

)β
1+ρ
1−β

=
ββ(1− β)1−β

2β
sup
ρ

(1 + ρ)α+β−1(1− ρ)α−1.

Differentiating with respect to ρ, the supremum is seen to be attained when ρ = β
2α+β−2 = β

2δ .
Substituting this, we get

e2C =
ββ(1− β)1−β

2β

(
1 +

β

2δ

)α+β−1(
1− β

2δ

)α−1

.

This leads to the entropy inequality

h(X1 + Y,X2 + Y )

≥ αh(X1, X2) + βh(Y )− δh(X1)− δh(X2)− 1

2
log

(
ββ(1− β)1−β

2β

(
1 +

β

2δ

)α+β−1(
1− β

2δ

)α−1
)

= (α− δ)h(X1, X2) + βh(Y )− δI(X1;X2)− 1

2
log

(
ββ(1− β)1−β

2β

(
1 +

β

2δ

)α+β−1(
1− β

2δ

)α−1
)
.

Notice that the mutual information term I(X1;X2) accounts for the dependency between X1 and
X2.
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7 Conclusion

In this paper, we established a new inequality that unifies the BLI and the EPI by establishing
subadditivity of certain entropic functionals. There are several interesting research directions that
are worth pursuing. We did not address the questions of extremizability and uniqueness of extrem-
izers in this work. One reason for this is that Theorem 3 is established by taking the limit as ε
and δ go to 0. When ε and δ are strictly bounded away from 0, the extremizer of sε,δ(·) under a
covariance constraint exists and is a unique Gaussian distribution. However, these existence and
uniqueness properties need not hold in the limit as ε, δ → 0. In general, such a proof strategy is
a powerful tool for proving inequalities, but may not always succeed in identifying necessary and
sufficient conditions for equality. For this reason, alternate proof strategies that rely on heat flow
based arguments [17, 13, 16] or optimal transport methods [21, 36] are worth exploring as well.
After a preprint of this work appeared online, an optimal transport-based proof of Theorem 3 was
discovered in Courtade [37]. Shortly thereafter, Courtade and Liu [38] proved Theorem 3 as a
limiting case of the forward-reverse Brascamp-Lieb inequality [20] and gave an alternate proof of
Theorem 4.

Finally, although our results generalize the BLI and the EPI to vector random variables with
more general independence properties, these independence properties are still quite restrictive. For
instance, the inequalities we derived do not encompass the monotonicity of entropy power family of
results [39, 40, 41]. It would be interesting to generalize our inequalities to include the above family
as well. Another (related) direction to pursue would be to establish similar entropy inequalities
under weaker independence conditions.
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A Supporting results for Theorem 3

Lemma A.1. Let X,Y, and Z be random variables taking values in RnX ,RnY , and RnZ respectively,
such that the following hold: (a) (X,Y, Z) has a strictly positive density on RnX+nY +nZ ; (b) X →
Y → Z; and (c) X → Z → Y . Then X ⊥⊥ (Y, Z).

Proof. For any x ∈ RnX , y ∈ RnY , and z ∈ RnZ , we have that

pX|Y Z(x|y, z) = pX|Y (x|y) = pX|Z(x|z), (58)

where we used the assumed strict positivity of the density of (X,Y, Z) to write the above equations.
Fix y0 ∈ RnY . For any z ∈ RnZ , we have

pX|Z(x|z) = pX|Y (x|y0).

Integrating both sides of the above equality with respect to pZ(z), we obtain

pX(x) = pX|Y (x|y0).

Since y0 was chosen arbitrarily, we conclude that X ⊥⊥ Y . A similar argument shows that X ⊥⊥ Z.
Using equation (58), we conclude that X ⊥⊥ (Y,Z).

Lemma A.2. Let X1 and X2 be Rn-valued random variables and let (Z1, Z2) ⊥⊥ (X1, X2) be such
that (Z1, Z2) ∼ N (0, I2n×2n). If (X1 + Z1) ⊥⊥ (X2 + Z2), then X1 ⊥⊥ X2.

Proof. Using the independence of (X1 + Z1) and (X2 + Z2), we have that for any t1, t2 ∈ Rn,

φX1+Z1,X2+Z2(t1, t2) := Eei〈t1,X1+Z1〉+i〈t2,X2+Z2〉 (59)

= Eei〈t1,X1+Z1〉Eei〈t2,X2+Z2〉 (60)

= Eei〈t1,X1〉Eei〈t2,X2〉Eei〈t1,Z1〉Eei〈t2,Z2〉 (61)

= φX1(t1)φX2(t2)φZ1,Z2(t1, t2). (62)

However, using the independence (X1, X2) ⊥⊥ (Z1, Z2), we also have

φX1+Z1,X2+Z2(t1, t2) = Eei〈t1,X1+Z1〉+i〈t2,X2+Z2〉 (63)

= Eei〈t1,X1〉+i〈t2,X2〉Eei〈t1,Z1〉+i〈t2,Z2〉 (64)

= φX1,X2(t1, t2)φZ1,Z2(t1, t2). (65)

Since φZ1,Z2(·, ·) has no zeros (Zi’s being independent standard Gaussian random variables), we
conclude that

φX1,X2(t1, t2) = φX1(t1)φX2(t2), (66)

that is, X1 ⊥⊥ X2.
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Lemma A.3. Let X be an Rn-valued random variable with density pX(x) and Z ∼ N (0, In×n) be
independent of X. Suppose that E[Ψ(X)] <∞ for some nonnegative continuous function Ψ : Rn 7→
R, satisfying

∫
Rn e

−Ψ(x)dx < ∞ and limδ→0 E[Ψ(X +
√
δZ)] = E[Ψ(X)]. (Note that, for instance,

Ψ(X) = ‖X‖p, p ≥ 1 satisfies the conditions.) Then the following equality holds:

lim
δ→0

h(X +
√
δZ) = h(X). (67)

Proof. Our proof relies on the following (lower semi-continuity) result from Posner [42, Theorem
1]: If Pm, Qm are Borel probability distributions on a Polish space with Pm

w⇒ P and Qm
w⇒ Q,

then
D(P‖Q) ≤ lim inf

m
D(Pm‖Qm),

where D(P‖Q) denotes the relative entropy of the distribution P with respect to the distribution
Q. Picking an arbitrary sequence {δm}m≥1 that converges to 0, let Xm = X +

√
δmZ. Using

characteristic functions (or otherwise), it is easy to check that Xm converges to X in distribution.
Let Pm denote the distribution of Xm and P denote the distribution of X. Let Qm = Q be the
distribution corresponding to the density function Ce−Ψ(x). Note that

D(Pm‖Q) = E[Ψ(X +
√
δmZ)]− h(X +

√
δmZ)− logC.

Therefore, we have

E[Ψ(X)]− h(X)− logC

= D(P‖Q)
(a)

≤ lim inf
m

D(Pm‖Q)

≤ lim inf
m

{
E[Ψ(X +

√
δmZ)]− h(X +

√
δmZ)− logC

}
.

(b)
= E[Ψ(X)]− lim sup

m
h(X +

√
δmZ)− logC.

Here (a) follows from the Posner’s result and (b) follows from assumption (2). Hence

lim sup
m→∞

h(X +
√
δmZ) ≤ h(X). (68)

On the other hand, non-negativity of mutual information, I(Z;X +
√
δmZ) ≥ 0, yields h(X +√

δmZ) ≥ h(X). Taking the lim inf on both sides of this equality, we conclude

lim inf
m→∞

h(X +
√
δmZ) ≥ h(X). (69)

Inequalities (68) and (69) yield the equality

lim
m→∞

h(X +
√
δmZ) = h(X), (70)

and concludes the proof.

B Supporting results for Claim 5.2

Lemma B.1. Given subspaces Ki ⊆ Rri for 1 ≤ i ≤ k, with si := dim(Ki), let K := K1× . . .×Kk

denote the corresponding r-product subspace of Rn, where n :=
∑k

i=1 ri. Let A1 = [A11 . . . A1k],
with A1i an n1×ri matrix of rank ri for 1 ≤ i ≤ k as above. Then there is some η > 0 such that for
all choices of (Ki, 1 ≤ i ≤ k) where at least one si is strictly positive, for all unit vectors x ∈ A1K
(i.e. xTx = 1), there exists some unit vector vi ∈ A1iKi for some 1 ≤ i ≤ k such that |xT vi| ≥ η.
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Proof. Suppose to the contrary that we can find a sequence ((x(t), (K1(t) . . . ,Kk(t))), t ≥ 1) of unit
vectors and subspaces that violates the condition, i.e. such that

lim
t→∞

sup
1≤i≤k

sup
vi∈AiKi(t):vTi vi=1

|x(t)T vi| = 0.

By going to a subsequence if necessary we can assume that there exist some choices of 1 ≤ si ≤ ri
for 1 ≤ i ≤ k with at least one of the si being strictly positive, such that we have dim(Ki(t)) = si
for all t ≥ 1. Since the space of all si-dimensional subspaces of Rri is compact in the usual topology
(i.e. as the correpsonding Grassmanian), by going to a further subsequence if necessary we can
assume that each Ki(t) converges to a limit Ki as t → ∞, where dim(Ki) = si. Since the set of
unit vectors in Rn1 is compact, by going to a further subsequence if necessary we can assume that
x(t) converges to a unit vector x ∈ Rn1 as t→∞. Since we have x(t) ∈ A1K(t) for all t ≥ 1 (where
K(t) := K1(t)× . . .×Kk(t)), we must have x ∈ A1K (where K := K1 × . . .×Kk). We thus have
xT vi = 0 for all unit vectors vi ∈ A1Ki for all 1 ≤ i ≤ k. But this is a contradiction, because x is
itself in the linear span of such vectors.

Corollary B.1. There is positive constant δ2 > 0 depending only on W1, . . . ,Wk (and in particular
not depending on the (Σ̂i, 1 ≤ i ≤ k) or the choices of the bases {bi1, bi2, . . . , biri} for 1 ≤ i ≤ k)
such that, for all 1 ≤ l ≤ n′, we have

Ml � δ2Cl,

where Cl is a positive semidefinite matrix all of whose eigenvalues are either 0 or 1 and where the
subspace corresponding to Cl is A1Vl.

Proof. Let η > 0 be as in the Lemma. For each unit vector x ∈ A1Vl there exists some 1 ≤ i ≤ k
and a unit vector vi ∈ A1Vil such that |xT vi| ≥ η. Since {b̃i1, . . . , b̃isil} is an orthonormal basis for
A1Vil, This means means that there is some 1 ≤ ui ≤ sil such that |xT b̃iui | ≥ δ, where we define
δ := 1

nη and we have used sil ≤ ri ≤ n. Recalling that Ml :=
∑k

i=1

∑sil
ui=1 b̃iui b̃

T
iui

, it follows that

xTMlxl ≥ δ2.

Since this holds for all unit vectors x ∈ A1Vl, this proves the corollary.
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