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A conjecture regarding optimality of the dictator
function under Hellinger distance

Venkat Anantharam, Andrej Bogdanov, Amit Chakrabarti, T.S. Jayram, Chandra Nair

Abstract

We conjecture that the dictator function maximizes, among all Boolean functions on the hypercube, the Phi-
entropy associated with Hellinger distance. This conjecture is shown to have interesting consequences and present
also other related conjectures. We also give some evidence to the veracity of this conjecture.

I. INTRODUCTION

Let X be uniformly distributed on the hypercube {+1,−1}n and Y be a correlated random vector defined
coordinatewise by Yi = XiZi, where Z1, . . . , Zn is an i.i.d. random vector distributed as P(Zi = 1) = 1+ρ

2 and
P(Zi = 1) = 1−ρ

2 . The following conjecture proposed by Kumar and appearing in [5], has attracted attention during
the past few years.

Conjecture 1. For any Boolean function, f(X), defined on the Boolean hypercube

I(f(X);Y) ≤ I(X1;Y1) = 1−Hb

(
1− ρ

2

)
,

where X and Y are related as above. In the above relation Hb(x) := −x log2(x) − (1 − x) log2(1 − x) is the
binary entropy function and I(·; ·) denotes the mutual information, with the logarithm also being to base 2.

Remark 1. An alternate way of stating the conjecture is to say that a Boolean-valued f(X) that maximizes the
mutual information between f(X) and Y is any dictator function, i.e. f(X) = Xi for some i.

The Jensen-Shannon divergence between two distributions p(x) and q(x) is defined as

JS(p, q) :=
1

2
D (p‖m) +

1

2
D (q‖m) ,

where m := p+q
2 and D(p‖q) is the Kullback-Liebler divergence (or relative entropy) between the two distributions,

with the logarithm also being to base 2.
Let ΦJS(x) denote the Jenson-Shannon divergence between the two-point distributions with probabilities (x, 1−x)

and (1− x, x). Observe that ΦJS(x) = 1−Hb(x). Then the conjecture stated above can be reformulated as

E

(
ΦJS

(
1− (Tρf)(Y)

2

))
− ΦJS

(
1− E((Tρf)(Y))

2

)
≤ ΦJS

(
1− ρ

2

)
.

In above (Tρf)(Y) := E(f(X)|Y).
For a convex function Φ, the Φ-entropy is defined by

HΦ(Z) := E(Φ(Z))− Φ(E(Z)).

For a given boolean function f(X) defined on the hypercube, we can define an induced non-negative random
variable Zf (Y) = 1−(Tρf)(Y)

2 , where Y is obtained from X, via the noise operator Tρ as stated above. Conjecture
1 can be phrased equivalently as f(X) = Xi (for some i) maximizes the Φ-entropy when Φ(x) = ΦJS(x).

Thus we can try to seek other convex functions Φ for which dictator is the maximizer. In this paper we propose
the following convex function: ΦH2(x) = 1 − 2

√
x(1− x), squared Hellinger distance between the probability

distributions (x, 1− x) and (1− x, x). We make the following conjecture:

Conjecture 2. For any Boolean function that takes values in {−1,+1}√
1− E(f)2 − E

(√
1− (Tρf)2(Y)

)
≤ 1−

√
1− ρ2.
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There are two reasons why this conjecture may be interesting:
• Conjecture 2 is a strengthening of the original conjecture (see Proposition 1)
• Conjecture 2 is extremal, in a sense made precise by Lemma 2, for the optimality of the dictator function.

A. Relation between the two conjectures

In this section we show that Conjecture 2 implies Conjecture 1. At the heart of this implication is the following
convexity result, established in [2].

Lemma 1. The function Hb

(
1−
√

1−x2

2

)
is non-negative, increasing, and convex in x for x ∈ [0, 1].

Proof. The second derivative yields

d2H
(

1−
√

1−x2

2

)
dx2

=
1

(1− x2)3/2 ln 2

(
ln

(
1 +
√

1− x2

1−
√

1− x2

)
− 2
√

1− x2

)
≥ 0

since ln
(

1+a
1−a

)
≥ 2a, a ∈ [0, 1) establishing convexity. That the function is non-negative and increasing in the

range is immediate.

We use the above lemma to establish the following proposition.

Proposition 1. Suppose a Boolean function f(X) taking values {−1,+1} satisfies√
1− E(f)2 − E

(√
1− (Tρf)2(Y)

)
≤ 1−

√
1− ρ2 (1)

then the function f(X) also satisfies

I(f(X);Y) ≤ 1−H
(

1− ρ
2

)
. (2)

Proof. Let Ψ(x) = 1−
√

1−x2

2 . Lemma 1 implies that H(Ψ(x)) is non-negative, increasing, and convex in x. Observe
that

H

(
1− x

2

)
= H

(
Ψ
(√

1− x2
))

.

The inequality in (2) can be re-expressed as

H
(

Ψ
(√

1− E(f)2
))
− E

(
H

(
Ψ

(√
1− (Tρf)2(Y)

)))
≤ H(Ψ(1))−H

(
Ψ
(√

1− ρ2
))

.

By the convexity of H(Ψ(x)) the above inequality will be implied if the following inequality holds:

H
(

Ψ
(√

1− E(f)2
))
−H

(
Ψ

(
E

(√
1− (Tρf)2(Y)

)))
≤ H(Ψ(1))−H

(
Ψ
(√

1− ρ2
))

.

However this inequality is an immediate consequence of (1) and using the fact that H(Ψ(x)) is increasing, and
convex in x.

B. Implications of the conjecture

We look at the limiting regimes of the conjecture (ρ→ 1 and ρ→ 0).
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1) ρ→ 1 regime.: The conjecture is trivially true at ρ = 1 and for unbalanced functions, i.e. E(f) 6= 0, it is also
trivially true in a neighborhood (depending on E(f)) around ρ = 1. Thus we focus our attention on the implication
of this conjecture for balanced functions, E(f) = 0, at ρ close to 1. Note that in this case Conjecture 2 implies

E

(√
1− (Tρf)2(Y)

)
≥
√

1− ρ2.

Elementary calculus shows that this is true as ρ→ 1 if and only if

E

(√
Senf (Y)

)
≥ 1, (3)

where Senf (y) denotes the sensitivity (number of neighbors of y where the functions flips the value) of the
function.

Remark 2. The best upper bound for E
(√

Senf (Y)
)

for a balanced Boolean function is
√

2
π due to Bobkov, [4];

hence even in this limiting regime Conjecture 2, if true, would yield a non-trivial result. Note that in the same
regime, Conjecture 1 reduces to E (Senf (Y)) ≥ 1. This is known as Poincare’s inequality, but can also be deduced
from Harper’s isoperimetric inequality or by just looking at its Fourier expansion and using Parseval’s identity.

The next lemma shows an extremal nature of Conjecture 2 for the optimality of dictator functions. Note that for
any y on the hypercube, Sendict(y) = 1.

Lemma 2. For any α < 1
2 , let maj(Y) denote the majority function (assume that n is odd). Then there exists

large enough n such that
E
(
Senαmaj(Y)

)
< 1.

Proof. Let n = 2k + 1. Note that

Senmaj(y) =

{
k + 1

∑2k+1
i=1 yi ∈ {−1, 1},

0 o.w.
.

Thus

E
(
Senαmaj(Y)

)
=

1

22k+1
2.

(
2k + 1

k

)
(k + 1)α

By Stirling’s approximation we know that (2k+1

k )
√
k+1

22k+1 = Θ(1); hence the result follows.

Remark 3. When α = 1
2 it is not hard to show that

E
(
Sen

1/2
maj(Y)

)
≥ 1, ∀n.

Thus Conjecture 2 yields the optimal exponent for the Sensitivity (ρ → 1 limit) where dictator performs better
than majority.

2) ρ→ 0 regime.: In this regime, expanding the left and side and right hand side of Conjecture 1 in powers of
ρ reduces to

ρ2

2
√

1− f̂2
φ

n∑
i=1

f̂2
i ≤

1

2
ρ2 +O(ρ3),

which trivially holds by Parseval’s theorem. In the above, f̂S denotes the Fourier co-efficients of the Boolean
function.
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II. EVIDENCE FOR THE VERACITY OF THE CONJECTURE

A. Proof for certain parameter regimes

In this section we prove the Hellinger conjecture for all functions such that the following inequality holds:

1 + (1− f̂2
φ)(1− ρ2) ≥

√
1− f̂2

φ +
√

1− ρ2.

This is a slight improvement over the trivial regime given by

1−
√

1− ρ2 ≥
√

1− f̂2
φ.

Define the function

G(λ) =
√

1− (1− λ)f̂2
φ − E

(√
1− λρ2 − (1− λ)g2(y)

)
,

where g(y) = (Tρf)(y). The goal is to show that G(1) ≥ G(0). Observe that

G′(λ) =
f̂2
φ

2
√

1− (1− λ)f̂2
φ

− E

(
g2(y)− ρ2

2
√

1− λρ2 − (1− λ)g2(y)

)

Lemma 3. For any 0 ≤ ρ2, λ ≤ 1 the function

f(u) :=
u− ρ2√

1− λρ2 − (1− λ)u

is convex and increasing in u when u ∈ [0, 1].

Proof. Observe that

f ′(u) =
1√

1− λρ2 − (1− λ)u
+

(1− λ)(u− ρ2)

2(1− λρ2 − (1− λ)u)3/2

=
2− (1 + λ)ρ2 − (1− λ)u

2(1− λρ2 − (1− λ)u)3/2
.

f ′′(u) =
−(1− λ)

2(1− λρ2 − (1− λ)u)3/2
+

3(1− λ)

2

(2− (1 + λ)ρ2 − (1− λ)u)

2(1− λρ2 − (1− λ)u)5/2

=
1− λ

4(1− λρ2 − (1− λ)u)5/2
(−2(1− λρ2 − (1− λ)u) + 3(2− (1 + λ)ρ2 − (1− λ)u)))

=
1− λ

4(1− λρ2 − (1− λ)u)5/2
(4− (3 + λ)ρ2 − (1− λ)u).

An immediate corollary of Lemma 3 is that if U is a random variable that takes values in [0, 1] then

E(f(U)) ≤ (1− E(U))f(0) + E(U)f(1),

where f(u) is the function defined earlier.
Denoting α = E(g2(Y )) and observing that g2(Y ) ∈ [0, 1] we use the above observation to obtain

G′(λ) ≥
f̂2
φ

2
√

1− (1− λ)f̂2
φ

+ (1− α)
ρ2

2
√

1− λρ2
− α

√
1− ρ2

2
√
λ

. (4)

Thus, integrating both sides with respect to λ from 0 to 1 we obtain∫ 1

0
G′(λ)dλ ≥ 1−

√
1− f̂2

φ + (1− α)(1−
√

1− ρ2)− α
√

1− ρ2

= 2− α−
√

1− f̂2
φ −

√
1− ρ2.
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Since α ≤ f̂2
φ + ρ2(1− f̂2

φ) (by Parseval) we have, as long as

1 + (1− f̂2
φ)(1− ρ2) ≥

√
1− f̂2

φ +
√

1− ρ2

we will have ∫ 1

0
G′(λ)dλ ≥ 0

and we are done.

B. Numerical verification until n=8

We performed numerical verification until n=8. The key to performing this verification (since the number of
Boolean functions grow doubly exponentially) are the following lemmas that allow us to restrict our attention to
pairwise monotone functions. We will indeed show that such a result holds for the maximization over Boolean
functions of HΦ(Zf (Y)) for any convex function Φ.

1) The family of L-operators on Boolean functions: In this section, we define an L-operator on a Boolean function
and study its properties. In the background, we have a lexicographic ordering of the vertices of the hypercube where
the vector of all −1 is the lowest element of the order and the vector of all +1 is the highest element. Further we
assume that the coordinates are from the most significant bit to the least significant bit.

Definition 1. For any k ∈ {1, . . . , n} and set S ⊆ [1 : n], |S| = k the LS operator transforms a boolean
function f(x) into another function f↑(x) as follows: for any x′ ∈ {−1,+1}n−k, let V = {x1, ...,x2k} be the
(increasing) lexicographic ordering of the set of co-ordinates whose restriction to [1 : n] \ S agrees with x′. Then(
f↑(x1), ..., f↑(x2k)

)
is defined to be the ascending sort of the vector (f(x1), ..., f(x2k)).

We also define 2k functions on {−1,+1}n−k according to

fj(x
′) = f(xj), j = 1, .., 2k.

Using this definition, we can view
(
f↑(x1), ..., f↑(x2k)

)
as the ascending sort of the vector (f1(x′), ..., f2k(x

′)).

Remark 4. The following remark is worth noting: for any S the operator LS performs a permutation of the function
values on the points of the hypercube. Hence E(f) is not altered by LS .

In this section we assume that 0 < ρ < 1 (without loss of generality).

Proposition 2. For any i ∈ {1, .., n} and for any boolean function f(X), define f↑ = L{i}(f). Then for any convex
function φ we have

E(Φ(Zf↑(Y)))− Φ(E(Zf↑(Y))) ≥ E(Φ(Zf (Y)))− Φ(E(Zf (Y))).

Here Zf (Y) = 1−(Tρf)(Y)
2 .

Proof. Since the LS operators preserve the means, hence it suffices to show that E(Φ(Zf↑(Y))) ≥ E(Φ(Zf (Y))).
Observe that

f(x) =
(1− xi)

2
f1(x′) +

(1 + xi)

2
f2(x′)

f↑(x) =
(1− xi)

2
f↑1 (x′) +

(1 + xi)

2
f↑2 (x′).

Note that we have

g(y) =
(1− ρyi)

2
E(f1(x′)|Y = y′) +

(1 + ρyi)

2
E(f2(x′)|Y = y′)

g↑(y) =
(1− ρyi)

2
E(f↑1 (x′)|Y = y′) +

(1 + ρyi)

2
E(f↑2 (x′)|Y = y′).

We will establish that for any y′, the vector[
g↑(y′, yi = −1)
g↑(y′, yi = 1)

]
=

[
(1+ρ)

2 E(f↑1 (X′)|Y = y′) + (1−ρ)
2 E(f↑2 (X′)|Y = y′)

(1−ρ)
2 E(f↑1 (X′)|Y = y′) + (1+ρ)

2 E(f↑2 (X′)|Y = y′)

]
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majorizes the vector[
g(y′, yi = −1)
g(y′, yi = 1)

]
=

[
(1+ρ)

2 E(f1(X′)|Y = y′) + (1−ρ)
2 E(f2(X′)|Y = y′)

(1−ρ)
2 E(f1(X′)|Y = y′) + (1+ρ)

2 E(f2(X′)|Y = y′)

]
.

Towards this consider the vectors[
(1+ρ)

2 f↑1 (x′) + (1−ρ)
2 f↑2 (x′)

(1−ρ)
2 f↑1 (x′) + (1+ρ)

2 f↑2 (x′)

]
and

[
(1+ρ)

2 f1(x′) + (1−ρ)
2 f2(x′)

(1−ρ)
2 f1(x′) + (1+ρ)

2 f2(x′).

]
Since ρ ∈ (0, 1) and f↑1 (x′) ≤ f↑2 (x′) by construction, note that

(1 + ρ)

2
f↑1 (x′) +

(1− ρ)

2
f↑2 (x′) ≤ (1− ρ)

2
f↑1 (x′) +

(1 + ρ)

2
f↑2 (x′).

Further, since f↑1 (x′) = min{f1(x′), f2(x′)} and f↑2 (x′) = max{f1(x′), f2(x′)}, and ρ ∈ (0, 1) we have

(1 + ρ)

2
f↑1 (x′) +

(1− ρ)

2
f↑2 (x′) = min

{
(1 + ρ)

2
f1(x′) +

(1− ρ)

2
f2(x′),

(1− ρ)

2
f1(x′) +

(1 + ρ)

2
f2(x′)

}
.

Taking conditional expectations at y′ we have

g↑(y′, yi = −1) =
(1 + ρ)

2
E(f↑1 (X′)|Y = y′) +

(1− ρ)

2
E(f↑2 (X′)|Y = y′)

= E

(
min

{
(1 + ρ)

2
f1(X′) +

(1− ρ)

2
f2(X′),

(1− ρ)

2
f1(X′) +

(1 + ρ)

2
f2(X′)

}
|Y′ = y′

)
≤ min

{
E

(
(1 + ρ)

2
f1(X′) +

(1− ρ)

2
f2(X′)|Y′ = y′

)
,

E

(
(1− ρ)

2
f1(X′) +

(1+ρ)

2
f2(X′)|Y′ = y′

)}
= min{g(y′, yi = −1), g(y′, yi = +1)}.

Since p(x′|y′) > 0 for every pair (x′,y′), equality in the above holds if and only if for every x′, f1(x′) ≤ f2(x′)
or for every x′, f1(x′) ≤ f2(x′). Since f↑1 (x′) + f↑2 (x′) = f1(x′) + f2(x′) for every x′ it is clear that g↑(y′, yi =
−1) + g↑(y′, yi = 1) = g(y′, yi = −1) + g(y′, yi = +1). Thus we have shown the majorization between the
vectors. From Karamata’s inequality concerning majorization and concave functions, the proposition immediately
follows.

By iterating over singleton sets (or coordinates) we can restrict our search for maximizers to monotone functions.

Proposition 3. For any (i, j) ∈ {1, .., n} and for any monotone boolean function f(X), define f↑ = L{i,j}(f).
Then for any strictly concave function φ we have

E(φ(g↑(Y))) ≤ E(φ(g(Y))),

where g(Y) = E(f(X)|Y) = (Tρf)(Y), g↑(Y) = E(f↑(X)|Y) = (Tρf
↑)(Y), with equality holding if and only

if f2(x′) ≤ f3(x′) ∀x′ or f3(x′) ≥ f2(x′) ∀x′.

Proof. W.l.o.g we assume i < j. The proof basically mimics the proof of Proposition 2, in that we will establish
that for any y′, the vector
g↑(y′, yi = −1, yj = −1)
g↑(y′, yi = −1, yj = 1)
g↑(y′, yi = 1, yj = −1)
g↑(y′, yi = 1, yj = 1)

 = E




(1+ρ)2

4 f↑1 (X′) + (1−ρ2)
4 f↑2 (X′) + (1−ρ2)

4 f↑3 (X′) + (1+ρ)2

4 f↑4 (X′)
(1−ρ2)

4 f↑1 (X′) + (1+ρ)2

4 f↑2 (X′) + (1−ρ)2

4 f↑3 (X′) + (1−ρ2)
4 f↑4 (X′)

(1−ρ2)
4 f↑1 (X′) + (1−ρ)2

4 f↑2 (X′) + (1+ρ)2

4 f↑3 (X′) + (1−ρ2)
4 f↑4 (X′)

(1−ρ)2

4 f↑1 (X′) + (1−ρ2)
4 f↑2 (X′) + (1−ρ2)

4 f↑3 (X′) + (1−ρ)2

4 f↑4 (X′)


∣∣∣∣∣Y′ = y′
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majorizes the vector
g(y′, yi = −1, yj = −1)
g(y′, yi = −1, yj = 1)
g(y′, yi = 1, yj = −1)
g(y′, yi = 1, yj = 1)

 = E




(1+ρ)2

4 f1(X′) + (1−ρ2)
4 f2(X′) + (1−ρ2)

4 f3(X′) + (1+ρ)2

4 f4(X′)
(1−ρ2)

4 f1(X′) + (1+ρ)2

4 f2(X′) + (1−ρ)2

4 f3(X′) + (1−ρ2)
4 f4(X′)

(1−ρ2)
4 f1(X′) + (1−ρ)2

4 f2(X′) + (1+ρ)2

4 f3(X′) + (1−ρ2)
4 f4(X′)

(1−ρ)2

4 f1(X′) + (1−ρ2)
4 f2(X′) + (1−ρ2)

4 f3(X′) + (1−ρ)2

4 f4(X′)


∣∣∣∣∣Y′ = y′


Since the function f(X) is monotone we have f1(x′) ≤ min{f2(x′), f3(x′)} ≤ f4(x′). Hence f1(x′) = f↑1 (x′), f4(x′) =

f↑4 (x′), f↑2 (x′) = min{f2(x′), f3(x′)}, f↑3 (x′) = max{f2(x′), f3(x′)}. This immediately implies that g↑(y′, yi =
−1, yj = −1) = g(y′, yi = −1, yj = −1) and g↑(y′, yi = 1, yj = 1) = g(y′, yi = 1, yj = 1). In an argument
identical to that of Proposition 2, we obtain that

g↑(y′, yi = −1, yj = 1) ≤ min{g(y′, yi = −1, yj = 1), g(y′, yi = 1, yj = −1)}

with equality holding if and only if f2(x′) ≤ f3(x′) ∀x′ or f3(x′) ≥ f2(x′) ∀x′. Clearly we also have g↑(y′, yi =
−1, yj = 1) + g↑(y′, yi = 1, yj = −1) = g(y′, yi = −1, yj = 1) + g(y′, yi = 1, yj = −1). This completes the proof
and observe that the equality condition means that f↑(x) = f(x) or f↑(x) = fi↔j(x).

Remark 5. The above two propositions were also established in [] for JS(x) which also helped them numerically
verify their conjecture till n = 7.

III. WEAKER CONJECTURE RELATING PAIRS OF BOOLEAN FUNCTIONS

In this section I will document the weaker version of the conjectures that relate pairs of Boolean functions f(X)
and g(Y).

Proposition 4 ( [7]). For any pair of Boolean functions f(X) and g(Y) that takes values {−1,+1}

I(f(X); g(Y)) ≤ 1−H
(

1− ρ
2

)
.

Conjecture 3. For any pair of Boolean functions that takes values {−1,+1}√
1− f̂2

Φ − E
(√

1− (E(f(X)|g(Y )))2
)
≤ 1−

√
1− ρ2.

Proposition 5. Suppose a pair of Boolean functions f(X), g(Y) taking values {−1,+1} satisfies√
1− f̂2

Φ − E
(√

1− (E(f(X)|g(Y)))2
)
≤ 1−

√
1− ρ2 (5)

then the function f(X) also satisfies

I(f(X); g(Y)) ≤ 1−H
(

1− ρ
2

)
. (6)

Proof. The proof mimics the earlier similar proof. Let Ψ(x) = 1−
√

1−x2

2 . Lemma 1 implies that H(Ψ(x)) is
non-negative, increasing, and convex in x. Observe that

H

(
1− x

2

)
= H

(
Ψ
(√

1− x2
))

.

The inequality in (6) can be re-expressed as

H

(
Ψ

(√
1− f̂2

Φ

))
− E

(
H
(

Ψ
(√

1− (E(f(X)|g(Y)))2
)))

≤ H(Φ(1))−H
(

Ψ
(√

1− ρ2
))

.

By the convexity of H(Ψ(x)) the above inequality will be implied if the following inequality holds:

H

(
Ψ

(√
1− f̂2

Φ

))
−H

(
Ψ
(

E
(√

1− (E(f(X)|g(Y)))2
)))

≤ H(Φ(1))−H
(

Ψ
(√

1− ρ2
))

.

However this inequality is an immediate consequence of (5) and using the fact that H(Ψ(x)) is non-negative,
increasing, and convex in x.
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A. Evidence in support of Conjecture 3

In this section we will present an inequality involving three variables that, if true, would imply Conjecture 3. The
idea is similar to the one in [2] where a similar approach was attempted to resolve Proposition 4 (when it was still
a conjecture). The inequality may be of independent interest. As is wont in problems involving Boolean functions,
the proposed inequality relies on hypercontractivity parameters between pairs of binary random variables.

Preliminaries involving hypercontractivity: A pair of random variables (U, V ) is said to be (p, q)-hypercontractive
for 1 < q ≤ p if

E(f(U)g(V )) ≤ ‖f(U)‖p′‖g(V )‖q

holds for every non-negative functions f(U) and g(V ). Here p′ = p
p−1 is the Hölder conjugate. For an fixed p > 1

define
sp(U ;V ) := sup

{
q − 1

p− 1
: (U, V ) is (p, q)-hypercontractive

}
.

Similarly, a pair of random variables (U, V ) is said to be (p, q)-reverse-hypercontractive for 1 > q ≥ p if

E(f(U)g(V )) ≥ ‖f(U)‖p′‖g(V )‖q

holds for every non-negative functions f(U) and g(V ). Here p′ = p
p−1 is the Hölder conjugate. For an fixed p < 1

define
sp(U ;V ) := sup

{
q − 1

p− 1
: (U, V ) is (p, q)-reverse-hypercontractive

}
.

The hypercontractivity parameters (both forward and reverse) satisfy the tensorization and the data-processing
properties: (a) if (Un, V n) are i.i.d. with each-component distributed as (U, V ) then sp(Un;V n) = sp(U ;V ); (b)
if U ′ − U − V − V ′ is a Markov chain, then sp(U ′;V ′) ≤ sp(U ;V ).

Coming back to the Boolean functions problem, it is known [], [] that sp(X;Y) = sp(Y;X) = ρ2. Hence for
any f(X) and g(Y) we have sp(f(X); g(Y)) ≤ ρ2. The following conjecture, though of independent interest, was
proposed as a way to resolve Proposition 4 (when it was still a conjecture).

Conjecture 4 ( [2]). For any pair of binary random variables (U, V ) the following inequality holds:

I(U ;V ) +
√

1− s∗(U ;V ) ≤ 1,

where s∗(U ;V ) = limp→∞ sp(U ;V ).

Remark 6. This conjecture is still formally unestablished, but if true, it would immediately imply Proposition 4
since s∗(f(X); g(Y)) ≤ ρ2, and f(X), g(Y) are binary-valued. Let (U, V ) ∼ pU (u)pV |U (v|u). It has been shown
in [1] that

s∗(U ;V ) = sup
qU�pU

D(pV |U ◦ qU‖pV |U ◦ pU )

D(qU‖pU )
,

where pV |U ◦ qU (similarly the other term) denotes the induced distribution on V by composing the conditional lay
pV |u with the law qU .

For a pair of binary-valued random variables (U, V ), characterize the joint distribution in terms of (s, c, d) ∈ [0, 1]
where P(U = 1) = s,P(V = 0|U = 1) = d,P(V = 1|U = 0) = c. As before let x̄ = 1− x for a generic variable
x. Then clearly

s∗(U ;V ) ≥ D(rd̄+ r̄c‖sd̄+ s̄c)

D(r‖s)
=: slb∗ (U ;V ),

where r = s̄cc̄
s̄cc̄+sdd̄

, and D(x‖y) is the relative entropy between the two distributions [x, 1 − x] and [y, 1 − y].
Numerical simulations show that the explicit three-variable inequality

I(U ;V ) +
√

1− slb∗ (U ;V ) ≤ 1, (7)

seems to hold. Further one can formally prove the inequality in the neighborhood (by considering expansions) of
the equality achieving points; however a complete formal proof for the entire regime is still missing. Note that (7)
implies Conjecture 4, yielding very strong evidence in support of its validity. Note that slb∗ (U ;V ) is just a explicit
lower bound for s∗(U ;V ) that seems to work.



9

Unfortunately neither s∗(U ;V ) nor the techniques in [7] seem to work for the stronger version, Conjecture 3.
However the following conjecture appears to be true and as before could be of independent interest.

Conjecture 5. For any pair of binary random variables (U, V ) with V taking values in {−1, 1} the following
holds: √

1− E(V )2 − E
(√

1− E(V |U)2
)

+
√

1− s†(U ;V ) ≤ 1,

where s†(U ;V ) = limp→0 sp(U ;V ).

Remark 7. Taking V = f(X) and U = g(Y) and by noting that s†(g(Y); f(X)) ≤ ρ2, the above conjecture
immediately implies Conjecture 3. Let (U, V ) ∼ pU (u)pV |U (v|u). It has been shown in [3], [6] that

1− s†(U ;V ) = inf
qV 6=pV

D(qV ‖pV )

infqV |U :qV |U◦pU=qV EU D(qV |U‖pV |U )
,

where the outer infimum is taken over all distributions qV and the inner infimum is taken over all conditional laws
qV |U such that qV |U ◦ pU yields qV .

As before, for a pair of binary-valued random variables (U, V ), characterize the joint distribution in terms of
(s, c, d) ∈ [0, 1] where P(U = 1) = s,P(V = −1|U = 1) = d,P(V = 1|U = −1) = c. Taking qV (1) = sc̄ + s̄d,
it turns out the the inner infimum (a convex minimization) is obtained by swapping c and d. This leads us to the
following inequality:

1− s†(U ;V ) ≤ D(sc̄+ s̄d‖sd̄+ s̄c)

sD(c‖d) + s̄D(d‖c)
=: 1− slb† (U ;V ).

Numerical simulations indicate that for binary (U, V ) the inequality√
1− E(V )2 − E

(√
1− E(V |U)2

)
+
√

1− s†(U ;V ) ≤ 1,

seems to hold. Writing this more explicitly, for any (s, c, d) ∈ [0, 1], the inequality√
1− (s(d̄− d) + s̄(c− c̄))2 − s

√
1− (d̄− d)2 − s̄

√
1− (c̄− c)2 +

√
D(sc̄+ s̄d‖sd̄+ s̄c)

sD(c‖d) + s̄D(d‖c)
≤ 1,

seems to hold (numerically). We can formally establish this for certain range of parameters (including near equality
points) but a complete formal proof is still lacking.
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