
The Randomness in Randomized Load Balaning�Chandra NairDept. of Eletrial EngineeringStanford UniversityStanford, CA 94305.mhandra�stanford.edu Balaji PrabhakarDepts. of EE & CSStanford UniversityStanford, CA 94305balaji�isl.stanford.eduDevavrat ShahDept. of Computer SieneStanford UniversityStanford, CA 94305devavrat�s.stanford.eduAbstratLoad balaning is a lassial and important problem arising in a number ofappliation senarios. Consider the following anonial abstration: Jobs arriveaording to an arrival proess at a bank of N idential servers eah having a sepa-rate queue. The arriving jobs need to be assigned to the servers so that load on theservers is well balaned. The poliy \join the server with shortest remaining work"is known to be an optimal poliy (Winston, 1977). When N is large, the omplexityof implementing this optimal sheme beomes very high. Therefore, many simplerandomized approximations have been proposed in the reent literature. Thesevarious algorithms trade-o� performane for implementation simpliity. In this pa-per, we wish to understand this trade-o� by using the entropy rate of the induedqueue-size proess as a metri; i.e., the lower the entropy rate of the queue-sizeproess, the better the load-balaning.1 IntrodutionLoad balaning has reeived onsiderable attention in the lassial literature [4, 5℄. Weonsider the following anonial model, some times alled the \supermarket model". Jobsarrive aording to a rate N� (where � < 1) Poisson proess at a bank of N independentrate 1 exponential server queues. The arriving jobs are to be assigned to the servers so asto balane the load; or, more spei�ally, to minimize the expeted delay or the expetedqueue size. It is well-known that the assignment poliy \join the shortest queue" isoptimal [12℄. But, when N is large it beomes expensive to determine the shortest queuefor eah arriving job.This has reently motivated several randomized algorithms, all aimed at simplifyingthe implementation of the assignment proess. Azar et. al. [1℄ onsidered the followingstati version of the load balaning problem: Drop N balls into N bins so as to minimize�This researh is supported by a Stanford Graduate Fellowship, and by grants from a Alfred P. SloanFellowship and a Terman Fellowship



the maximum loading. The poliy \join the least loaded bin" results in an optimalloading of one ball per bin. In ontrast, onsider the lass of randomized algorithms: jointhe shortest of d � 1 randomly hosen bins. Azar et. al. [1℄ show that for d � 2 themaximum load is ln lnnln d + O(1) with a high probability, as ompared to lnnln lnn(1 + o(1))for d = 1.The dynami supermarket model mentioned above has been studied by Mitzenmaher[6℄ and Vvedenskaya et.al. [11℄. For d = 1 the supermarket model redues to N indepen-dent M/M/1 queues with arrival rate � and servie rate 1, and the queue-size distributionis geometri; that is, P (Q � i) = �i. For d � 2, the following rather remarkable fatis established in [6℄ and [11℄. The tail of the queue-size distributions is super-geometri;that is, P (Q � i) = � di�1d�1 as N !1.More reently, Shah and Prabhakar [9℄ onsider randomized load balaning algorithmswhih use memory. Spei�ally, they onsider the stati problem of dropping N balls intoN bins by de�ning the following \(d,1) system". At the beginning of the kth iteration the(d; 1) system has stored in its memory the identity of the least loaded bins at the end ofthe (k�1)th iteration. During the kth iteration it selets d new bins uniformly at randomand assigns the kth ball to the least loaded of these d bins and the one bin retained inmemory. It onludes the kth iteration by writing the identity of the least loaded of thed + 1 bins into memory. In this language [1℄ studies the (d; 0) system. It is shown in[9℄ that the maximum load in the (d; 1) system is bounded above ln lnnln(2d�1) + O(1) with ahigh probability. Thus, the (d; 1) system performs no worse than the (2d� 1; 0) systemso far as minimizing the maximum load is onerned.Clearly, one an de�ne the (d; 1) version of the supermarket model in a similar way.For the remainder of the paper we will be onerned exlusively with the dynami super-market model. Due to Poisson arrivals and independent exponential servies, the jointqueue-size proess at time t, Q(t) = (q1(t); :::; qN(t)), orresponding to eah of the poli-ies introdued above is an irreduible, aperiodi and ergodi ontinuous-time Markovhain. A major thrust of this paper is to ompute the entropy rate of these Markovhains. Our interest for doing this rests on the following large onlusion obtained in thepaper: As d inreases the entropy rate of the (d; 0) dereases, and is the smallest for thejoin the shortest queue system (whih orresponds to the (N; 0) system when sampling isdone without replaement). Sine systems are also better load-balaned as d inreases,we hope to onnet the goodness of the load-balaning of an assignment poliy with thesmallness of the entropy rate of the queue-size proess it indues.Now, the entropy rate of a disrete-time Markov hain living on a ountable statespae is given by �Pij �ipij log pij, where �i is the invariant distribution and fpijg isthe transition matrix (see Chapter 4 of [2℄, for example). Unfortunately, exept for the(1; 0) system, the invariant distribution of all the systems mentioned above is diÆult,if not impossible, to ompute expliitly. Further, if the arrival and servie proesses areallowed to be arbitrarily distributed, then expliit formulas for the entropy rate of thequeue-size proess are not known.Nevertheless, we shall be interested in omputing the entropy rate of suh arbitraryload-balaning systems. We do this by using the method employed in Prabhakar andGallager [8℄. The method of [8℄ requires a disrete-time formulation whih we shall adoptin Setion 1.1 and the main theorems onerning entropy rate of the (d; 0) systems areestablished in Setion 2. The omputation of entropy rates for the (d; 1) system, whihuses memory, seems more ompliated. In partiular, this makes it diÆult to omparethe performane of systems using memory with that of systems whih use no memory



with entropy as the metri. As mentioned above, [9℄ shows that the (d; 1) system is atleast as good as the (2d � 1; 0) system in the metri of minimizing the maximum load.In Setion 3.1 we use simulations to further ompare systems whih use memory withsystems that do not by introduing another metri, motivated by the entropy approah.Finally, in Setion 4 we onlude the paper by disussing the lessons learnt about therelevane of entropy as a metri for load balaning.1.1 The Model and NotationConsider a system of N �rst-ome-�rst-served (FCFS) queues arranged in parallel eahwith an independent rate 1 server providing i.i.d. servie times. The arrival proess tothe system of queues, A, is assumed to be stationary and ergodi. We assume thattime is slotted and that there is at most one arrival per time slot. The arrivals ourat the beginning of the time slots and departures our just before the end of the timeslots. The servie time distribution, S, is arbitrary and, for onveniene, we assume thatP (S = 0) = 0. This ensures that at most one departure an our at eah queue in eahtime slot.Let Q(k+) = (q1(k+); :::; qN(k+)) be the queue size vetor at time k+, where k+ isthe time just after the ourrene of possible arrivals in time slot k. Similarly, de�neQ(k�) = (q1(k�); :::; qN(k�)), where k� is the time just after departures in time slotk � 1. Write Q(k) = (Q(k�); Q(k+)).Let �(k) be the permutation of numbers 1; : : : ; N whih arranges the queues aordingto their size at time k�; i.e. q�1(k)(k�) � : : : � q�N (k)(k�). To disambiguate betweenseveral possible permutations when there are ties in queue sizes, assume that ties arebroken in a deterministi manner; for example, aording to port numbers.Let p = (p1; : : : ; pN) be a probability vetor representing the probabilities of theoutome of the toss of a oin with N sides, and let p1 � p2 � � � � � pN . With a givenvetor p, we may identify an assignment poliy as follows. If a paket arrives in time slotk, we toss an N -sided oin distributed aording to p. If the outome of the oin toss isC, 1 � C � N , then the paket joins the queue �C(k). Let T be the lass of algorithmsdesribable by suh a oin toss model.We are now ready to identify the systems (d; 0) as algorithms in the above lass. Theextreme ase (1; 0) is identi�ed with the loading probability vetor ( 1N ; :::; 1N ). The otherextreme ase (N; 0) (join the shortest queue) orresponds to the loading probability vetor(1; :::; 0). Observe that ties are broken in a deterministi fashion in the (N; 0) system.The set of algorithms orresponding to the (d; 0), 1 < d < N , also belong to lass T withorresponding loading probability vetorspdi = �N�i+1d �� �N�id ��Nd� : (1)2 Entropy RateThe development in this setion losely parallels the arguments in [8℄. We borrow thearguments used in [8℄ for the single queue system and apply them to the N -queue systemwith the small hanges that the inrease in queues warrants. Let : : : ; a�2; a�1; a0; a1; a2; : : :be the doubly-in�nite ordered sequene of time slots in whih arrivals our. We adoptthe onvention, a0 < 0 � a1. Let si be the servie time obtained by the paket whih



arrived in the slot ai. Let Ai = ai+1 � ai be the sequene of inter-arrival times. Let Cidenote the outome of the toss of the N-sided oin when the ith paket arrives. We alsoassume that the arrivals, servies and the oin tosses are independent of eah other.De�nition 1 The bank of N parallel �/GI/FCFS queues is said to satisfy the Q-onditionif the number of pakets in eah of the queues in equilibrium has a �nite �rst moment;i.e. E(qi(0�)) <1; for all i = 1; :::; N .Conditions: First of all, we observe that even for a single queue system it is neessaryfor the servie distribution to have �nite seond moment, i.e E(s21) < 1. Further, itis suÆient for the arrival proess to be strongly mixing [8℄. Now, we wish to �ndsuÆient onditions whih guarantee that the Q-ondition holds for our system of Nservers. Consider a partiular algorithm: join a queue hosen uniformly at random. Forthis ase it is easy to see that if the arrival proess to the entire bank of queues is stronglymixing, then the property is preserved for eah of the arrival proesses to the N queues.In fat, if the overall arrival proess is geometri, so are the individual arrival proesses.Let T be any algorithm in T and let p be its assoiated oin toss vetor. We have, byde�nition of T , p1 � � � � ; pN . Let ~q(j) be the total number of pakets present in the leastloaded j queues. Let q̂(N � j) be the total queue size in the most loaded N � j queues.Observe that, for every j, we have, Pji=1 pi � Pji=1 1N . This implies that, in algorithmT it is more likely for any paket to go into ~q(j), than in algorithm (1; 0). From, this itnot diÆult to see that T is better load balaned than (1; 0). Spei�ally, it is easy tosee that the total amount of servie rendered by all the queues in T upto to any timet, will stohastially dominate the same in the (1; 0) algorithm. Given this fat, it isnot diÆult to onlude that if the (1; 0) system satis�es the Q-ondition, so does allother algorithms in T . Therefore, it is suÆient that: (a) arrivals are strongly mixing orrenewal, and (b) servie times have �nite seond moment.Lemma 1 Let fQk; k 2 ZZg be the equilibrium queue-size proess of the parallel bank ofN �/GI/1-FCFS queue satisfying the Q-ondition. Then, H(Qk) < 1 or equivalentlyH(qi(k)) <1 for all i = 1; :::; N .Proof The random variables qi(k�) and qi(k+) are non-negative, integer-valued andhave �nite means. Therefore, their entropies are lesser than geometri random variableswith means equal to E(qi(k�)) and E(qi(k+)), respetively. It follows that H(qi(k�)) +H(qi(k+)) <1.Residual servies: Let vi(k+) denote the ordered vetor of pakets in queue qi(k+)along with the amount of servie eah has yet to reeive.De�nition 2 The bank of N parallel �/GI/FCFS queues is said to satisfy the V-onditionif the entropy of the residual servies are �nite; i.e. H(vi(k+)) <1 for all i = 1; :::; N .It is demonstrated in [8℄ that if the Q-ondition is satis�ed then the V-ondition will besatis�ed if the servies have bounded support.The ondition on servies having bounded support is not neessary. For example,if the servies are i.i.d geometri, the residual servies, by the memory-less property,will also be geometri. In this ase, it is easy to see that as long as the Q-ondition issatis�ed, H(V (k+)) � H(s)E(PNi=1 qi(k+)) +PNi=1H(qi(k+)) <1. Here, H(s), denotesthe entropy of the servie distribution.



Theorem 1 Suppose the arrival proess to the N-queue system is stationary, ergodi andrenewal. Furthermore, let the servie distribution be independent of the arrival proessand i.i.d. Let both the Q-onditions and the V-onditions be satis�ed. Then the entropyrate of the queue-size proess of any algorithm whih belongs to T is equal to �(HER(A)+H(S) +H(C)).Proof For K > 0 onsider the queue-size proess restrited to [0; K℄: fQ0; : : : ; QKg.Let N(K) = maxfn : an � Kg be the number of arrivals in [0; K℄. Given the vetorof residual servies in eah queue at time zero, all the arrival instanes in [0; K℄, theoutomes of the oin tosses and the servies times of the pakets, one an run the queuein forwards time to get the queue-size at all times [0; K℄. One ould also obtain thevetor of residual servies in eah queue at time K+.Now given the queue-size at all times [0; K℄ and the vetor of residual servies in eahqueue at time K+, one an �nd the arrival instanes in [0; K℄ by looking for an upwardjump in any of the queues. One an also determine the outome of the oin tosses duringthis interval by looking at the partiular queue in whih an upward jump ours. Fromthe downward jumps of the queue, one an ompute the departure instanes and so usingthese arrivals and departures one an ompute the servies of the pakets whih departed(residual servies for all the pakets that were already present in the queue at time zero)during this period in all of the FCFS queues. With the help of the residual servies ineah queue at time K+, we ould also ompute the servies of the pakets in the systemat time K. Thus, we have the following bijetion:(Q0; : : : ; QK ;VK+)$ (Q0; V0+; a1; AN(K)�1; SN(K); pN(K)): (2)By Lemma 1 it follows that H(Q0) <1. This and the ergodiity of the proess fQk; k 2ZZg imply that it has a �nite entropy rate. We have also seen that both H(V0+) andH(VK+) are �nite.Now taking entropies1 at (2), dividing both sides by K and letting K go to in�nitywe getHER(Q) 4= limK!1 H(fQk; 0 � k � Kg)K = limK!1 H(AN(K)�1; SN(K); CN(K))K :a= �(HER(A) +H(S) +H(C)):The paper by Prabhakar and Gallager [8℄, gives a detailed argument establishing (a).3 Loading probability vetor: Majorization, LoadBalaning and Entropy RateThis setion deals with the relationship of the loading probability vetors to load bal-aning and entropy rate. All the loading probability vetors we onsider satis�es p1 �� � � � pN . Let T1, T2 be two algorithms whih belong to T and let pT1 and pT2 be theirloading probability vetors. We ask the question: Is it possibble to look at pT1 , pT2 anddetermine whih system balanes the load better?1This is preisely where the disrete time setting is required, sine in ontinuous time, entropies arenot always preserved by bijetions.



A vetor pT1 is said to majorize pT2 , (pT1 � pT2), with the elements of the vetorsarranged in dereasing order, ifkXi=1 pT1i � kXi=1 pT2i ; for k = 1; : : : ; N:Here, sine both pT1 and pT2 are probability vetors, we have equality holding for k = N .So, for suh systems, it is quite lear that the algorithm T2, whih is represented bypT2 , is a better load balaner than the algorithm T1 represented by pT1 . Let the loadingprobability vetor for the (k; 0) system be denoted by pk.Lemma 2 pd � pd+1.Proof From the de�nition of pd in equation (1), we havekXi=1 pdi = kXi=1 �N�i+1d �� �N�id ��Nd� = �Nd�� �N�id ��Nd� :Therefore, it is suÆient to show that,�Nd�� �N�id ��Nd� � � Nd+1�� �N�id+1�� Nd+1� for i = 1; : : : ; N:This redues to showing(N � i)!(N � d� 1)!N !(N � i� d� 1)! � (N � i)!(N � d)!N !(N � i� d)! , N � i� d � N � d:Sine this is true for all i � 1 and hene the proof is omplete.Let two systems, T1 and T2 be suh that pT1 � pT2 . From Theorem 1, it is possible toompute the entropy rates of the two systems, T1 and T2. It is interesting that wheneverpT1 � pT2 , then we have from the following lemma that the entropy rate of queue-sizeproess of T1 is greater than that of T2.Lemma 3 If pT1 � pT2, then H(pT1) � H(pT2).Proof: We know from Theorem 4.3.33, page 197 of [3℄, that if pT1 � pT2, then thereexists a doubly stohasti matrix, �, suh that pT1 = �pT2 . Given this and the onavityof the entropy, the result readily follows from Jensen's inequality.3.1 Systems with memoryConsider the (d,1) system. Let us look at the bijetion in equation (2). Given all thearrivals, oin toss outomes, servies and the initial onditions at time zero, we anompute the queue-size proess until time K by running the queues in forwards time.But given the queue-size vetor, we annot ompute the outome of the oin tosses atpreisely those instanes when the memory bin was loaded. Thus, it is quite easy to seethat the entropy rate of the queue-size proess for the (d; 1) system is lesser than that ofthe (d; 0) system.
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Figure 1: Loading probability vetors for di�erent systemsIt is diÆult, if not impossible, to alulate the loading probability vetor for the(d; 1) system analytially. Therefore, we use simulations to emperially determine theloading probability vetor for systems with memory. Theoretially, even if we alulatethe loading probability vetors, one would still not be able to alulate the entropy rateof the (d; 1) system by the Theorem 1. This is due to the fat that the loads of the binshosen at any time k are dependent on the load of the bin in memory at time k, and thelatter is not independent from time to time. Therefore the entropy rate of systems withmemory is diÆult to ompute using the method of bijetions. However, we note thatit is possible to obtain upper bounds on the entropy rate of systems with memory byonsidering systems in whih have the memory e�ets last only over a bounded durationof time. We do not pursue this further here, but instead use simulations to study the(d; 1) systems.Simulation setup: We onsider a bank of 100 parallel �/M/1-FCFS queues.The arrivalrate to the system is 0.99*100 pakets per seond, and eah of the hundred queues is servedby a unit rate exponential server. Every arriving paket is loaded to the least loaded ofthe d randomly sampled queues and the queue in memory. Ties in queue sizes are brokenuniformly at random. The simulations are run for 10 million paket arrivals. This numberof iterations was observed to be suÆient for the emperial loading probability vetorsof the (d; 0) systems (for d = 4; 5) to onverge to their theoretial values determinedat equation (1). Further, it is noted in [1℄ that the mixing time of Markov hains withvariations of the stati (d; 0) systems is of the order of N3 (equal to 1003 here).Using this setup for simulation, we obtain the loading probability vetors for the (2,1)system and the (3,1) system. The simulations were done in MATLAB and the randomnumber generator used is that of MATLAB version 6.0.Figure 1 plots the loading probability vetors of the (2,1) and the (3,1) systems alongwith those of the (4,0) and the (5,0) systems. From the �gure we observe that the loadingprobability vetors of the (d; 1) systems are not neessarily monotonially dereasing.
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Hene, they do not belong to the lass of algorithms T in general. Note that if welook at the least loaded 20 bins, the systems with memory load these bins with greaterprobability than the (4,0) and the (5,0) systems. This is better illustrated in Figure 2,whih plots the umulative loading vetors of the various systems. The umulative loadingvetor is the umulative distribution obtained from the loading probability distribution.From Figure 2, one an expet that the (2,1) and the (3,1) systems load lesser loadedqueues more frequently than the (4,0) and (5,0) systems. Thus, it is possible that the(d; 1) system with memory might perform muh better than the (2d� 1; 0) lower boundproved in [9℄. To get an upper bound on the performane of the (3,1) system, we simulatedvarious (k; 0) systems and found that the (9,0) system is the smallest value for k thatmajorizes the (3,1) system as shown in Figure 3.4 ConlusionsThe paper onsidered di�erent load balaning algorithms and the queue-size proessesgenerated by these algorithms. The entropy rate of the queue-size proesses was om-puted using the method of bijetions introdued in [8℄ for a lass of suh algortihms,whih inludes the (d,0) systems. We de�ned the notion of a loading probability vetorassoiated with every algorithm in this lass, and found that if the loading probabilityvetors of two algorithms T1 and T2 are suh that pT1 majorizes pT2 , then T1 has a worseload balaning performane than T2. Moreover, the entropy rate of the queue-size proessunder T1 is shown to be higher than that under T2.The reent work of V�oking [10℄ obtains a rather puzzling result. He onsiders loadingN balls into N bins in the following fashion: Divide the N bins into d groups and takeone sample at random from eah group. Load the ball into the least loaded bin, breakingties in of two ways (i) always to the left, and (ii) uniformly at random. The surprisingonlusion is that breaking ties to the left leads to better load balaning. Mitzenmaherand V�oking [7℄ generalize this result to the ontinuous supermarket version. It is possibleto easily show that the entropy rate of the queue-size proess orresponding to the breakties to the left system is smaller than that of the break ties at random system, the extraentropy being injeted by the oins tossed to break ties. Based on the initial work ofthis paper for relating the smallness of entropy rate to the goodness of load balaning,we hope it is possible to better understand the phenomenon disovered by V�oking [10℄on how \asymmetry helps load balaning".Referenes[1℄ Y. Azar, A. Broder, A. Karlin, and E. Upfal, \Balaned alloations", Pro. of the26th ACM Symp. on Theory of Computing (STOC), pp. 593-602, 1994.[2℄ T. M. Cover and J. A. Thomas, Elements of Information Theory, New York: Wiley,1991.[3℄ R. A. John and C. R. Johnson, Matrix Analysis, (1st paperbak edition), Cambridge:Cambridge University Press, 1991.[4℄ N. Jonson, and S. Kotz, Urn Models and their Appliations, John Wiley and Sons,1977.
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