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Abstract
A k-matching is a set of k elements of a matrix, no two of which belong to

the same row or column. The minimum weight k-matching of an m × n matrix C
is the k-matching whose entries have the smallest sum. Coppersmith and Sorkin
conjectured that if C is generated by choosing each entry independently from the
exponential distribution of rate 1, then the expected value of the weight of the
minimum weight k-matching is given by an explicit formula, whose proof is largely
unknown. In this paper we describe our efforts to prove the Coppersmith-Sorkin
conjecture by identifying the terms in the explicit formula to be the mean values of
certain random variables which are functions of the matrix elements. We further
conjecture that the distributions of these random variables are pure exponentials.
We have partial theoretical backing and some simulation evidence for these conjec-
tures. In the process we also prove a general combinatorial lemma about matchings
in matrices.

1 Introduction

Suppose there are n jobs and n machines and the cost of executing a job i on machine
j is a random variable cij, drawn from the same distribution for all i, j. The random
assignment problem consists of determining a one-to-one assignment of the jobs to the
machines so as to minimize the total cost of performing all the jobs. Mathematically,
given a cost matrix C = [cij], the problem is to determine the assignment π which solves

An = min
π

n∑
i=1

ci,π(i).

The random assignment problem with costs distributed as i.i.d. exp(1) is of particular
interest due to the following beautiful conjecture of Parisi [7]:

E(An) =
n∑

i=1

1

i2
.

Coppersmith and Sorkin [4] have proposed a larger class of conjectures which state that
the expected cost of the minimum k-assignment in an m × n matrix of i.i.d. exp(1) is:

F (m,n, k) =
∑
i,j≥0

i+j<k

1

(m − i)(n − j)
;



Observe F (n, n, n) = E(An) and these conjectures subsume Parisi’s conjecture.
Other attempts at resolving these conjectures have been in the direction of enlarging

the set of conjectures to extended settings where either the rates are other than 1 [3]; or
where the matchings are considered over a broader class of cost matrices [6]. There has
also been another recent attempt at solving Parisi’s conjecture, [5], and our paper has
roughly the same flavor.

Our attack goes back to just considering the original setting of i.i.d exp 1 entries but
trying to understand the Coppersmith-Sorkin conjecture in a different light. We try to
prove the Coppersmith-Sorkin conjecture using an induction on the matching size k. In
Section 2, a sequence of matchings indexed by their weight and size are defined. Certain
differences of this sequence are conjectured to be exponentially distributed and their
means are precisely the terms that appear in the Coppersmith-Sorkin conjecture. Thus
summing up the expected values of the differences provides a proof for the Coppersmith-
Sorkin conjecture. By proving a general result about matchings in matrices, we establish
that the random variables conjectured to be exponentially distributed are all positive.
Section 3 deals with these conjectures we make about the distributions of the differences,
their positivity and the distributions of some of them. Section 4 concludes by stating
what is known from simulations and other methods.

2 Matchings in Matrices

Consider a m × n matrix, C, with 1 ≤ m ≤ n. A k-matching is defined as a set of k
elements such that no two lie in the same row or column. C is assumed to have i.i.d.
exp(1) entries. For the construction below, since the eventual interest is in the expected
values of minimum weights, we will assume that any two k-matchings have different
weight. The case where some two have the same weight is a probability zero event and
can be ignored.

Consider 1 ≤ k < m. T 1
k is defined as the weight of the k-matching in C that has

the minimum weight. This matching has elements belonging to k distinct rows. Now,
consider all k-matchings that contain elements from exactly k − 1 of these k rows. Let
T 2

k be the weight of the matching that has the smallest weight among these matchings.
There are precisely k − 1 common rows among the first two matchings. Again consider
all k-matchings that contain elements from exactly k − 2 of these k − 1 common rows.
Define T 3

k to be the weight of the matching that has the smallest weight among these
matchings. Suppose we have defined T 1

k , T 2
k , . . ., T i

k for 2 ≤ i ≤ k with the property
that these matchings have k − i + 1 rows in common among them. Then consider all
k-matchings that contain elements from exactly k − i of these k − i + 1 common rows.
Define T i+1

k to be the weight of the matching that has the smallest weight among these
matchings. Thus we inductively define the random variables T 1

k , T 2
k , . . ., T k+1

k . With an
abuse of notation, T i

k may also be used to refer to the k-matching that has the weight T i
k.

Define T 1
m to be weight of the the smallest matching of size m. Consider the sequence

T 1
1 , T 2

1 , T 1
2 , T 2

2 , T 3
2 , T 1

3 , . . . , T m
m−1, T

1
m. Observe that this sequence starts with weights of

two matchings of size one, then has the three matchings of size two and so on till we
reach the smallest matching of size m. Also, observe that within the matchings of the
same size the sequence has the lower numbered matching appearing before the higher
numbered one. For example, T 2

4 and T 3
4 are two matchings of size four and T 2

4 appears
before T 3

4 . We conjecture that the difference between two consecutive random variables
in the sequence are exponentially distributed but with different rates, establish some of



the claims and prove that these differences are in fact positive in the next section.

3 Conjectures

Conjecture 1

T 1
1

d
= exp mn

T 2
1 − T 1

1
d
= exp (m − 1)n

T 1
2 − T 2

1
d
= exp m(n − 1)

T 2
2 − T 1

2
d
= exp (m − 2)n

T 3
2 − T 2

2
d
= exp (m − 1)(n − 1)

T 1
3 − T 3

2
d
= exp m(n − 2)

· ·
· ·

T i+1
k − T i

k
d
= exp (m − k + i − 1)(n − i + 1) 1 ≤ i ≤ k < m

· ·
T 1

k+1 − T k+1
k

d
= exp m(n − k) 1 ≤ k < m

· ·
· ·

Tm
m−1 − Tm−1

m−1
d
= exp (m − 1)(n − m + 2)

T 1
m − Tm

m−1
d
= exp m(n − m + 1)

By exp j, we refer to an exponential random variable of rate j or mean 1
j
. Assuming the

conjectures are true, the following corollary is immediate.

Corollary 1 Coppersmith-Sorkin Conjecture

Proof T 1
k is the weight of the minimum weight k-matching of the entire matrix, by

definition.

T 1
k = (T 1

k − T k
k−1) + (T k

k−1 − T k−1
k−1 ) + · · · + (T 1

2 − T 2
1 ) + (T 2

1 − T 1
1 ) + T 1

1 .

Hence, by linearity of expectation and from the above conjectures on the distribution of
these random variables, we obtain

E(T 1
k ) =

1

m(n − k + 1)
+

1

(m − 1)(n − k + 2)
+ · · · + 1

m(n − 1)
+

1

(m − 1)n
+

1

mn

=
∑
i,j≥0

i+j<k

1

(m − i)(n − j)

It is well known that Coppersmith-Sorkin conjecture evaluated at k = m = n gives the
Parisi’s conjecture.

Lemma 1 The following statements hold.

(a) T 1
1

d
= exp mn



(b) T 2
1 − T 1

1
d
= exp (m − 1)n

(c) T 1
2 − T 2

1
d
= exp m(n − 1)

Proof

(a) T 1
1 is the smallest element in the matrix, the minimum of mn i.i.d exp 1 random

variables and hence is distributed as exp mn.

(b) T 2
1 is the smallest element in the matrix outside of the row that contains T 1

1 . If Cij is
any element outside the row that contains T 1

1 , then by the memory-less property of

the exponential distribution Cij −T 1
1

d
= exp 1 and these increments are independent

from one entry of this sub-matrix to another. By definition, T 2
1 −T 1

1 is the minimum
of the increments of all the elements in the (m − 1) × n sub-matrix obtained by
removing the row of T 1

1 . Hence it is the minimum of (m − 1)n independent exp 1
random variables and therefore is distributed as exp (m − 1)n.

(c) The distribution of T 1
2 − T 2

1 can be computed as follows. In the event T 2
1 is in

a different column as T 1
1 , the smallest matching of size two is formed by the two

elements T 1
1 , T 2

1 and hence T 1
2 = T 1

1 + T 2
1 .

In the event T 2
1 is in the same column as T 1

1 , it is not hard to see from the memory-
less property of exponential, that T 1

2 = T 1
1 + T 2

1 + A, where A is distributed as
exp m(n − 1) and is independent of T 1

1 . To see this, we can assume without loss
of generality that, T 1

1 was the (1, 1) element and T 2
1 was the (2, 1) element of the

matrix C.

Consider the elements of the matrix in columns 2 to n. Now any element in the first
row can be expressed as T 1

1 + e1,i, 2 ≤ i ≤ n and any element in the other rows can
be expressed as T 2

1 +ej,i, 2 ≤ j ≤ m and 2 ≤ i ≤ n. From the memory-less property
of the exponential it is easy to see that these e1,i’s and the ej,i’s are exponentials
of rate one and independent.

To form a matching of size two, we must take at least one element from the columns
2 to n. If one picks any element from the first row and columns 2 to n, then it will
go with T 2

1 to form the smallest two matching. However, if one picks any element
from the other rows and columns 2 to n, then it will go with T 1

1 to form the smallest
two matching. Let A = mini≥2 ej,i. Then we see that T 1

2 = T 1
1 + T 2

1 + A and A is
distributed as exp m(n − 1).

Combining these two events, we see that T 1
2 − T 2

1 is an exp mn with probability 1
n

or sum of two independent exponentials of rate mn and m(n− 1) with probability
n−1

n
. The distribution of such a random variable is in fact expm(n − 1).

Theorem 1 T 2
k − T 1

k
d
= exp (m − k)n.

Proof The development of the proof is very similar to the one in Sharma and Prabhakar
[5]. Let T 1

k occupy the first k rows of the matrix, C. Consider the sub-matrix of size
(m−k)×n formed by considering the m−k rows below the first k rows. For any element
c in this sub-matrix, denote by ∆c, the weight of the smallest (k-1)-matching from the
first k rows in the matrix C that does not have an element in the same column as c.
Thus c + ∆c, will be the weight of the smallest k-matching that contains c and precisely



k−1 elements from the first k rows. First, we observe that ∆c < T 1
k since T 1

k has at least
k− 1 elements that are not present in the column of c and ∆c has the option of choosing
them. Observe, that the random variable, T 1

k − ∆c > 0 is just a function of the random
variables in first k rows. Therefore, from the memory-less property of the exponential we
have, c− (T 1

k −∆c) is an exp 1 random variable and these increments are independent as
we vary c. Now T 2

k −T 1
k = minc c + ∆c − T 1

k and hence it is the minimum of (m− k)×n
independent exponential random variables of rate 1. Therefore, T 2

k −T 1
k is distributed as

a rate (m − k)n random variable.

Theorem 2 T i+1
k − T i

k > 0 a.s. ∀ 1 ≤ k ≤ m − 1, 1 ≤ i ≤ k.

Proof T 2
k −T 1

k > 0 because T 1
k is defined as the weight of the smallest matching of size

k. Consider all k-matchings that contain at most k-1 elements from the k rows occupied
by T 1

k . Let the weight of this matching be T̃ 2
k . We claim that T̃ 2

k = T 2
k . This will follow

if we establish that the smallest k-matching that contains at most k-1 elements from the
k rows occupied by T 1

k , has exactly k-1 elements from the k rows.
Suppose not and that the k-matching that gives T̃ 2

k has two or more elements outside
the k rows occupied by T 1

k . Now consider the bipartite graph with m vertices on the left
and n vertices to the right. Lay down a red colored edge between vertex i on the left to
the vertex j on the right, if T 1

k contains the element (i, j). Similarly place a blue colored
edge between vertex i on the left to the vertex j on the right, if T̃ 2

k contains the element
(i, j). If we remove the common edges from the graph, it is easy to see that the edges
form disjoint combinations of one or more of the following structures.

(a) a cycle of alternating colored edges

(b) a path of alternating colored edges of even length

(c) a path of alternating colored edges of odd length that has one more red edge than
a blue edge.

(d) a path of alternating colored edges of odd length that has one more blue edge than
a red edge.

It is also easy to see that since the total number of blue edges and red edges are same
the number of structures of type (c) must equal the number of structures of type (d).
So, one can in fact pair them up so that you have one structure (e) that contains two
structures, one of type (c) and one of type (d).

If any structure of type (a) was present, from the fact that T 1
k is the smallest matching

of size k, the red edges in the cycle have a total weight smaller than the blue edges in the
cycle. Hence, we could have replaced the blue edges with the red edges to get a lower
weight T̃ 2

k . Since by this procedure we are not changing the rows occupied by T̃ 2
k , this

gives the required contradiction.
If any structure of type (b) or type (e) was present, by similar argument we could get

a lower weight matching by replacing the blue edges with the red edges. However, we
would be changing the rows occupied by T̃ 2

k by precisely one row. Therefore, if T̃ 2
k differed

from T 1
k by at least two rows, then we could do this to get a matching that has lower

weight and has at most k-1 rows in common to T 1
k . This will contradict minimality of T̃ 2

k .
Hence, T̃ 2

k can differ from T 1
k from at most one row. Thus the smallest matching that

contains at most k-1 elements from the k rows occupied by T 1
k , has exactly k-1 elements

from the k rows. This shows T̃ 2
k = T 2

k .



Since, T 3
k , T 4

k , . . . , T k+1
k had at most k-1 rows in common with T 1

k , this establishes that
T 2

k is smaller than all of them. The rest of the proof follows along similar lines. Suppose
that T i

k is the smallest k-matching that has at most k-i+1 elements in common to the
k-i+2 common rows of T 1

k , T 2
k , . . . , T i−1

k .
Define T̃ i+1

k as the smallest k-matching that has at most k-i elements in common to
the k-i+1 common rows of T 1

k , T 2
k , . . . , T i

k. By a very similar reasoning as above we can
show that in the bipartite graph matching defined by T̃ i+1

k and T i
k, we cannot have a cycle

of alternating colored edges. Suppose the edges of T i
k were colored red and the edges of

T̃ i+1
k were colored blue and in the cycle if the sum of red edges were smaller that that

of blue edges, then we can replace the blue edges by red within the cycle and can get a
smaller matching than T̃ i+1

k . On the other hand if the sum of blue edges were smaller
that that of red edges, then we could get a smaller T i

k by replacing the red edges with
the blue edges of the cycle.

If T̃ i+1
k has two or more rows different from T i

k and if two or more structures of type
(c) or (e) were present then it would contradict the minimality of T i

k or T̃ i+1
k , depending

on the case if the total weight of blue edges in the structure were lighter or heavier than
the red edges in the structure. One has to be a bit careful here in the argument. T i

k avoids
exactly one of the k − i + 2 common rows of T 1

k , T 2
k , . . . , T i−1

k . Call this the forbidden
row. Since there are two or more structures of type (c) or (e), we can always pick one
that does not contain the forbidden row and get the contradiction.

The only remaining case is when exactly one structure either of type (c) or type (e)
is present. But then observe that the rows of T̃ i+1

k can differ from the rows of T i
k by

exactly one. This shows that T̃ i+1
k is in fact the same as T i+1

k since it contains exactly k-i
elements in common to the k-i+1 common rows of T 1

k , T 2
k , . . . , T i

k. Since T i+2
k , . . . , T k+1

k

had at most k-i elements in common to the k-i+1 common rows of T 1
k , T 2

k , . . . , T i
k, this

establishes that T i+1
k is smaller than T i+2

k , . . . , T k+1
k . This completes the proof of the

Theorem.
Remark: We have assumed throughout the proof that the weight of any two different

set of edges will always be different. Since these weights come from an exponential
distrtibution, the cases where there is a tie has probability zero and hence can be ignored
for computing the distributions. This remark also holds for the lemma below.

Lemma 2 T 1
k+1 > T k+1

k a.s. ∀ 1 ≤ k ≤ m − 1

Proof By definition, there is one common row for the matchings T 1
k , . . . , T k

k . T k+1
k is

defined as the weight of the smallest k-matching that avoids the common row. Since T 1
k+1

is a matching of size k+1, it has at least a matching of size k outside any row and hence
T k+1

k could have chosen a k-matching from the elements of T 1
k+1. This establishes the

claim. (Note that the elements of the matrix are positive and hence any smaller subset
always has smaller weight.)

It may be of independent interest to note that T 1
k+1 in fact contains all the rows

occupied by T 1
k . The proof is omitted here.

We have thus shown using Theorem 2 and Lemma 2 that all the random variables
that we have conjectured to be exponentially distributed are positive a.s.

4 Conclusion

Simulations have been performed for matrices up to size m,n ≤ 5 and they “verify” the
conjectures. A case by case analysis was theoretically performed for the 3 × 3 and the



3×4 matrices and the conjectures were verified. This was however done by an exhaustive
case analysis and does not contribute to the general understanding or the solvability of
the conjecture. Hence, this has been omitted from the paper. I would also like to bring
to the attention of the interested reader that exponentiality of these increments seem
to be a very general trend if we are to believe the simulations. For example, fix any k
and choose the smallest weight matchings in all the

(
m
k

)
ways of picking k distinct rows.

Order them in the increasing order as S1
k , ...., S

(m
k)

k . It appears that S2
k−S1

k , . . . , S
k+1
k −Sk

k

are also exponentially distributed. Note that, these random variables are different from
T 1

k , T 2
k , . . . , T k+1

k , though T 1
k = S1

k and T 2
k = S2

k .
There is also an interesting duality between the rows and columns. We could get a

different (but similar) set of conjectures if we interchange the role of the columns and
rows, and these will also imply the Coppersmith and Sorkin conjectures.
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