
Asymptoti Filtering and Entropy Rate of a HiddenMarkov Proess in the Rare Transitions RegimeChandra NairDept. of Elet. Engg.Stanford UniversityStanford CA 94305, USAmhandra�stanford.edu Erik OrdentlihInformation Theory Researh GroupHP LaboratoriesPalo Alto CA 94304, USAerik.ordentlih�hp.om Tsahy WeissmanDept. of Elet. Engg.Stanford UniversityStanford CA 94305, USAtsahy�stanford.eduAbstrat�Reent work by Ordentlih and Weissman put fortha new approah for bounding the entropy rate of a hiddenMarkov proess via the onstrution of a related Markov proess.We use this approah to study the behavior of the �ltering errorprobability and the entropy rate of a hidden Markov proess inthe rare transitions regime. In this paper, we restrit our attentionto the ase of a two state Markov hain that is orrupted by abinary symmetri hannel. Using this approah we reover theresults on the optimal �ltering error probability of Khasminskiiand Zeitouni. In addition, this approah sheds light on the termsthat appear in the expression for the optimal �ltering errorprobability. We then use this approah to obtain tight estimatesof the entropy rate of the proess in the rare transitions regime.This leads to tight estimates on the apaity of the Gilbert-Elliothannel in the rare transitions regime.I. INTRODUCTIONConsider a stationary, �nite-alphabet, Markov hain, {Xk},and let {Zk} denote a noisy version when orrupted by adisrete memoryless hannel. Let K denote the transitionkernel of the Markov hain and C denote the hannel transitionmatrix. The proess {Zk} is known as a hidden Markovproess, with the {Xk} orresponding to the state proess.Hidden Markov proesses our naturally in the modelingof information soures [EM02℄. They also arise as noiseproesses in additive noise hannels, like the Gilbert-Elliothannel. It has been shown in [MBD89℄ that the harateri-zation of the hannel apaity for the Gilbert-Elliot hannelboils down to �nding the entropy rate of the noise.Early work on the estimation of the underlying state (soure)symbols from a hidden Markov proess involved analysis ofoptimal �lters [W65℄. Later, sub-optimal �lters were usedto derive upper bounds [KL92℄, [KZ96℄ and information-theoreti arguments were used to obtain lower bounds [KZ96℄.The lower and upper bounds in [KZ96℄ mathed in the regionof rare transitions and the optimal �ltering error probabilitywas obtained.Our approah here is quite different; we use an alternativeMarkov proess proposed in [OW04℄ to study the behaviorof the optimal �lter and use this to get tight estimates of the�ltering error probability in the rare transitions regime. Theanalysis of the alternative Markov proess also lays bare theterms that arise in the �ltering error probability as obtained in[KZ96℄.

Work on the entropy rate of hidden Markov models usedbounds [CT91℄, Monte Carlo simulations [HGG03℄, Lyapunovexponents [HGG03℄, [JSS04℄, Statistial Mehanis [ZKD04℄,and more [EBTBH04℄.The analysis of the alternative Markov proess proposed in[OW04℄, simultaneously provides us with the optimal �lteringerror probability as well as the entropy rate under the raretransitions regime. We perform the analysis for the simplestase of a symmetri 2-state Markov hain orrupted by aBinary Symmetri Channel (BSC). The extension to general�nite alphabet Markov proesses an be attempted along verysimilar lines, however the tehnial details of the argumentsbeome more involved. The analysis of this toy model, how-ever, sheds light on the behavior of the �nite alphabet proess.The paper is organized as follows. In Setion 2 we presentthe soure and hannel model and the alternative Markovproess de�ned in [OW04℄. Setion 3 presents the main resultsof this paper and Setion 4 illustrates the analysis of thealternative Markov proess that yields the laims. We onludein Setion 5II. THE BSC-CORRUPTED BINARY MARKOV CHAINConsider a soure, Xk, that behaves aording to a binaryvalued symmetri Markov hain with probability of transition
π. Assume that the soure symbols pass through a memorylesshannel that �ips the value of Xk with probability δ to givea orrupted sequene Zk.
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−∞)Fig. 2.1. Soure and Channel modelFor this model the Markov transition kernel and the hanneltransition matrix are, respetively,

K =

(

1 − π π
π 1 − π

)

, C =

(

1 − δ δ
δ 1 − δ

)

, (2.1)and we assume without loss of generality that δ ≤ 1/2.



De�ne the onditional probability of the soure symbolonditioned on the entire set of output symbols by
βk(1) = P(Xk = 1|Zk

−∞)

βk(0) = P(Xk = 0|Zk
−∞).

(2.2)The log-likelihood ratio of the soure given the present andpast hannel outputs is de�ned as
lk = ln

βk(1)

βk(0)
= ln

βk(1)

1 − βk(1)
. (2.3)Let us onsider the distribution of the log-likelihood ratiorandom variable onditioned on the event that Xk = 1.We now reall some relevant results that were established in[OW04℄.Consider the following auto-regressively de�ned �rst orderMarkov proess,

Yk = rk ln
1 − δ

δ
+ skh(Yk−1). (2.4)Here, {rk} and {sk} are independent i.i.d. sequenes with

rk =

{

−1 w.p. δ

+1 w.p. 1 − δ
sk =

{

−1 w.p. π

+1 w.p. 1 − π
(2.5)and the funtion h(x) is given by

h(x) = ln
ex(1 − π) + π

exπ + 1 − π
. (2.6)It was shown in [OW04℄ that the unique stationary distrib-ution of this 1st-order Markov proess is given by P(lk|Xk =

1). Let Y denote a random variable distributed aording tothe stationary distribution of the Markov proess in (2.4).Observe that the optimal �lter estimates the soure symbolto be 1 if the log-likelihood is positive and 0 if it is negative.Therefore, the probability of error for the optimal �lteringestimator is given by
Emin = P(lk < 0|Xk = 1) = P(Y < 0). (2.7)Consider the binary entropy funtion hb(x) (in nats) de�nedaording to
hb(x) = −x lnx − (1 − x) ln(1 − x). (2.8)Let p∗q = p(1−q)+q(1−p) denote the binary onvolution.It was shown in [OW04℄ that the entropy rate of the hiddenMarkov proess, {Zk}, is given by

H̄(Z) = Ehb(
eY

1 + eY
∗ π ∗ δ). (2.9)Thus it is lear from equations (2.7) and (2.9) that the�ltering error probability and the entropy rate of the hiddenMarkov proess are intimately onneted to the stationarydistribution of the Alternative Markov Proess de�ned inequation (2.4).
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11Fig. 2.2. Gilbert-Elliot Channel model1) Gilbert-Elliot Channel:: The Gilbert-Elliot hannelmodel is desribed by the transition diagram on Figure 2.2.The hannel exists in a good state or bad state, as deter-mined by the 2-state Markov hain. If the hannel is in thegood state, the hannel transition matrix, C, behaves like aBSC with parameter Pg and if it is in the bad state, C behaveslike a BSC with parameter Pb.To make an equivalene between the apaity of the Gilbert-Elliot hannel and the Soure and Channel model in 2.1, wemake the following identi�ation. Xk is said to be zero ifthe hannel is in the good state and Xk is said to be one ifthe hannel is in the bad state. The Markov transition kerneland the hannel transition matrix for the equivalent soure andhannel model is given by
K =

(

1 − b b
g 1 − g

)

, CGE =

(

1 − Pg Pg

1 − Pb Pb

)

.(2.10)Let the output of this equivalent soure and hannel modelbe Z̃k. It was shown in [MBD89℄ that the apaity of theGilbert-Elliot hannel is given by
CGE = 1 − H̄(Z̃). (2.11)Now onsider a Gilbert-Elliot Channel with parameters
g = b = π,

Pg = 1 − Pb = δ.
(2.12)Observe that this redues to the transition kernel and thehannel matrix in (2.1).In the next setion we state the main results of this paper.III. MAIN RESULTSWe obtain the following main results of the paper in therare transitions regime by analyzing the alternative Markovproess.Theorem 3.1: As π → 0, the minimum probability of erroris given by

Emin =
−π lnπ

D(δ‖1 − δ)
(1 + o(1)). (3.1)Note, D(δ‖1 − δ) represents the binary Kullbak-Lieblerdistane given by

D(δ‖1 − δ) = δ ln
δ

1 − δ
+ (1 − δ) ln

1 − δ

δ
.



Theorem 3.2: In the asymptoti regime π → 0, the entropyrate of the hidden Markov proess, H̄(Z), is bounded by
hb(δ) +

(1 − 2δ)2

1 − δ
π ln

1

π
≤ H̄(Z) ≤ hb(δ) + π ln

1

π
(3.2)For the Gilbert-Elliot hannel with parameters as de�nedin (2.12), we obtain the following result as an immediateonsequene of Theorem 3.2 and equation (2.11).Corollary 3.3: For π → 0, we have

1 − hb(δ) − π ln
1

π
≤ CGE ≤ 1 − hb(δ) −

(1 − 2δ)2

1 − δ
π ln

1

π
.The upper bound is quite straightforward and arises fromthe following observation

H̄(Z) ≤ hb(δ) + hb(π)In the next setion, we establish Theorems 3.1 and 3.2 byanalyzing the behavior of the alternative Markov proess inthe rare transitions regime, i.e. π → 0.IV. ANALYSIS OF THE ALTERNATIVE MARKOV CHAINConsider the auto-regressively de�ned �rst-order Markovhain desribed by (2.4). In this setion we will haraterizethe behavior of a typial sample path of this proess. Fromthis haraterization we will use ergodiity to ompute thevarious probabilities and expetations. For the onveniene ofthe reader we reprodue (2.4) below and state some importantobservations,
Yk = rk ln

1 − δ

δ
+ skh(Yk−1), (4.1)with rk, sk and h(x) de�ned by (2.5) and (2.6), respetively.Let Y represent the stationary distribution of this Markovproess. It was shown in [OW04℄ that the support of Y isgiven by [−A, A] where

A = ln
(α − 1)(1 − π) +

√

4απ2 + (α − 1)2(1 − π)2

2π (4.2)and α = 1−δ
δ
. In the rare transitions regime π ≈ 0, A beomes

A = ln
(α − 1)(1 − π)[2 + 2απ2

α−1 + O(π3)]

2π

= ln
α − 1

π
[1 + (α − 1)π +

2απ2

(α − 1)2
+ O(π3)]

= ln
1

π
+ ln(α − 1) + (α − 1)π + O(π2),

(4.3)where α = 1−δ
δ

≥ 1.Remark 4.1: This an be readily seen by observing thedynamis in (4.1) and observing that A should satisfy
A = h(A) + ln

1 − δ

δ
.The next lemma states some properties of h(x) that will beused for analyzing the typial sample path.Lemma 4.2: The funtion h(x) = ln ex(1−π)+π

exπ+1−π
satis�es:

(i) h(x) and x − h(x) are monotonially inreasing fun-tions(ii) h(x) > 0(< 0) when x > 0(< 0) and h(0) = 0(iii) h(x) = −h(−x)(iv) |h(x)| < |x| for all x ∈ R(v) If |x| < ln 1
π
−
√

ln 1
π
, then |x − h(x)| < e−

√

− ln π

1−π
.Proof: The proofs of items (i) − (iv) are straightforwardalgebrai manipulations and is left to the reader. For part (v)of the Lemma, note the following observations: From parts

(i) − (iv), we know that x − h(x) is an odd funtion and ismonotonially inreasing. Therefore it suf�es to show that
x0 − h(x0) <

e−
√
− lnπ

1 − π
,where x0 = ln 1

π
−
√

ln 1
π
.Observe that x − h(x) = ln πex+1−π

1−π+πe−x and ex0 =
1
π
e−

√
− ln π. This implies

x0 − h(x0) = ln
1 − π + e−

√
− ln π

1 − π + π2e
√
− lnπ

≤ ln(1 +
e−

√
− ln π

1 − π
)

<
e−

√
− ln π

1 − π
.

(4.4)The last inequality follows from the fat that ln(1 + x) < xwhen x > 0.2) Outline of a typial sample path evolution: Consider atypial sample path of the Markov proess in (4.1). When πis small, sk will almost always equal +1, with �ips ourringroughly 1
π
instanes apart. During a long sequene when skis +1, equation (4.1) beomes

Yk = rk ln
1 − δ

δ
+ h(Yk−1). (4.5)We know that the support of Y lies in [−A, A] and from(4.3) that A ≈ − ln 1

π
. Whenever Yk lies in [−x0, x0], part (v)of Lemma 4.2 helps us onlude that we an approximate theevolution in equation (4.5) by

Yk = rk ln
1 − δ

δ
+ Yk−1. (4.6)This represents a random walk with a postive drift given byE(rk) ln

1 − δ

δ
= D(δ‖1 − δ).Therefore, via usual martingale arguments, one an see thatin 2x0

D(δ‖1−δ) steps the walk reahes x0 from −x0. Beause ofa strong positive drift, the Markov proess in (4.5) tends toremain in the viinity of x0 and not drift downwards. Notethat the time period of transition is O(− ln π) and is muhsmaller than the inter �ip period of sk, (whose expeted valueis 1
π
). Therefore at the ourene of the next �ip Yk ≈ − lnπand Yk+1 ≈ lnπ.Again during this inter �ip interval, Yk performs the abovementioned random walk from around lnπ to− lnπ with a drift



given by D(δ‖1−δ). The number of steps required before thiswalk beomes positive is given by − ln π
D(δ‖1−δ) . Sine the �ipsof sk our at rate 1

π
, we obtain that the total fration of timea typial sample path remains negative is given by
−π lnπ

D(δ‖1 − δ)
(1 + o(1)).By ergodiity, this implies that

Emin = P(Y < 0) =
−π lnπ

D(δ‖1 − δ)
(1 + o(1)),whih is the statement of Theorem 3.1.Remark 4.3: The above argument leaves out a lot of detailsthat are required to omplete the various laims in the expla-nation. Due to spae onstraints, as well as the fat that thedetails loud the intuition, we omit them from this version ofthe paper.To establish Theorem 3.2 we observe that in our previousanalysis we showed that for a fration of time ≈ 1− 2π ln π

D(δ‖1−δ)the sequene Yk remains around − lnπ and in the remainingfration of time, it performs a random walk given by equation(4.6) between [lnπ,− lnπ].This helps us break down the omputation of Ehb(
eY

1+eY ∗
π ∗ δ)− hb(δ) into two parts. We know, using ergodiity, thatfor typial sample pathsEhb(

eY

1 + eY
∗ π ∗ δ) − hb(δ)

= lim
N

1

N

∑

k

hb(
eYk

1 + eYk

∗ π ∗ δ) − hb(δ)

= lim
N

1

N

∑

k:Yk≈− ln π

(

hb(
eYk

1 + eYk

∗ π ∗ δ) − hb(δ)

)

+ lim
N

1

N

∑

k:ln π
Yk
 − ln π

(

hb(
eYk

1 + eYk

∗ π ∗ δ) − hb(δ)

)

.(4.7)We need to estimate the ontributions of both the terms.Let Ỹ0 ≈ − lnπ denote the initial state of the Markovproess in the seond phase (i.e. the �rst time the randomwalk rosses x0. ) Sine the jumps are in �xed amounts of
ln 1−δ

δ
, and the fat that x0 is approximately the upper �xedpoint of the atual walk de�ned by (4.5) helps us approximatethe walk in this region by a birth-death Markov hain.The states of this Markov hain are de�ned by

Sk = Ỹ0 − k ln
1 − δ

δ
, k ≥ 0and the birth-death proess is linked to the atual random walkas follows: Whenever ri = −1 the Markov hain jumps fromurrent state Sk to state Sk+1 and when ri = 1 it jumps downfrom urrent state Sk to state Sk−1. If at urrent time theMarkov hain is at state S0 and ri = −1 then however thehain ontinues to remain at state S0.We wish to study the birth-death proess for a time equal tothe inter-�ip duration of the oin with bias π, the variable sk,

in (2.4). The birth death proess desribed above starts from
S0 at time 0 and evolves as desribed previously.The expeted hitting time for a state j of a birth-deathproess onditioned on the event that the proess starts atorigin is given by [PT96℄E0Tj =

1

αj−1

1 − αj

δ(1 − α)2
−

jα

δ(1 − α)Here, α = 1−δ
δ
. Thus the hitting time is proportional to

(1−δ
δ

)j . Sine the inter�ip duration is governed by a oin ofbias π, the Markov hain will not hit any states Sk for k
ln 1

π

>
(

ln 1−δ
δ

)−1 as π → 0.Consider the states Sk for k
ln 1

π

<
(

ln 1−δ
δ

)−1 as π → 0.Observe that the expeted hitting time is of a smaller orderthan the inter�ip duration. Hene the fration of time (duringan inter�ip interval) that the birth death hain oupies suha state would have onverged to its stationary probabilitymeasure.Using these observations, we an lower bound the �rst term,
H1, by restrition the summation to the appropriate statesof the birth-death approximation and substituting fration oftimes in states by their stationary probabilities.
H1 ≥

1

N

∑

k:Yk≈− lnπ

(

e−|Ŷk|

1 + e−|Ŷk |

)

D(δ‖1 − δ))(1 + o(1))

= D(δ‖1 − δ))

ln 1

π (ln 1−δ

δ )
−1

∑

i=0

π

(

1 − δ

δ

)i

1 − 2δ

1 − δ

(

δ

1 − δ

)i

(1 + o(1))

=
(1 − 2δ)2

1 − δ
π ln

1

π
(1 + o(1)) (4.8)The seond term, H2, omes from the random walk be-tween [lnπ,− lnπ], initiated by sk taking the value −1. Wenow show that the ontribution from this term is negligibleompared to the �rst term.Remark 4.4: We proeed to bound the seond termin the following fashion. We express the summation

∑

k:ln π
Yk
 − ln π

(

hb(
eYk

1+eYk
∗ π ∗ δ) − hb(δ)

) as the expetedontribution to the sum oming from one partiular �ip of
sk multiplied by the total number of �ips in time N . Theontribution oming from one partiular �ip of sk is termed
H̃2 and sine the rate of �ips is π we get that H2 ≈ πE(H̃2).Note: Though per �ip of sk, the term H̃2 is a random variable,sine we average over a large number of �ips we an replaethe average of these terms by its expeted value.Returning to bounding the seond part, onsider the randomwalk with Ỹ0 = y ≈ lnπ, and

Ỹk = rk ln
1 − δ

δ
+ Ỹk−1.



Further let T = infk Ỹk > x0. De�ne the random variable
H̃y

2 as
H̃y

2 =

T
∑

k=0

hb(
eỸk

1 + eỸk

∗ π ∗ δ) − hb(δ). (4.9)We an bound the expeted value of the expression inequation (4.9) as follows. First observe that the ontributionfrom Ỹk and −Ỹk is the same, i.e.
hb(

eỸk

1 + eỸk

∗ π ∗ δ) = hb(
e−Ỹk

1 + e−Ỹk

∗ π ∗ δ). (4.10)Consider a new random walk Ŷk with Ŷ0 = 0 and
Ŷk = rk ln

1 − δ

δ
+ Ŷk−1.We laim thatE(H̃y

2 ) ≤ 2E(

∞
∑

k=0

hb(
eŶk

1 + eŶk

∗ π ∗ δ) − hb(δ))

= 2E(

∞
∑

k=0

hb(
e−|Ŷk|

1 + e−|Ŷk|
∗ π ∗ δ) − hb(δ)).

(4.11)The fator 2 takes are of the ontribution of the walk Ykfrom y to 0, as it an be onsidered in reverse time as a walkstarting from 0 and an idential negative drift. Now observethat
2E(

∞
∑

k=0

hb(
e−|Ŷk|

1 + e−|Ŷk|
∗ π ∗ δ) − hb(δ))

≤ 2E(

∞
∑

k=0

hb(
e−|Ŷk|

1 + e−|Ŷk|
∗ δ) − hb(δ))

(a)

≤ E(2
∞
∑

k=0

(
e−|Ŷk|

1 + e−|Ŷk |
∗ δ − δ)D(δ‖1 − δ))

≤ E(2

∞
∑

k=0

e−|Ŷk|(1 − 2δ)D(δ‖1 − δ)),

(4.12)
where (a) follows from the onavity of hb(x).We make the following laim:Lemma 4.5:

∞
∑

k=0

E(e−|Ŷk|) ≤
1

1 − 2
√

δ(1 − δ)
. (4.13)Proof: The proof is omitted due to spae onstraints.Using equations (4.11), (4.12), and (4.5), we obtain thatE(H̃y

2 ) ≤ 2(1 − 2δ)D(δ‖1 − δ)
1

1 − 2
√

δ(1 − δ)
.Sine this ontribution ours at rate π orresponding to a�ip in sk, we obtain that

H2 ≤ π2(1 − 2δ)D(δ‖1 − δ)
1

1 − 2
√

δ(1 − δ)
(1 + o(1)).(4.14)Hene the seond term is negligible ompared to the �rstone and ombining (4.8) and (4.14) we obtain as π → 0,

(1 − 2δ)2

1 − δ
π ln

1

π
≤ H̄(Z) − hb(δ) ≤ π ln

1

π
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