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Preface

This thesis concerns the resolution of the Parisi’s and Coppersmith-Sorkin Conjec-

tures in the Random Assignment Problem. The assignment problem is an optimiza-

tion problem of interest in a variety of scenarios. It comes up in assigning jobs to

machines to minimize costs, in assigning packets from input line cards to output line

cards to maximize throughput in internet routers, in assigning flights and crews to

routes to maximize airline revenue; to name a few.

Of interest are both the optimal assignment and the optimal value. In a determin-

istic setting, a famous algorithm called the Hungarian method provides an efficient

way of computing the optimal assignment. In a random environment, i.e. where the

costs are modeled as random variables, one is often interested in the properties of the

minimum cost assignment.

Based on some numerical evidence Parisi conjectured an expression for the ex-

pected value of the minimum cost under the case when the cost variables were in-

dependent and exponentially distributed. This conjecture was later extended by

Coppersmith and Sorkin to a more general setting.

This thesis makes the following main contribution: It resolves both the Parisi

and Coppersmith-Sorkin conjectures regarding the expected cost of the minimum

assignment. Further, it completes an argument put forth by Dotsenko that aimed
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to solve Parisi’s conjecture. This thesis also contains some results and conjectures

towards the entire distribution of the minimum cost.
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CHAPTER 1

Introduction

This thesis concerns the resolution of the Parisi’s and Coppersmith-Sorkin’s conjec-

tures that are related to the expected cost of a minimum assignment in the random

assignment problem. The assignment problem is a fundamental and well-studied

problem in the area of combinatorial optimization. Assignment problems arise in a

variety of scenarios of practical interest. For example, they arise in allocating jobs to

machines to minimize cost; scheduling of packets within crossbar switches in the In-

ternet to maximize throughput; in assigning flights and crews to routes in the airline

industry to maximize profits, etc.

In its most general form, the problem can be stated as follows: There are a number

of machines and a number of jobs. Any machine can be assigned to perform any job,

incurring a cost that may vary depending on both the machine and the job. One is

required to perform all the jobs by assigning exactly one machine to each job in such

a way that the total cost of the assignment is minimized.

When the total cost of the assignment for all jobs is equal to the sum of the

costs for each machine the problem is called the linear assignment problem. Usually

when one speaks of the assignment problem without any additional qualifications one

1



2 CHAPTER 1. INTRODUCTION

implies the linear assignment problem. Other kinds are the quadratic assignment

problem, bottleneck assignment problem, etc.

The assignment problem is a special case of another optimization problem known

as the transportation problem. The transportation problem is a special case of the

maximal flow problem, which in turn is a special case of a linear program. While

it is possible to solve any of these problems using the simplex algorithm, a general

method for solving any linear program, each problem has more efficient algorithms

designed to take advantage of its special structure.

There are algorithms that solve the linear assignment problem within a time

bounded by a polynomial expression in the number of machines. The celebrated

Hungarian method by Kuhn [K 55] is the earliest known algorithm that showed that

the computation of the minimum cost assignment has a polynomial complexity.

This thesis deals with a random version of the assignment problem; i.e., when the

costs associated with assigning tasks to machines are modeled by random variables.

Here the quantity of interest is the random variable corresponding to the minimum

cost among all possible assignments. This thesis resolves the conjectures made by

Parisi [Pa 98] and Coppersmith-Sorkin [CS 99] concerning the expected value of the

minimum cost.

1.1 Formal description of the problem

Suppose there are n jobs and n machines and it costs cij to execute job i on machine

j. An assignment (or a matching) is a one-to-one mapping of jobs onto machines.

Representing an assignment as a permutation π : {1, . . . , n} → {1, . . . , n}, the cost of

the assignment π equals
∑n

i=1 ciπ(i). The assignment problem consists of finding the

assignment with the lowest cost. Let

Cn = min
π

n
∑

i=1

ciπ(i)

represent the cost of the minimizing assignment. In the random assignment problem

the cij are i.i.d. random variables drawn from some distribution. A quantity of interest
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in the random assignment problem is the expected minimum cost, IE(Cn).

When the costs cij are i.i.d. mean 1 exponentials, Parisi [Pa 98] made the following

conjecture:

IE(Cn) =
n
∑

i=1

1

i2
. (1.1.1)

A k-assignment in an m×n matrix is defined as a set of k elements no two of which

belong to the same row or column. Coppersmith and Sorkin [CS 99] proposed a larger

class of conjectures which state that the expected cost of the minimum k-assignment

in an m × n matrix of i.i.d. exp(1) entries is:

C(k, m, n) =
∑

i,j≥0,i+j<k

1

(m − i)(n − j)
. (1.1.2)

By definition, C(n, n, n) = IE(Cn) and the right hand sides of (1.1.2) and (1.1.1) are

equal when k = m = n. The proof of this equality can be found in the original paper

of Coppersmith and Sorkin [CS 99].

In this thesis, we prove Parisi’s conjecture by two different but related strategies.

The first builds on the work of Sharma and Prabhakar [SP 02] and establishes Parisi’s

conjecture by showing that certain increments of weights of matchings are exponen-

tially distributed with a given rate and are independent. The second method builds on

the work of Nair [Na 02] and establishes the Parisi and the Coppersmith-Sorkin con-

jectures. It does this by showing that certain other increments are exponentials with

given rates; the increments are not required to be (and, in fact, aren’t) independent.

The two methods mentioned above use a common set of combinatorial and prob-

abilistic arguments. For ease of exposition, we choose to present the proof of the

conjectures in [SP 02] first. We then show how those arguments also resolve the

conjectures in [Na 02].

Before surveying the literature on this problem, it is important to mention that

simultaneously and independently of this proof (originally published in [NPS 03]),

Linusson and Wästlund [LW 04] have also announced a proof of the Parisi and

Coppersmith-Sorkin conjectures based on a quite different approach.
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1.2 Background and related work

There has been a lot of work on determining bounds for the expected minimum cost

and on calculating its asymptotic value. Historically much of this work has been done

for the case when the entries were uniformly distributed between 0 and 1. However

[Al 92] shows that the asymptotic results carry over for exponential random variables

as well.

Assuming that limn IE(Cn) exists, let us denote it by C∗. We survey some of

the work; more details can be found in [St 97, CS 99]. Early work used feasible

solutions to the dual linear programming (LP) formulation of the assignment problem

for obtaining the following lower bounds for C∗: (1 + 1/e) by Lazarus [La 93], 1.441

by Goemans and Kodialam [GK 93], and 1.51 by Olin [Ol 92]. The first upper bound

of 3 was given by Walkup [Wa 79], who thus demonstrated that lim supn E(Cn) is

finite. Walkup’s argument was later made constructive by Karp et al [KKV 94].

Karp [Ka 87] made a subtle use of LP duality to obtain a better upper bound of 2.

Coppersmith and Sorkin [CS 99] further improved the bound to 1.94.

Meanwhile, it had been observed through simulations that for large n, E(Cn) ≈
1.642 [BKMP 86]. Mézard and Parisi [MP 87] used the non-rigorous replica method

[MPV 87] of statistical physics to argue that C∗ = π2

6
. (Thus, Parisi’s conjecture for

the finite random assignment problem with i.i.d. exp(1) costs is an elegant restriction

to the first n terms of the expansion: π2

6
=
∑∞

i=1
1
i2

.) More interestingly, their method

allowed them to determine the density of the edge-cost distribution of the limiting

optimal matching. These sharp (but non-rigorous) asymptotic results, and others of

a similar flavor that they obtained in several combinatorial optimization problems,

sparked interest in the replica method and in the random assignment problem.

Aldous [Al 92] proved that C∗ exists by identifying the limit as the average value

of a minimum-cost matching on a certain random weighted infinite tree. In the

same work he also established that the distribution of cij affects C∗ only through

the value of its density function at 0 (provided it exists and is strictly positive).

Thus, as far as the value of C∗ is concerned, the distributions U [0, 1] and exp(1) are

equivalent. More recently, Aldous [Al 01] established that C∗ = π2/6, and obtained
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the same limiting optimal edge-cost distribution as [MP 87]. He also obtained a

number of other interesting results such as the asymptotic essential uniqueness (AEU)

property—which roughly states that almost-optimal matchings have almost all their

edges equal to those of the optimal matching.

Generalizations of Parisi’s conjecture have also been made in several ways. Li-

nusson and Wästlund [LW 00] conjectured an expression for the expected cost of

the minimum k-assignment in an m × n matrix consisting of zeroes at some spec-

ified positions and exp(1) entries at all other places. Indeed, it is by proving this

conjecture in their recent work [LW 04] that they obtain proofs of the Parisi and

Coppersmith-Sorkin conjectures. Buck, Chan and Robbins [BCR 02] generalized the

Coppersmith-Sorkin conjecture to the case where the cij are distributed according

to exp(aibj) for ai, bj > 0. In other words, if we let a = [ai] and b = [bj] be col-

umn vectors, then the rate matrix for the costs is of rank 1 and is of the form abT.

This conjecture has been subsequently established in [W04] by Wästlund using a

modification of the argument in [LW 04].

Alm and Sorkin [AS 02], and Linusson and Wästlund [LW 00] verified the conjec-

tures of Parisi and Coppersmith-Sorkin for small values of k, m and n. Coppersmith

and Sorkin [CS 02] studied the expected incremental cost, under certain hypotheses,

of going from the smallest (m− 1)-assignment in an (m− 1)×n matrix to the small-

est m-assignment in a row-augmented m × n matrix. However, as they note, their

hypotheses are too restrictive and their approach fails to prove their conjecture. In

[Do 00] Dotsenko made an incomplete claim regarding the proof of Parisi’s conjec-

ture. In this thesis we complete this proof thus showing that his claims were right

even though his arguments were incomplete.

An outline of the thesis is as follows: in Section 1.4 we recall some previous

work from [SP 02] and state Theorem 1.4.4, whose proof implies a proof of Parisi’s

conjecture. In Section 1.5 we describe an induction procedure for proving Theorem

1.4.4. We then state and prove some combinatorial properties of matchings in Chapter

2 that will be useful for the rest of the paper. Chapter 3 contains a proof of Theorem

1.4.4. Section 3.2 builds on the work of [Na 02] and contains a proof of Theorem

3.2.3. This implies a proof of the Coppersmith-Sorkin conjecture. In Chapter 4 we
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present some work towards determining the distribution of the smallest matching and

some connections to the non-rigorous assumptions that are present in the methods of

the physicists. We now present some conventions that are observed in the rest of the

thesis.

1.3 Conventions

(1) The words ‘cost’ and ’weight’ are used interchangeably and mean the same

thing; the cost (or weight) of a collection of entries is the sum of the values of

the entries.

(2) The symbol ‘∼’ stands for ‘is distributed as’, and ‘ ⊥⊥ ’ stands for ‘is indepen-

dent of’.

(3) By X ∼ exp(λ) we mean that X is exponentially distributed with mean 1
λ
; i.e.,

IP(X > x) = e−λx for x, λ ≥ 0.

(4) We use the term ‘rectangular matrices’ to refer to m× n matrices with m < n.

(5) We employ the following notation:

– Boldface capital letters such as A,C,M represent matrices.

– Calligraphic characters such as R,S, T ,V denote matchings.

– The plain non-boldface version of a matching’s name, e.g R, S, T, V repre-

sent the weight of that matching.

(6) Col(S) to represent the set of columns used by the matching S.

(7) Throughout this thesis, we shall assume that the costs are drawn from some

continuous distribution. Hence, with probability 1, no two matchings will have

the same weight. This makes the ‘smallest matching’ in a collection unique;

tie-breaking rules will not be needed.

Remark 1.3.1. Note that all of our claims in Section 2.1 will go through even

if we do not assume uniqueness. However, when there is a tie, the claims
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must be re-worded as ‘there exists a matching with the smallest weight satisfy-

ing’, instead of ‘the smallest matching satisfies’. The general statements when

uniqueness is not assumed are stated in section 2.1.13.

1.4 Preliminaries

Let C = [cij] be an m×n (m < n) cost matrix with i.i.d. exp(1) entries. Let T0 denote

the smallest matching of size m in this matrix. Without loss of generality, assume

that Col(T0) = {1, 2, . . . , m}. For i = 1, . . . , n, let Si denote the smallest matching of

size m in the m× (n− 1) submatrix of C obtained by removing its ith column. Note

that Si = T0 for i ≥ m + 1. Therefore, the Si’s are at most m + 1 distinct matchings.

Definition 1.4.1 (S-matchings). The collection of matchings {S1, . . . ,Sm,Sm+1(=

T0)} is called the S-matchings of C and is denoted by S(C).

Definition 1.4.2 (T-matchings). Let {T1, . . . , Tm} be a permutation of {S1, . . . ,Sm}
such that T1 < T2 < · · · < Tm; that is, the Ti’s are a rearrangement of the Si’s in

order of increasing weight. The collection of matchings {T0, T1, . . . , Tm} is called the

T-matchings of C and is denoted by T (C).

Remark 1.4.3. Nothing in the definition of the S-matchings prevents any two of the

Si’s from being identical; however, we will show in Corollary 2.1.2 that they are all

distinct.

These quantities are illustrated below by taking C to be the following 2×3 matrix:

C:
3 6 11

9 2 20

6 11

2 20

⇒ S1 = 13;
3 11

9 20

⇒ S2 = 20;
3 6

9 2

⇒ S3 = 5 = T0.
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In the above example, T0 = 5, T1 = 13 and T2 = 20.

We now state the conjectures of Sharma and Probhakar in [SP 02] that will es-

tablish Parisi’s Conjecture. Since we prove the conjectures in this thesis we state it

as a theorem rather than as a conjecture.

Theorem 1.4.4. Consider an m × n (m < n) matrix, A, with i.i.d. exp(1) entries.

Let {T0, T1, . . . , Tm} denote the weights of the T-matchings of A. Then the following

hold:

• Tj − Tj−1 ∼ exp(m − j + 1)(n − m + j − 1), for j = 1, . . . , m.

• T1 − T0 ⊥⊥ T2 − T1 ⊥⊥ · · · ⊥⊥ Tm − Tm−1.

The proof of this theorem will be presented later. For completeness, we now

reproduce the arguments from [SP 02] which show how Theorem 1.4.4 implies Parisi’s

conjecture.

Corollary 1.4.5. Let C be an n × n cost matrix with i.i.d. exp(1) entries. Let Cn

denote the cost of the minimum assignment. Then

IE(Cn) =

n
∑

i=1

1

i2
.

Proof. The proof is by induction. The induction hypothesis is trivially true when

n = 1 since IE(C1) = 1. Let us assume that we have

IE(Cn−1) =
n−1
∑

i=1

1

i2
.

Delete the top row of C ≡ [cij] to obtain the rectangular matrix A of dimensions

(n − 1) × n. Let {S1, . . . , Sn} and {T0, . . . , Tn−1} be the weights of the matchings in

S(A) and T (A) respectively.



1.4. PRELIMINARIES 9

The relationship Cn = minn
j=1{c1j + Sj} allows us to evaluate IE(Cn) as follows:

IE(Cn) =

∫ ∞

0

P (Cn > x) dx

=

∫ ∞

0

P (c1j > x − Sj, j = 1, . . . , n) dx

=

∫ ∞

0

P (c1σ(j) > x − Tj, j = 0, . . . , n − 1) dx (1.4.1)

where σ(·) is a 1-1 map from {0, 1, . . . , n − 1} to {1, 2, . . . , n} such that c1σ(j) is the

entry in the first row of C that lies outside the columns occupied by the matching Tj

in A. Now, since the first row is independent of the matrix A and σ(·) is a bijection,

the entries c1σ(j) are i.i.d. exp(1) random variables. We therefore have from (1.4.1)

that

IE(Cn) = IEA

(
∫ ∞

0

P (c1σ(j) > x − tj, j = 0, . . . , n − 1) dx
∣

∣

∣
A

)

.

We proceed by evaluating the expression inside the integral. Thus,

∫ ∞

0

P (c1σ(j) > x − tj, j = 0, . . . , n − 1) dx

=

∫ ∞

0

n−1
∏

j=0

P (c1σ(j) > x − tj) dx (independence of c1σ(j))

=

∫ t0

0

dx +

∫ t1

t0

e−(x−t0) dx + . . . +

∫ tn−1

tn−2

e−((n−1)x−t0−···−tn−2) dx

+

∫ ∞

tn−1

e−(nx−t0−···−tn−1) dx

(since the ti’s are increasing)

= t0 +
(

1 − e−(t1−t0)
)

+
1

2

(

e−(t1−t0) − e−(2t2−t0−t1)
)

+ . . .

+
1

n − 1

(

e−((n−2)tn−2−t0−···−tn−3) − e−((n−1)tn−1−t0−···−tn−2)
)

+
1

n
e−((n−1)tn−1−t0−···−tn−2)
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= t0 + 1 − 1

2
e−(t1−t0) − 1

6
e−(2t2−t0−t1) − · · ·

− 1

n(n − 1)
e−((n−1)tn−1−t0−···−tn−2).

Therefore,

IE(Cn) = IE(T0) + 1 −
n−1
∑

i=1

1

i(i + 1)
IE
(

e−(iTi−T0−···−Ti−1)
)

= IE(T0) + 1 −
n−1
∑

i=1

1

i(i + 1)
IE



e

i
P

j=1

−j(Tj−Tj−1)



 . (1.4.2)

However, from Theorem 1.4.4 (setting m = n − 1), we obtain

IE



e

i
P

j=1

−j(Tj−Tj−1)



 =

i
∏

j=1

IE
(

e−j(Tj−Tj−1)
)

=

i
∏

j=1

n − j

n − j + 1
=

n − i

n
.

Substituting this in (1.4.2) gives

IE(Cn) = IE(T0) +
1

n2
+

1

n

n−1
∑

i=1

1

i
. (1.4.3)

We are left with having to evaluate IE(T0). First, for j = 1, . . . , n − 1,

IE(Tj) = IE(T0) +

j
∑

k=1

IE(Tk − Tk−1) = IE(T0) +

j
∑

k=1

1

k(n − k)
(by Theorem 1.4.4).

(1.4.4)

Now, the random variable S1 is the cost of the smallest matching of an (n−1)×(n−1)

matrix of i.i.d. exp(1) random variables obtained by removing the first column of A.

Hence S1 is distributed as Cn−1. However, by symmetry, S1 is equally likely to be
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any of {T0, . . . , Tn−1}. Hence we get that

IE(S1) =
1

n

n−1
∑

j=0

IE(Tj) =
1

n
IE(T0) +

1

n

n−1
∑

j=1

(

IE(T0) +

j
∑

k=1

1

k(n − k)

)

= IE(T0) +
1

n

n−1
∑

k=1

1

k
. (1.4.5)

By the induction assumption, IE(Cn−1) =
n−1
∑

k=1

1
k2 = IE(S1). Substituting this into

(1.4.5) we obtain

IE(T0) =

n−1
∑

k=1

(

1

k2
− 1

nk

)

. (1.4.6)

Using this at (1.4.3) we get

IE(Cn) =

n−1
∑

i=1

(

1

i2
− 1

ni

)

+
1

n2
+

1

n

n−1
∑

i=1

1

i
=

n
∑

i=1

1

i2
. (1.4.7)

1.5 A Sketch of the proof of Theorem 1.4.4

The proof uses induction and follows the steps below.

1. First, we prove that for any rectangular m×n matrix, A, T1−T0 ∼ exp m(n−m).

2. The distribution of the higher increments is determined by an inductive proce-

dure. We remove a suitably chosen row of A to obtain an m− 1×n matrix, B,

which has the following property: let {T0, . . . , Tm} and {U0, . . . , Um−1} be the

weights of the T-matchings in T (A) and T (B) respectively. Then

Uj − Uj−1 = Tj+1 − Tj for j = 1, 2, . . . , m − 1.

Establishing this combinatorial property is one major thrust of the thesis.
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3. We will then show that B possesses a useful probabilistic property: Its entries

are i.i.d. exp(1) random variables, independent of T1 − T0. This property, in

conjunction with the results in 1 and 2 above, allows us to conclude (i) T2 −
T1 = U1 − U0 ∼ exp(m − 1)(n − m + 1) and (ii) Tj+1 − Tj ⊥⊥ T1 − T0 for

j = 1, 2, . . . , m − 1; in particular, T2 − T1 ⊥⊥ T1 − T0.

We use the matrix B as the starting point in the next step of the induction and

proceed.

Remark 1.5.1. We have seen above that T1 − T0 is independent of B and hence of all

higher increments Tj+1 − Tj, j = 1, 2, . . . , m− 1. This argument, when applied in the

subsequent stages of the induction, establishes the independence of all the increments

of A.

The diagram below encapsulates our method of proof. We shall show that the first

increments T1−T0, U1−U0, . . . , V1−V0, . . . , and W1−W0 are mutually independent,

that they are exponentially distributed with appropriate rates, and that they are each

equal to a particular original increment Tj+1 − Tj.

Matrix T-matchings

A : T1 − T0 T2 − T1 . . . Tj+1 − Tj . . . Tm − Tm−1

‖ ‖ ‖

B : U1 − U0 . . . Uj − Uj−1 . . . Um−1 − Um−2

‖ ‖
...

...
...

D : V1 − V0 . . . Vk − Vk−1

...
...

‖

F : W1 − W0

In summary, the proof of Theorem 1.4.4 involves a combinatorial and a probabilis-

tic part. We develop a number of combinatorial lemmas in the next Chapter. The
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lemmas and their proofs can be stated using conventional language; e.g., symmet-

ric differences, alternating cycles and paths, or as linear optimizations over Birkhoff

polytopes. However, given the straightforward nature of the statements, presenting

the proofs in plain language as we have chosen to do seems natural. The probabilistic

arguments and the proof of Theorem 1.4.4 are presented in Chapter 3.



CHAPTER 2

Combinatorial Properties of Assignments

2.1 Some combinatorial properties of matchings

To execute some of the proofs in this chapter, we will use the alternate representation

of an arbitrary m × n matrix C as a complete bipartite graph Km,n, with m vertices

on the left and n vertices on the right corresponding to the rows and columns of C,

respectively. The edges are assigned weights cij with the obvious numbering.

In a number of these combinatorial lemmas we are interested in properties of “near

optimal matchings.” That is, suppose M is the smallest matching of size k in the

matrix C. Near optimal matchings of interest include (i) M′: the smallest matching

of size k which doesn’t use all the columns of M, or (ii) M′′: the smallest matching

of size k + 1. A generic conclusion of the combinatorial lemmas is that near-optimal

matchings are “closely related” to the optimal matching M. For example, we will

find that M′ uses all but one of the columns of Col(M), and that the rows and

columns used by M′′ are a superset of those used by M.

Lemma 2.1.1. Consider an m × n matrix C. For every j ∈ Col(T0), we have

|Col(Sj) ∩ Col(T0)| = m − 1.

14
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Proof. We represent the matrix C as a complete bipartite graph Km,n. Without loss

of generality, let Col(T0) be the first m columns of C, and let j = 1. Focus on the

subgraph consisting of only those edges which are present in T0 and S1. For example,

the subgraph is shown in Figure 2.1 where the bold edges belong to T0 and the dashed

edges belong to S1.

PSfrag replacements

m

n

Figure 2.1: Subgraph formed by two matchings depicting an even-length path and a
2-cycle

In general, a subgraph formed using two matchings in a bipartite graph can consist

of the following components: cycles, and paths of even or odd lengths. We claim that

it is impossible for the subgraph induced by the edges of T0 and S1 to have cycles of

length greater than two, or paths of odd length. (Cycles of length two represent the

entries common to T0 and S1.)

A cycle of length greater than two is impossible because it would correspond to

two different sub-matchings being chosen by T0 and S1 on a common subset of rows

and columns. This would contradict the minimality of either T0 or of S1.

An odd-length path is not possible because every vertex on the left has degree 2.

Thus, any path will have to be of even length.

We now show that the only component (other than cycles of length 2) that can

be present in the subgraph is a single path of even length whose degree-1 vertices

are on the right. Every node on the left has degree 2 and hence even paths with two

degree-1 nodes on the left are not possible. Now we rule out the possibility of more

than one even length path. Suppose to the contrary that there are two or more paths
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of even length. Consider any two of them and note that at least one of them will not

be incident on column 1. Now the edges of T0 along this path have smaller combined

weight than the edges of S1 by the minimality of T0. Thus, we can append these bold

edges to the dashed edges not on this path to obtain a new matching S ′
1 which would

be smaller than S1. This contradicts the minimality of S1 amongst all matchings that

do not use column 1.

Therefore, the subgraph formed by the edges of T0 and S1 can only consist of

2-cycles and one even length path. To complete the proof, observe that an even

length path with two degree-1 vertices on the right implies that the edges of S1 in

the path use exactly one column that is not used by the edges of T0 in the path (and

vice-versa). This proves the lemma.

Corollary 2.1.2. The cardinality of S(C) is m + 1.

Proof. From the definition of Si it is clear that for i ≤ m, Si 6= T0. We need to show

that Si 6= Sj for i 6= j, i, j ≤ m. From Lemma 2.1.1, Si uses all the columns of T0

except column i. In particular, it uses column j and therefore is different from Sj.

Corollary 2.1.3. For any 1 ≤ k ≤ m, taking i ∈ Col(T0) ∩ Col(T1) · · ·Col(Tk), an

arrangement of Si in increasing order gives the sequence Tk+1, Tk+2, . . . , Tm.

Proof. The proof follows in a straightforward fashion from Lemma 2.1.1 and the

definition of S-matchings.

We can use Lemma 2.1.1 and Corollary 2.1.3 to give an alternate characterization

of the T-matchings that does not explicitly consider the S-matchings.

Lemma 2.1.4 (Alternate Characterization of the T-matchings). Consider an

m × n rectangular matrix, C. Let T0 be the smallest matching of size m in this

matrix. The rest of the T-matchings T1, ..., Tm, can be defined recursively as follows:

T1 is the smallest matching in the set R1 = {M : Col(M) ) Col(T0)}, T2 is the

smallest matching in the set R2 = {M : Col(M) ) (Col(T0) ∩ Col(T1))},..., and Tm

is the smallest matching in the set Rm = {M : Col(M) ) (Col(T0) ∩ Col(T1) · · · ∩
Col(Tm−1))}. Then {T0, . . . , Tm} are the T-matchings of C.
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Proof. The proof is straightforward and is omitted. (Note that the alternate charac-

terization was used in the definition of the T-matchings in [Na 02].)

Remark 2.1.5. The next lemma captures the following statement. If a matching

is locally minimal then it is also globally minimal. The local neighborhood of a

matchings is defined by the set of matchings whose columns differ from the matching

under consideration by at most one column. That is, the lemma asserts that if a

matching is the smallest among the matchings in its local neighborhood then it is

also globally minimal.

Lemma 2.1.6. Consider an m×n rectangular matrix, C. Suppose there is a size-m

matching M with the following property: M < M ′ for all size-m matchings M′(6= M)

such that |Col(M′) ∩ Col(M)| ≥ m − 1. Then M = T0.

Proof. Without loss of generality, assume Col(M) = {1, 2, . . . , m}. The lemma is

trivially true for n = m + 1. Let k ≥ 2 be the first value such that there is a matrix,

C, of size m × (m + k) which violates the lemma. We will show that this leads to a

contradiction and hence prove the lemma.

Clearly, Col(T0) must contain all the columns {m + 1, . . . , m + k}. If not, there is

a smaller value of k for which the lemma is violated. For any j ∈ {m + 1, ..., m + k}
consider Col(Sj), where Sj is the smallest matching that does not contain column j.

The fact that k is the smallest number for which Lemma 2.1.6 is violated implies

Sj = M. Hence |Col(Sj)∩Col(T0)| ≤ m−k ≤ m−2. This contradicts Lemma 2.1.1,

proving the lemma.

Lemma 2.1.7. Consider a m×n cost matrix C. Let D be an extension of C formed

by adding r additional rows (r < n − m). Then Col(T0(C)) ⊂ Col(T0(D)).

Proof. As before, we represent the augmented matrix D as a complete bipartite graph

Km+r,n and focus on the subgraph (see Figure 2.2) consisting of only those edges that

are part of T0(C) (bold edges) and T0(D) (dashed edges).

We proceed by eliminating the possibilities for components of this subgraph. As

in Lemma 2.1.1, the minimality of the two matchings under consideration prevents
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Figure 2.2: Subgraph depicting odd-length paths and a 2-cycle

cycles of length greater than 2 from being present. Note that 2-cycles (or common

edges) are possible and these do not violate the statement of the lemma.

Next we show that paths of even length cannot exist. Consider even-length paths

with degree-1 vertices on the left. If such a path exists then it implies that there is

a vertex on the left on which a lone bold edge is incident. This is not possible since

the edges of T0(D) are incident on every vertex on the left.

Now consider even-length paths with degree-1 vertices on the right. These have

the property that the solid and dashed edges use the same vertices on the left (i.e.

same set of rows). Now, we have two matchings on the same set of rows and therefore

by choosing the lighter one, we can contradict the minimality of either T0(C) or

T0(D).

Consider odd-length paths. Since every vertex corresponding to rows in C must

have degree 2, the only type of odd-length paths possible are those in which the

number of edges from T0(D) is one more than the number of edges from T0(C). But

in such an odd-length path, the vertices on the right (columns) used by T0(C) are

also used by T0(D). Since the only components possible for the subgraph are odd

length paths as above and common edges, Col(T0(C)) ⊂ Col(T0(D)).

Remark 2.1.8. The following lemma was originally stated and proved for the case of

an n− 1× n matrix by Sharma and Prabhakar. The proof of the claim for that case
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can be found in the thesis of Mayank Sharma.

Lemma 2.1.9. Let C be an m× n rectangular matrix. Let Sk(i) denote the entry of

Sk in row i. Consider three arbitrary columns k1, k2, k3. For every row i, at least two

of Sk1
(i), Sk2

(i) and Sk3
(i) must be the same.

Proof. We shall first establish this claim for m = n − 1. Let us color the edges of

Sk1
red (bold), the edges of Sk2

blue (dash) and the edges of Sk3
green (dash-dot).

Consider the subgraph formed by the edges present in Sk1
and Sk2

, i.e. the red and

blue edges (see Figure 2.3 (a)). Clearly this subgraph cannot have the following

components:

• Cycles of length more than 2, since that would contradict the minimality of

either Sk1
or Sk2

.

• Odd length paths, since every vertex on the left has degree two.

• Even length paths with degree-1 vertices on the left, since every vertex on left

has degree two.

Thus the only possible components are even length paths with degree-1 vertices on

the right, and common edges.

Now we use the fact that m = n − 1 to claim that there can only be one even

length path. If there were two even length paths with degree-1 vertices on the right,

then the edges in Sk1
will avoid at least two columns (one from each even length

path). But m = n − 1 implies the edges in Sk1
can avoid only column k1. Similarly

the edges of Sk2
can avoid only column k2. This implies that the single even length

alternating path must have vertices k1 and k2 as its degree-1 vertices. Let us call this

path P12.

Arguing as above, we conclude that the subgraph formed by red and green edges

can only consist of common edges and one even length alternating path, P13, con-

necting vertices k1 and k3. Likewise, in the subgraph formed by green and blue edges

we have, other than common edges, exactly one even length alternating path, P23,

connecting vertices k2 and k3.
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We now proceed to prove the lemma by contradiction. Suppose that Sk1
(i), Sk2

(i)

and Sk3
(i) are all distinct for some row i. Our method of proof will be to construct

a matching in C \ k3, say S̃k3
, using only edges belonging to Sk1

, Sk2
and possibly

some from Sk3
such that in the subgraph formed by the edges of Sk1

,Sk2
and S̃k3

, the

vertices on the left will have at most degree two. We will show that this new matching

S̃k3
has a cost smaller than the cost of Sk3

. This will contradict the minimality of Sk3

and hence prove the lemma.

We shall construct S̃k3
in each of the following two cases.

• Case 1: The vertex k3 does not lie on the alternating path P12.

Consider the alternating path, P13, from k3 to k1 consisting of red and green

edges. Start traversing the path from k3 along the red edge. Observe that one

takes the red edge when going from a right vertex to a left vertex and a green

edge when going from a left vertex to a right vertex. Let v be the first vertex

along this path that also belongs to the alternating path, P12, of red and blue

edges.

We claim that v must be on the right. Suppose that v is on the left. Since v is

the first node common to P13 and P12, it must be that there are two distinct red

edges (belonging to each of P13 and P12) incident on v. But this is impossible,

since the red edges belong to the same matching. Therefore, v must be on the

right.

Now form the matching S̃k3
by taking the following edges:

– green edges in the path P13 starting from k3 until vertex v

– red edges in the path P12 starting from v to k2

– blue edges in the path P12 starting from v to k1

– the red edges from all the uncovered vertices on left.

Note that, by construction of S̃k3
, on the subgraph formed by the edges of

Sk1
,Sk2

and S̃k3
the vertices on the left have degree at most two (see Figure 2.3

b).
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Figure 2.3: (a) Matchings Sk1
,Sk2

,Sk3
(b) P13 till vertex v and P12 (c) Matching

S̃k3

• Case 2: The vertex k3 lies on P12.

We can construct S̃k3
using the procedure stated in Case 1 if we take v = k3.

Then the matching S̃k3
is formed by taking the following edges:

– red edges in the path P12 starting from k3 to k2

– blue edges in the path P12 starting from k3 to k1

– the red edges from all the uncovered vertices on left.

Observe that, by construction, we again have that on the subgraph formed by

the edges of Sk1
,Sk2

and S̃k3
the vertices on left have at most degree two.

To show that the cost of S̃k3
is less than Sk3

, we cancel edges that are common to

the two matchings and thus obtain matchings S̃ ′
k3

and S ′
k3

on C′, a (possibly smaller)

submatrix of C \ k3. Now S̃ ′
k3

consists of edges from either Sk1
or Sk2

; denote these

edges by E1 and E2 respectively.

We have to show

sum of edges in S ′
k3

> sum of edges in {E1, E2} = sum of edges in S̃ ′
k3

. (2.1.1)

The right hand side of the above inequality consists only of red and blue edges.

Let Ec
1 and Ec

2 be the remaining red and blue edges, respectively. Adding the weights
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Figure 2.4: (a) Matching S ′
k3

(b) Edges Ec
1 and Ec

2 (c) Matching S ′
k3

and edges Ec
1

and Ec
2

of these edges to both sides of (2.1.1), we are now required to show

sum of edges in {S ′
k3

, Ec
1, E

c
2} > Sk1

+ Sk2
. (2.1.2)

See Figure 2.4 for an illustration.

We establish (2.1.2) by showing that the left hand side splits into the weights of

two matchings, one each in C \ k1 and C \ k2. The minimality of Sk1
and Sk2

will

then complete the proof.

First observe that the edges in {S ′
k3

, Ec
1, E

c
2} can be decomposed into the following:

• An alternating path of (red or blue) and green edges from v to k1.

• An alternating path of (red or blue) and green edges from v to k2.

• The common red/blue/green edges that are outside the vertices of P12.

Form the first matching, say M, in C \ k2 by taking the following edges:

• The green edges in the alternating path of red and green edges from v to k1.

• The (red or blue) edges in the alternating path of blue and green edges from v

to k2.

• One of the red/blue/green edges that are outside the vertices of P12.
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Form the other matching, say N , in C \ k1 by taking the following edges:

• The (red or blue) edges in the alternating path of red and green edges from v

to k1.

• The green edges in the alternating path of blue and green edges from v to k2.

• The other set of red/blue/green edges that are outside the vertices of P12.
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Figure 2.5: (a) S ′
k3
∪ Ec

1 ∪ Ec
2 (b) Splitting into matchings M and N

This splitting into the two matchings establishes (2.1.1) and thus shows that

Sk3
> S̃k3

. This contradiction proves the lemma when m = n − 1.

If m < n − 1, append an (n − m − 1) × n matrix to C to form an (n − 1) × n

matrix D. The entries in D \ C are i.i.d. random variables uniformly distributed on

[0, ε/2(n − m)], where ε < min{|M − M ′| : M and M′ are size-m matchings in C}.
Then it is easy to see that for each i, Si(D) contains Si(C) since the combined weight

of the additional edges from the appended part is too small to change the ordering

between the matchings in C.

Now apply the lemma to D to infer that at least two of Sk1
(i), Sk2

(i) and Sk3
(i)

must be the same, where the Skj
are size-m matchings of C and row i is in C. This

proves the lemma.
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Definition 2.1.10 (Marked elements). An element of an m × n matrix C is said

to be marked if it belongs to at least one of its T-matchings.

Lemma 2.1.11. An m × n matrix C has exactly two elements marked in each row.

Proof. It is obvious that at least two such elements are present in each row. If there

is any row that has three or more elements, by considering the S-matchings that give

rise to any three of these elements we obtain a contradiction to Lemma 2.1.9.

Lemma 2.1.12. Let ξ denote the locations row-wise minima of an m× n matrix C.

Let Col(ξ) denote the columns occupied by the row-wise minima. Then we claim the

following Col(T0) ⊃ Col(ξ). .

Proof. The proof is by contradiction.

Assume otherwise: That is, there is a row io such that the minimum lies outside

Col(T0). Form a new matching by replacing the entry of T0 in the row i0 by the

minimum entry in the row. (Since this entry lies outside Col(T0) the new collection of

entries is a matching.) This matching has lower weight and contradicts the minimality

of T0.

2.1.1 General form of the lemmas

In this section, we state the lemmas for the case when the cost matrix C has non-

unique elements or subset sums. Thus T0, the smallest matching (in weight), is

potentially non-unique. Choose any one of the equal weight matchings as T0. Since

each Sj is defined as the smallest matching obtained by the removal of column j of

T0, there may exist a set of matchings, Sj, that have the same weight.

Claim 2.1.13. There exists Sj ∈ Sj for j = 1, .., m such that Lemmas 2.1.1, 2.1.9

and 2.1.11 remain valid when the cost matrix C has non-unique elements or subset

sums.

Proof. Consider an m×n matrix D formed using independent random variables that

are uniformly distributed in the interval [0, 1]. Define a matrix Cε = C + εD. Note
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that for every ε > 0, the matrix Cε has unique subset sums with probability one. Let

Sε
j be the S-matchings of the matrix Cε. Observe that as we let ε → 0, Sε

j → Sj ∈ Sj

such that Lemmas 2.1.1, 2.1.9 and 2.1.11 remain valid.

For Lemma 2.1.4, similarly one can recursively choose a set of smallest-weight

matchings Tj ∈ Rj such that these are precisely the T-matchings alternately defined

via the S-matchings.

Lemma 2.1.6 and its proof carries over without any change to the general case

that we are considering. Note that the contradiction now is based on the modified

Lemma 2.1.1; modification caused by the set of the S-matchings chosen according to

Claim 2.1.13.

For Lemma 2.1.7 to be valid, we need to state that one can choose one among the

several smallest-weight matchings T0(C) (and similarly T0(D)) such that the lemma

remains valid.

For Lemma 2.1.12 to be valid, we need to state that there is no strict row-wise

minima lying outside Col(T0).

Remark 2.1.14. Note that though the lemmas are valid for general matrices, unless

explicitly stated, we will assume in the rest of the thesis that all subset sums are

unique.
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Proofs of the Conjectures

3.1 Proof of Theorem 1.4.4

We shall now execute the three steps mentioned in Section 1.5.

Step 1: T1 − T0 ∼ exp m(n − m)

We will show that if A is an m×n rectangular matrix with i.i.d. exp(1) entries, then

T1 − T0 ∼ exp m(n− m). We begin by the following characterization of Col(T0). Let

M be any matching that satisfies the property that it is the smallest size-m matching

in the columns Col(M) of A. Consider any element, v, lying outside Col(M). Let

Nv = min{N : v ∈ N , |Col(N ) ∩ Col(M)| = m − 1}. We make the following claim.

Claim 3.1.1. Nv > M for all v ∈ A \ Col(M) iff Col(M) = Col(T0).

Proof. One of the directions of the implication is clear. If Col(M) = Col(T0), then

M = T0 and by the minimality of T0 we have Nv > M for all v lying outside Col(T0).

The reverse direction has already been established in Lemma 2.1.6.

26



3.1. PROOF OF THEOREM 1.4.4 27

Theorem 3.1.2. For an m×n matrix, A, containing i.i.d. exp(1) entries, T1−T0 ∼
exp(m(n − m)).

Proof. Let v ∈ A \ Col(T0) and let Mv be the submatching of Nv (defined in Claim

3.1.1) such that Nv = v ∪ Mv. Suppose v > T0 − Mv, ∀ v ∈ A \ Col(T0). Then

Claim 3.1.1 implies that this is a necessary and sufficient condition to characterize

the columns of T0.

We recall a well-known fact regarding exponentially distributed random variables.

Fact 3.1.3. Suppose Xi, i = 1, . . . , l, are i.i.d. exp(1) random variables. Let Yi ≥
0, i = 1, . . . , l, be random variables such that σ(Y1, . . . , Yl) ⊂ F for some σ-algebra

F . If Xi ⊥⊥ F ∀ i, then on the event {Xi > Yi, i = 1, . . . , l}, Xi − Yi are i.i.d. exp(1)

random variables and independent of F .

The above fact implies that the random variables {v−(T0−Mv), v ∈ A\Col(T0)}
are i.i.d. exp(1).

From Lemma 2.1.1, T1 has exactly one entry outside Col(T0). Hence T1 − T0 =

minv Nv − T0 = minv(v − (T0 − Mv)). Since the minimization is over m(n − m)

independent exp(1) random variables v−(T0−Mv), we have that T1−T0 ∼ exp m(n−
m).

Remark 3.1.4. A theorem in [Na 02] considers a slightly more general setting of match-

ings of size k in an m×n matrix. The argument used in Theorem 3.1.2 is an extension

of the argument in [SP 02] for an (n − 1) × n matrix. A similar argument was also

used by Janson in [Ja 99] for a problem regarding shortest paths in exponentially

weighted complete graphs.

We note the following positivity condition that follows immediately from the proof

of Theorem 3.1.2.

Remark 3.1.5. For any v /∈ Col(T0), v − (T1 − T0) > 0.

Proof. We know from the proof of Theorem 3.1.2 that for any v /∈ Col(T0),

v − (T0 − Mv) ≥ min
v

(v − (T0 − Mv)) = min
v

Nv − T0 = T1 − T0.
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This implies that v − (T1 − T0) ≥ (T0 − Mv). Now, let v0 be the entry of T0 in the

same row as v. Consider the set of all matchings of size m− 1 in Col(T0) that do not

contain an element in the same row as v. Then, both T0 \ v0 and Mv are members

of this set. But Mv has the smallest weight in this set. Hence Mv ≤ T0 − v0 < T0

which finally implies v − (T1 − T0) ≥ (T0 − Mv) > 0.

Step 2: From m × n matrices to (m − 1) × n matrices

We will now demonstrate the existence of a matrix with one less row, that preserves

the higher increments as described in Section 1.5. The matrix B is obtained from A

by applying the two operations Φ and Λ (which we will shortly define), as depicted

below

A
Φ−→ A∗ Λ−→ B.

To prevent an unnecessary clutter of symbols, we shall employ the following notation

in this section:

• T (A) = {T0, . . . , Tm}

• T (A∗) = {T ∗
0 , . . . , T ∗

m}

• T (B) = {U0, . . . ,Um−1}.

From Lemma 2.1.1 we know that the matchings T0 and T1 have m − 1 columns in

common. Hence there are two well-defined entries, e ∈ T0 and f ∈ T1, that lie outside

these common columns. We now specify the operations Φ and Λ.

Φ : Subtract T1 − T0 from each entry in A \Col(T0) to get the m× n matrix A∗.

(Note that in the matrix A∗ the entry f becomes f ∗ = f − (T1 − T0)).

Λ : Generate a random variable X, independent of all other random variables,

with IP(X = 0) = IP(X = 1) = 1
2
. If X = 0 then remove the row of A∗ containing e,

else remove the row containing f ∗. Denote the resulting matrix of size (m − 1) × n

by B.

Remark 3.1.6. The random variable X is used to break the tie between the two

matchings T ∗
0 and T ∗

1 , both of which have the same weight (this shall be shown in
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Lemma 3.1.8). This randomized tie-breaking is essential for ensuring that B has i.i.d.

exp(1) entries; indeed, if we were to choose e (or f ∗) with probability 1, then the

corresponding B would not have i.i.d. exp(1) entries.

Claim 3.1.7. The entries of A∗ are all positive.

Proof. The entries in Col(T0) are left unchanged by Φ; hence they are positive. Corol-

lary 3.1.5 establishes the positivity of the entries in the other columns.

Lemma 3.1.8. The following statements hold:

(i) T ∗
0 = T0 and T ∗

1 = T ∗
0 = T0.

(ii) For i ≥ 1, T ∗
i+1 − T ∗

i = Ti+1 − Ti.

Proof. Since T0 is entirely contained in the submatrix Col(T0), its weight remains

the same in A∗. Let R(A∗) be the set of all matchings of size m in A∗ that contain

exactly one element outside Col(T0). Then, every matching in R(A∗) is lighter by

exactly T1 − T0 compared to its weight in A.

Thus, by the definition of T1, every matching in R(A∗) has a weight larger than

(or equal to) T1 − (T1 − T0) = T0. In other words, every size-m matching in A∗ that

has exactly one element outside Col(T0) has a weight larger than (or equal to) T0.

Therefore, from Lemma 2.1.6 it follows that T0 is also the smallest matching in A∗.

Thus, we have T ∗
0 = T0, and T ∗

0 = T0.

From Lemma 2.1.1 we know that T ∗
i , i ≥ 1, has exactly one element outside the

columns of Col(T ∗
0 ) (= Col(T0)). Hence, it follows that

T ∗
i = Ti − (T1 − T0) for i ≥ 1.

Substituting i = 1, we obtain T ∗
1 = T0. This proves part (i). And considering the

differences T ∗
i+1 − T ∗

i completes the proof of part (ii).

To complete Step 2 of the induction we need to establish that B has the following

properties.

Lemma 3.1.9. Ui − Ui−1 = Ti+1 − Ti, i = 1, 2, .., m − 1.
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Proof. The proof of the lemma consists of establishing the following: for i ≥ 1

Ti+1 − Ti

(a)
= T ∗

i+1 − T ∗
i

(b)
= Ui − Ui−1.

Observe that (a) follows from Lemma 3.1.8. We shall prove (b) by showing that

T ∗
i = Ui−1 + v, i = 1, . . . , m. (3.1.1)

for some appropriately defined value v.

Remark 3.1.10. Since T ∗
1 = T ∗

0 , equation (3.1.1) additionally shows that T ∗
0 = U0 + v.

Two cases arise when applying the operation Λ: (1) e and f ∗ are in the same row,

and (2) they lie in different rows. (Note that in Case 1, irrespective of the outcome of

X, the common row will be removed.) As observed before, since f is in some column

outside Col(T0), its value is modified by the operation Φ to f ∗ = f − (T1 − T0). The

value of e, however, is left unchanged by the operation Φ. For simplicity, we will use

the symbols e and f ∗ for both the names and the values of these entries.

Case 1: In this case, we claim that e = f ∗ (as values). To see this, let M be the

smallest matching of size m−1 in the columns Col(T0)∩Col(T1) which does not have

an entry in the same row as e and f ∗. Then clearly, e ∪ M = T0 and f ∪ M = T1.

Hence, we obtain e + M = T0 = T1 − (T1 − T0) = f + M − (T1 − T0) = f ∗ + M .

Therefore, in value, e = f ∗; call this value v. From Lemma 3.1.8 we know that

T ∗
0 = T0 and this implies e + M = T ∗

0 = f ∗ + M .

Now consider any matching, M′ 6= M, of size m − 1 in B that has exactly one

entry outside Col(T0) ∩ Col(T1). Clearly, one (or both) of the entries e and f ∗ could

have chosen M′ to form a candidate for T ∗
0 . Since v+M ′ > T ∗

0 = v+M , we infer that

M ′ > M for all matchings M′. Thus, from Lemma 2.1.6, we have that M equals U0.

Therefore, T0 = T ∗
0 = T ∗

1 = U0+v. This also implies that Col(U0) = Col(T0)∩Col(T1).

Next consider S∗
` , the smallest matching in A∗ obtained by deleting column ` ∈

Col(U0). Since this is T ∗
k for some k ≥ 2, S∗

` must use one of the entries e or f ∗ by

Lemma 2.1.11. Hence S∗
` = v + V`, where V` is a matching of size m − 1 in B that
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doesn’t use the column `. Therefore, S∗
` ≥ v+W`, where W` is the smallest matching

of size m − 1 in B that doesn’t use column `.

Remark 3.1.11. The non-uniqueness amongst the weights of matchings introduced by

forcing T ∗
1 = T ∗

0 does not affect the applicability of Lemma 2.1.11. Though we could

resort to the generalized definition of S-matchings as defined by Claim 2.1.13; in this

case, it is not necessary as with probability one, it is easy to see that there is a unique

matching Sj in every Sj.

We will now show that for S∗
` ≤ v + W`. Applying Lemma 2.1.1 to B, we have

that W` has exactly one element outside Col(U0). Therefore W` can pick either e or

f ∗, since both lie outside Col(U0), to form a candidate for S∗
` , with weight v + W`.

This implies S∗
` ≤ v + W`. Hence,

S∗
` = v + W`. (3.1.2)

But from Corollary 2.1.3 we know that arranging the matchings {S∗
` , ` ∈ Col(T0)∩

Col(T1)}, in increasing order gives us T ∗
2 , . . . , T ∗

m. And arranging the {W`, ` ∈
Col(U0) = Col(T0) ∩ Col(T1)} in increasing order gives us U1, . . . , Um−1. Therefore,

T ∗
i = Ui−1 + v for i = 1, ..., m. (3.1.3)

This proves the lemma under Case 1, i.e. when both the entries e and f are in the

same row.

Case 2: In this case, the entries e and f ∗ are in different rows and depending on

the outcome of X, one of these two rows is removed. Let us denote by v the entry e

or f ∗ (depending on X), that is in the row of A∗ removed by Λ. Further, let c be the

column in which v lies. Let M denote the matching of size m−1 in Col(T0)∩Col(T1)

that v goes with to form T ∗
0 or T ∗

1 (depending on which of the two entries e or f ∗ is

removed).

Let us denote the entry, e or f ∗, that was not removed by u. Let d be the column

in which u lies. Let w denote the entry in the column of u and the row of v. These

are represented in Figure 3.1, where the entries of T0 and T1 are depicted by stars and
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PSfrag replacements

e(= v)
w

f ∗(= u)

Figure 3.1: The entries e, f ∗, w

circles, respectively. In the figure we assume that the row containing e was chosen to

be removed by X (that is, v = e and u = f ∗).

As in Case 1, let M be the smallest matching of size m− 1 in B that is contained

in the columns Col(T0) ∩ Col(T1). Arguing as in the previous case yields v + M =

T0 = T ∗
0 = T ∗

1 .

This also implies that w + M > T ∗
0 = T0. (In general, the definition of T ∗

0 only

implies w + M ≥ T0. However, since the matchings in A have distinct weights, it

is not hard to see that strict inequality holds when w is different from e and f .)

Therefore, let w = v + x for some x > 0.

Remark 3.1.12. In the claim that follows, we will use a slightly unconventional method

to prove a combinatorial fact implied by equation (3.1.1). We believe it will be

helpful to preface the proof by a brief description of the steps involved. Consider

the elements v and w as defined above. First, we will reduce the value of w from

v + x to v + ε, x > ε > 0, and show that this does not alter the values of the

matchings T ∗
i , i ≥ 0. Next, we will perturb the value of both v and w slightly to

v − ε. By invoking Lemma 2.1.11 we will show that every matching T ∗
i for the new

matrix must use one of v or w. Moreover, we will also show that the matchings {T ∗
i }

are formed by combining v or w with the matchings {Ui}. Since the values of the

T-matchings are continuous in the entries of the matrix, we let ε tend to zero to

conclude equation (3.1.1) for Case 2. A purely combinatorial argument also exists

for this case which goes along the lines of Lemma 2.1.9. However, we feel that this

approach is simpler.
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Returning to the proof: Given any 0 < ε < x, let Cε be a matrix identical to A∗

in every entry except w. The value of w is changed from v + x to v + ε. Let {Pi}
denote the T-matchings of Cε. Also recall that c is the column of v, and d is the

column of both u and w.

Claim 3.1.13. Pi = T ∗
i for every i.

Proof. Since the only entry that was modified was w, it is clearly sufficient to show

that w is not used by any of the matchings {T ∗
i } or {Pi}. From Lemma 2.1.11 we

know that the matchings {T ∗
i } have only two marked elements in the row of w and

one of them is v. The matching T ∗
0 or T ∗

1 (depending on the outcome of X) contains

u and cannot use any entry from the column of v. Hence it must use another entry

from the row of v (distinct also from w, as w lies in the column of u). Thus, since w

is not one of the two marked elements in its row, it is not part of any T ∗
i .

Now we have to show that w is not present in any of the {Pi}. To establish this,

we exhibit two distinct marked elements in the row of w that are different from w.

Consider Sd: the smallest size m matching in Cε \ d. But the removal of column d

in both Cε and A∗ leads to the same m × n − 1 matrix. Hence, Sd is formed by the

entry v and M, where M is the matching defined earlier. This implies v is a marked

element.

Since v + M = T ∗
0 , it is clear that M is also the smallest matching of size m − 1

in the matrix B \ c. Otherwise, v will pick a smaller matching and contradict the

minimality of T ∗
0 .

Consider next the matching Sc, the smallest matching in Cε obtained by deleting

column c. The only candidates we have to consider are the matchings involving w and

the matching of weight T ∗
0 involving the element u. The smallest matching of size m−1

in the matrix B \ c is M, which implies that the best candidate for Sc involving w is

the matching formed by w and M. However this has weight v+ε+M > v+M = T ∗
0 .

Hence Sc is the matching of weight T ∗
0 involving the element u. As before, this

matching marks another element in the row of w which is different from either v or

w. Since there are two marked elements in the row of w which are different from w,

w cannot be in any of the matchings {Pi}.
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Thus the entry w is in neither of the set of matchings {T ∗
i } or {Pi}. Since w is

the only entry that the two matrices A∗ and Cε differ in, this proves the claim.

Moving to the next step of the proof for Case 2, define a matrix Dε which is

identical to the matrix A∗ except for the entries v and w. We change the values of

both v and w to v − ε. Let the T-matchings of Dε be denoted by {Qi}.
Consider Sd, the smallest matching of size m in Dε \d. It is easy to see that since

v was the only entry that was modified in this submatrix, Sd is formed by the entry

v and the matching M, and has weight T0 − ε. Hence v is a marked element.

Next, let Sc be the smallest matching in Dε \ c. The only candidates we have to

consider are the matchings involving w and the matching of weight T ∗
0 that includes

the element u. As before, the smallest matching of size m − 1 in the matrix B \ c is

M which implies that the best candidate for Sc involving w is the matching formed

by w and M. This has weight v − ε + M < v + M = T ∗
0 . Hence Sc is the matching

of weight T0 − ε involving the element w. Hence w is a marked element.

Applying Lemma 2.1.11 to matrix Dε, it is clear that the only two marked elements

in the row of v are v and w. An argument similar to the one that proved (3.1.3) gives

us the following:

Qi = Ui−1 + v − ε, for i = 1, 2, . . . , m. (3.1.4)

As ε → 0, the matrices Cε and Dε tend to each other. Since the weights of the

T-matchings are continuous functions of the entries of the matrix, we have that in

the limit ε = 0, Pi = Qi and hence from Claim 3.1.13 and equation (3.1.4) we have

T ∗
i = Ui−1 + v for i = 1, 2, ..., m.

This proves the lemma for Case 2 and hence completes the proof of Lemma 3.1.9.

We now note the following consequence of our previous arguments:

v + M = T0 = T ∗
0 = T ∗

1 = U0 + v

This gives us the following:
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Remark 3.1.14. Let M be the smallest matching of size m − 1 in A∗, contained in

Col(T0) ∩ Col(T1). Then M = U0.

In the next section we show that the matrix B, obtained by deleting a row of A∗

according to the action Λ, contains i.i.d. exp(1) entries.

Step 3: B has i.i.d. exp(1) entries

Let B be a fixed (m − 1) × n matrix of positive entries. We compute the joint

distribution of the entries of B and verify that they are i.i.d. exp(1) random variables.

To do this, we identify the set, D, of all m × n matrices, A, that have a positive

probability of mapping to the particular realization of B under the operations Φ and

Λ. We know that the entries of A are i.i.d. exp(1) random variables. So we integrate

over D to obtain the joint distribution of the entries of B.

To simplify the exposition, we partition the set D into sets {D1, . . . , Dm} depend-

ing on the row removed by the operation Λ to obtain B. We will characterize Dm,

i.e. the set of all m × n matrices in which Λ removes the last row. All the other

sets Di, i 6= m, can be characterized similarly. The next few lemmas concern the

complete characterization of the set Dm.

Let B be a fixed (m − 1) × n matrix of positive entries. Let DΛ = Λ−1
m (B), i.e.

the set of all matrices m× n matrices A∗ such that when its last row is removed one

obtains the matrix B. Now Λ is a random map, whose action depends on the value of

X. This is related to e and f being on the same or different rows. Therefore we may

write DΛ as the disjoint union of the sets Ds
Λ and Dd

Λ, with the obvious mnemonics.

Finally, Dm = Φ−1 ◦ Λ−1
m (B).

Remark 3.1.15. Since we are focusing just on Dm, the mapping Λ−1(B) from IRm−1×n
+

into IRm×n
+ will consist of the introduction of an additional row below B (hence the

subscript Λm). When dealing with Di, the additional row would be introduced after

the (i − 1)th row of B.

Consider a matrix M ∈ IRm×n
+ , where the row vector ~r = (r1, . . . , rm−1) ∈ IRm−1

+

denotes the elements in Col(U0). W.l.o.g. let us assume that Col(U0) = {1, 2, ..., m−
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1}.

M =







B

r1 r2 · · · rm−1 x1 · · xn−m+1






.

Let d be an element in B\Col(U0). Let ∆d be the cost of the smallest matching of

size m − 1, say Md, with entries in Col(U0) but containing no entry from the row of

d. Clearly d∪Md is a matching of size m in the matrix M. Amongst all such choices

of d, let do ∈ B \ Col(U0) be that entry which minimizes d + ∆d. Let J = do + ∆do
,

and denote the column of do by j.

Given any ~r = (r1, . . . , rm−1) ∈ IRm−1
+ , the following lemma stipulates necessary

and sufficient conditions that the vector (x1, . . . , xn−m+1) must satisfy so that M ∈
DΛ.

Lemma 3.1.16. Given a (m−1)×n positive matrix B and a ~r ∈ IRm−1
+ , let FΛ(~r) be

the collection of all m × n matrices M such that one of the following two conditions

hold:

(i) There exist i and k such that xi = xk, xi + U0 < J and xl > xi for all l 6= i, k.

(ii) There exists xi /∈ j such that xl > xi for all l 6= i and xi + U0 = J .

Then DΛ = FΛ
4
=
⋃

~r∈IRm−1
+

FΛ(~r).

Proof. (α) DΛ ⊂ FΛ: Let M ∈ DΛ be any matrix such that Λm(M) = B. Therefore,

B consists of the first m−1 rows of M. By the definition of Λ we know that the entry

v occurs in the last row. From Corollary 3.1.14 we know that v chooses the matching

U0 to form a matching of weight T ∗
0 , that is, v + U0 = T ∗

0 . Hence v must be one of

the xi’s. Again by definition, u lies outside Col(U0) ∪ c, where c is the column of v.

We shall now show that M ∈ FΛ(~r). Two cases occur:

(a) v and u are in the last row: In this case, we know from the proof of Lemma

3.1.9 that v = u (the same as e = f ∗ and this is Case 1 in the proof of Lemma

3.1.9). Since both v and u are in the last row and outside Col(U0), we know

that v = xi and u = xk for some i 6= k. Therefore, xi = xk. We know that
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v + U0 = T ∗
0 , hence from the minimality of T ∗

o we have xi + U0 < J . Also,

xi + U0 < xl + U0 for l 6= i, k for the same reason. This implies M satisfies

condition (i) of Lemma 3.1.16. Therefore, under (a) it follows that M ∈ FΛ(~r).

(b) v is in the last row and u is not: arguing as before, we conclude that u = do

and v = xi. Thus, T ∗
0 = v + U0 = d0 + ∆d0

= J . We also know that v and u

occur in different columns, hence v = xi for some xi /∈ j. From the minimality

of T ∗
0 , we also have that xi +U0 < xl +U0 for l 6= i. Thus, M satisfies condition

(ii) of Lemma 3.1.16 and hence M ∈ FΛ(~r).

(β) FΛ ⊂ DΛ: Let M ∈ FΛ(~r) for some ~r. Then M satisfies condition (i) or (ii)

of Lemma 3.1.16. Accordingly, this gives rise to two cases:

(a) M satisfies condition (i): We claim that Λ(M) = B. From Lemma 2.1.7 we

have that T0(M) must use all the columns of U0. This implies that exactly one

entry of T0(M) lies outside Col(U0). But, condition (i) implies that xi + U0 ≤
min{xl + U0, J} = min{xl + U0, d + ∆d}. Since the last minimization is over all

possible choices of the lone entry d that T0(M) could choose outside Col(U0), it

follows that T0(M) = xi + U0. Condition (i) also implies that xk = xi. Hence

T0(M) = T1(M) = xk + U0.

Since xi and xk are the entries of T0(M) and T1(M) outside Col(U0), this implies

u and v are xi and xk in some order. Observe that Λ removes the row in which

v is present. Thus, we obtain Λ(M) = B and therefore M ∈ DΛ.

(b) M satisfies condition (ii): We claim that Λ(M) = B with probability 1
2
. An

argument similar to that in Case (a) yields xi + U0 = T0(M) = T1(M) =

J = do + ∆do
. Note that v and u are decided by the outcome of X. Hence

IP(v = xi, u = do) = 1
2

= IP(u = xi, v = do).

When v = xi, by the definition of Λ we get that Λ(M) = B. When v = do the

row that is removed is the row containing do, hence Λ(M) 6= B in this case.

Therefore, with probability 1
2

we will obtain B as the result of the operation

Λ(M). This implies M ∈ DΛ.
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Thus both cases in (β) imply that FΛ ⊂ DΛ, and this, along with (α) implies

FΛ = DΛ.

Thus, Ds
Λ and Dd

Λ correspond to the matrices in DΛ which satisfy conditions (i)

and (ii) of Lemma 3.1.16, respectively. Hence, when M ∈ Ds
Λ we have Λ(M) = B

with probability one, and when M ∈ Dd
Λ we have Λ(M) = B with probability 1

2
. We

are now ready to characterize Dm.

Consider a matrix M ∈ DΛ and let θ ∈ IR+. Consider the column, say k, in M

which contains xi. (Recall, from Lemma 3.1.16, that xi is the smallest of the xl’s in

the last row deleted by Λ.) Add θ to every entry in M outside Col(U0) ∪ k. Denote

the resulting matrix by F1(θ,M). Let

F1 =
⋃

θ>0,M∈DΛ

F1(θ,M). (3.1.5)

Now consider the column, say `, in M where the entry xk or do is present (depend-

ing on whether M satisfies condition (i) or (ii) of Lemma 3.1.16). Add θ to every

entry in M outside Col(U0) ∪ `. Call the resulting matrix F2(θ,M) and let

F2 =
⋃

θ>0,M∈DΛ

F2(θ,M). (3.1.6)

Remark 3.1.17. Note that F1 and F2 are disjoint since k 6= `. Also, θ is added to

precisely m(n − m) entries in M in each of the two cases above.

Lemma 3.1.18. Dm = F1 ∪ F2.

Proof. Consider M′ ∈ Dm. Subtracting θ = T1(M
′) − T0(M

′) from the entries of M′

outside Col(T0(M
′)) leaves us with Φ(M′). From the proof of Lemma 3.1.8 we know

that under Φ, the locations of the entries of T-matchings do not change; only the

weights of Ti(M
′), i ≥ 1 are reduced by T1(M

′) − T0(M
′) = θ. It is clear that if e

and f are in same row, then the last row of Φ(M′) satisfies condition (i) of Lemma

3.1.16 and hence M′ = F1(θ, Φ(M′)). If e and f are in different rows then the last

row of Φ(M′) satisfies condition (ii) and therefore M′ = F2(θ, Φ(M′)). This implies

M′ ∈ F1 ∪ F2.
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For the converse, consider the matrix M′ = F1(θ,M) for some M ∈ DΛ and

θ > 0. Since T0(M) = xi ∪U0 and M′ dominates M entry-by-entry, T0(M
′) = xi ∪U0

by construction. Consider every size-m matching in M′ that contains exactly one

element outside Col(xi ∪U0). By construction, the weight of these matchings exceeds

the weight of the corresponding matchings in M by an amount precisely equal to θ.

Using Lemma 2.1.1, we infer that Ti(M
′) − Ti(M) = θ for i ≥ 1. Hence we have

T1(M
′) − T0(M

′) = T1(M) − T0(M) + θ. But for any M ∈ DΛ, T1(M) = T0(M) =

xi + U0. Therefore T1(M
′) − T0(M

′) = θ.

Now, Φ(M′) is the matrix that results from subtracting θ from each entry outside

the columns containing the matching T0(M
′) = xi ∪ U0. But, by the definition of

F1(θ,M), Φ(M′) is none other than the matrix M. Therefore M′ ∈ Dm, and F1 ⊂
Dm.

Next, let M′ = F2(θ,M). In this case too, T0(M) = xk + U0 (or do + ∆do
)

continues to be the smallest matching in M′. An argument identical to the one above

establishes that Φ(M′) = M. Hence, M′ ∈ Dm and F2 ⊂ Dm, completing the proof

of the lemma.

Remark 3.1.19. Note that the variable θ used in the characterization of Dm precisely

equals the value of T1(M
′) − T0(M

′), as shown in the proof of Lemma 3.1.18.

Continuing, we can partition Dm into the two sets D
s
m and D

d
m as below:

D
s
m = F1(IR+,Ds

Λ) ∪ F2(IR+,Ds
Λ) and D

d
m = F1(IR+,Dd

Λ) ∪ F2(IR+,Dd
Λ). (3.1.7)

Observe that whenever M ∈ D
s
m, we have Φ(M) ∈ Ds

Λ and hence Λ ◦ Φ(M) = B

with probability 1. For M ∈ D
d
m, Φ(M) ∈ Dd

Λ and Λ ◦ Φ(M) = B with probability
1
2
. Recall also that D = ∪m

i=1Di.

Now that we have characterized D, we return to considering the matrix A (which

has the same structure as M), and “integrate out the marginals” (r1, . . . , rm−1),

(x1, . . . , xn−m+1) and θ by setting

~v = (B, ~r, θ) and ~w = (~v, ~x),
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where B ≡ [bij] ∈ IRm−1×n
+ . Let fw(~v, ~x) represent the density of an M matrix. Then

the marginal density fv(~v) is given by

fv(~v) =

∫

R1

fw(~v, ~x)d~x +
1

2

∫

R2

fw(~v, ~x)d~x. (3.1.8)

The regions R1 and R2 are defined by the set of all ~x’s that satisfy conditions (i)

and (ii) of Lemma 3.1.16, respectively. The factor 1
2

comes from the fact that on R2,

e and f occur on different rows. Therefore, A is in D
d = ∪m

i=1D
d
i and will map to the

desired B with probability 1
2
.

On R1, we have that xi = xk < J − U0 for J as in Lemma 3.1.16. We set

H = J − U0, and ul = xl − xi for l 6= i, k. Finally, define

sv = b1,1 + . . . + bm−1,n + r1 + . . . + rm−1 + m(n − m)θ.

Thus, sv denotes the sum of all of the entries of A except those in ~x. As noted in

the remark preceding Lemma 3.1.18, the value θ was added to precisely m(n − m)

entries. We have

∫

R1

fw(~v, ~x)d~x

(a)
= 2m

(

n − m + 1

2

)
∫ H

0

∫∫∫ ∞

0

e−(sv+(n−m+1)xi+
P

l6=i,k ul)
∏

l 6=i,k

dul dxi

= m(n − m)e−sv
(

1 − e−(n−m+1)H
)

.

(3.1.9)

The factor
(

n−m+1
2

)

in equality (a) accounts for the choices for i and k from {1, . . . , n−
m+1}; the factor m comes from the row choices available (i.e. the regions D1, . . . , Dm),

and the factor 2 comes because A belongs to either F1 or F2 defined by equations

(3.1.5) and (3.1.6) respectively.

Similarly, on R2, we have that xi = J − U0
4
= H and we shall set ul = xl − xi for
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l 6= i to obtain

1

2

∫

R2

fw(~v, ~x)d~x

(b)
=

1

2

[

2m(n − m)

∫∫∫ ∞

0

e−(sv+(n−m+1)H+
P

l6=i ul)
∏

l 6=i

dul

]

= m(n − m)e−sve−(n−m+1)H .

(3.1.10)

In equality (b) above, the factor n−m accounts for the choice of i from {1, . . . , n−m+

1}; the factor m comes from the row choices available and the factor 2 comes because

A belongs to either F1 or F2 defined by equations (3.1.5) and (3.1.6) respectively.

Substituting (3.1.9) and (3.1.10) into (3.1.8), we obtain

fv(~v) = m(n − m)e−sv = e−(b1,1+...+bm−1,n) × m(n − m)e−m(n−m)θ × e−(r1+...+rm−1).

The above equation is summarized in the following lemma.

Lemma 3.1.20. For an i.i.d. exp(1) matrix A, the following hold:

(i) B consists of i.i.d. exp(1) variables.

(ii) θ = T1(A) − T0(A) is an exp m(n − m) random variable.

(iii) ~r consists of i.i.d. exp(1) variables.

(iv) B, T1(A) − T0(A), and ~r are independent.

Remark 3.1.21. It is worth noting that part (ii) of Lemma 3.1.20 provides an alternate

proof of Theorem 3.1.2.

From Lemma 3.1.9 we know that the increments {Tk+1(A) − Tk(A), k > 0} are a

function of the entries of B. Given this and the independence of B and T1(A)−T0(A)

from the above lemma, we get the following:

Corollary 3.1.22. Tk+1(A) − Tk(A) is independent of T1(A) − T0(A) for k > 0.

Thus, we have established all the three steps mentioned in Section 1.5 required to

prove Theorem 1.4.4. This completes the proof of Theorem 1.4.4 and hence establishes

Parisi’s conjecture.
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3.2 The Coppersmith-Sorkin Conjecture

As mentioned in the introduction, Coppersmith and Sorkin [CS 99] conjectured that

the expected cost of the minimum k-assignment in an m × n rectangular matrix, P,

of i.i.d. exp(1) entries is:

F (k, m, n) =
∑

i,j≥0,i+j<k

1

(m − i)(n − j)
. (3.2.1)

Nair [Na 02] has proposed a larger set of conjectures that identifies each term in

equation (3.2.1) as the expected value of an exponentially distributed random variable

corresponding to an increment of appropriately sized matchings in P. We prove this

larger set of conjectures using the machinery developed in Section 3.1 and therefore

establish the Coppersmith-Sorkin conjecture.

We define two classes of matchings for P, called W-matchings and V-matchings,

along the lines of the S-matchings and T-matchings. But the W- and V-matchings

will be defined for all sizes k, 1 ≤ k < m. Thus, the superscript associated with a

matching will denote its size.

We now proceed to define these matchings for a fixed size k < m. Denote

the smallest matching of size k by Vk
0 . Without loss of generality, we assume that

Col(Vk
0 ) = {1, 2, . . . , k}. Let Wk

i denote the smallest matching in the matrix P when

column i is removed. Note that for i > k, Wk
i = Vk

0 .

Definition 3.2.1 (W-matchings). Define the matchings {Vk
0 ,Wk

1 , . . . ,Wk
k} to be

the W-matchings of size k.

Definition 3.2.2 (V-matchings). Arrange the matchings {Vk
0 ,Wk

1 , . . . ,Wk
k} in or-

der of increasing weights. Then the resulting sequence {V k
0 , V k

1 , . . . , V k
k } is called the

V-matchings of size k.

Finally, we refer to the smallest matching of size m as V m
0 .

We now state the following theorem regarding the distributions of the increments

of the V-matchings.
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Theorem 3.2.3. Let P be an m × n rectangular matrix, P, of i.i.d. exp(1) entries.

The V-matchings of P satisfy the following: for each k, 1 ≤ k ≤ m − 1:

V k
i+1 − V k

i ∼ exp(m − i)(n − k + i), 0 ≤ i ≤ k − 1 (3.2.2)

and

V k+1
0 − V k

k ∼ exp(m − k)n. (3.2.3)

Further,

V k
1 − V k

0 ⊥⊥ V k
2 − V k

1 ⊥⊥ · · · ⊥⊥ V k
k − V k

k−1 ⊥⊥ V k+1
0 − V k

k (3.2.4)

Remark 3.2.4. We have grouped the increments according to the size of the matchings;

so equations (3.2.2) and (3.2.3) both concern the kth group. Equation (3.2.2) gives

the distribution of the differences of matchings of size k. The matching V k+1
0 is

the smallest one of size k + 1, and equation (3.2.3) concerns the distribution of its

difference with V k
k .

Before we prove Theorem 3.2.3, we show how it implies the Coppersmith-Sorkin

conjecture:

Corollary 3.2.5.

F (k, m, n) =
∑

i,j≥0,i+j<k

1

(m − i)(n − j)
. (3.2.5)

Proof. By definition F (j + 1, m, n) − F (j, m, n) = IE(V j+1
0 − V j

0 ). Using equations

(3.2.2) and (3.2.3) and by linearity of expectation we obtain

F (j + 1, m, n) − F (j, m, n) =
∑

0≤i≤j

1

(m − i)(n − j + i)
(3.2.6)

Now using the fact that IE(V 1
0 ) = 1

mn
and summing (3.2.6) over j = 0 to j = k − 1

we obtain

F (k, m, n) =
1

mn
+

k−1
∑

j=1

∑

0≤i≤j

1

(m − i)(n − j + i)
=

∑

i,j≥0,i+j<k

1

(m − i)(n − j)
. (3.2.7)

Thus Theorem 3.2.3 establishes the Coppersmith-Sorkin conjecture.
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We now proceed to the proof of Theorem 3.2.3.

Remark 3.2.6. We will establish the theorem for the kth group inductively. The outline

of the induction is similar to the one in Section 1.5 and the details of the proof are

similar to those in Section 3.1. The key trick that will be used in this section is a

zero-padding of the matrices under consideration in such a way that increments of

the V-matchings of the zero padded matrix (the matrix L′ defined below) and the

actual matrix (the matrix L defined below) is identical.

Proof of Theorem 3.2.3

In this section we will establish properties concerning the increments of the V-

matchings in the kth group of the cost matrix P, i.e. the increments between the

matchings {Vk
0 , ...,Vk

k ,Vk+1
0 }. Let L denote an l × n matrix with l ≤ m. Consider its

V-matchings of size γ = k−m+ l and denote them as {Lγ
0 , . . . ,Lγ

γ}. Let Lγ+1
0 denote

the smallest matching of size γ + 1 in L.

Inductive Hypothesis:

• The entries of L are i.i.d. exp(1) random variables.

• The increments satisfy the following combinatorial identities

Lγ
1 − Lγ

0 = V k
m−l+1 − V k

m−l (3.2.8)

Lγ
2 − Lγ

1 = V k
m−l+2 − V k

m−l+1

· · · · · · · · ·
Lγ

γ − Lγ
γ−1 = V k

m−l+γ − V k
m−l+γ−1

Lγ+1
0 − Lγ

γ = V k+1
0 − V k

k .

Induction Step:

Step 1: From L, form a matrix Q of size l − 1 × n. Let {Qγ−1
0 , ...,Qγ−1

γ−1} denote

its V-matchings of size γ − 1 and let Qγ
0 denote the smallest matching of size γ. We
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require that

Qγ−1
1 − Qγ−1

0 = Lγ
2 − Lγ

1

Qγ−1
2 − Qγ−1

1 = Lγ
3 − Lγ

2

· · · · · · · · ·
Qγ−1

γ−1 − Qγ−1
γ−2 = Lγ

γ − Lγ
γ−1

Qγ
0 − Qγ−1

γ−1 = Lγ+1
0 − Lγ

γ .

Step 2: Establish that the entries of Q are i.i.d. exp(1) random variables.

This completes the induction step since Q satisfies the induction hypothesis for

the next iteration.

In Step 2 we also show that Lγ
1 − Lγ

0 ∼ exp l(n − γ) and hence conclude from

equation (3.2.8) that V k
m−l+1 − V k

m−l ∼ exp l(n − k + m − l).

The induction starts with matrix L = P (the original m×n matrix of i.i.d. entries

that we started with) at l = m and terminates at l = m − k + 1. Observe that the

matrix P satisfies the inductive hypothesis for l = m by definition.

Proof of the Induction:

Step 1: Form the matrix L′ of size l × n + m − k by adding m − k columns of

zeroes to the left of L as below

L′ = [0 |L ] .

Let {T0, . . . , Tl} denote the T -matchings of the matrix L′. Then, we make the follow-

ing claim:

Claim 3.2.7. Let γ = l − (m − k). Then the following hold

T0 = Lγ
0

T1 = Lγ
1

· · ·
Tγ = Lγ

γ
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and

Tγ+1 = Tγ+2 = · · · = Tl = Lγ+1
0

Proof. Note that any matching of size l in L′ can have at most m − k zeroes. It is

clear that the smallest matching of size l in L′ is formed by picking m − k zeroes

along with the smallest matching of size γ in L. Thus, T0 = Lγ
0 .

By Lemma 2.1.1 we know that the other T-matchings in L′ drop exactly one

column of T0. We analyze two cases: first, removing a column of zeroes and next,

removing a column containing an entry of Lγ
0 .

The removal of any column c containing zeroes leads to the smallest matching of

size l in L′ \ c being a combination of m − k − 1 zeroes with the smallest matching

of size γ + 1 in L. Hence m − k = l − γ of the Ti’s, corresponding to each column of

zeroes, have weight equal to Lγ+1
0 .

If we remove any column containing Lγ
0 , then the smallest matching of size l in L

is obtained by combining m− k zeroes with the smallest matching of size γ in L that

avoids this column. Hence, these matchings have weights Lγ
i for i ∈ {1, 2, . . . , γ}.

We claim that Lγ+1
0 is larger than Lγ

i for i ∈ {0, 1, 2, . . . , γ}. Clearly Lγ+1
0 > Lγ

0 .

Further, for i ≥ 1, we have a matching of size γ in Lγ+1
0 that avoids the same column

that Lγ
i avoids. But Lγ

i is the smallest matching of size γ that avoids this column.

So we conclude that Lγ+1
0 > Lγ

i .

Hence arranging the weights (in increasing order) of the smallest matchings of size

l in L′, obtained by removing one column of T0 at a time, establishes the claim.

From the above it is clear that the matchings T0 and T1 are formed by m − k

zeroes and the matchings Lγ
0 and Lγ

1 respectively. Hence, as in Section 3.1, we have

two elements, one each of T0 and T1 that lie outside Col(T0) ∩ Col(T1).

We now perform the procedure outlined in Section 3.1 for obtaining Q from L by

working through the matrix L′.

Accordingly, form the matrix L∗ by subtracting the value T1 − T0 from all the

entries in L′ that lie outside Col(T0). Generate a random variable X, independent

of all other random variables, with IP(X = 0) = IP(X = 1) = 1
2
. As before, there

are two well-defined entries, e ∈ T0 and f ∈ T1 that lie outside the common columns
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Col(T0)∩Col(T1). (Note that in the matrix, L∗, the entry f has a value f−(T1−T0)).

If X turned out to be 0, then remove the row of L∗ containing the entry e, else remove

the row containing the entry f . The resulting matrix of size (l − 1) × n + m − k is

called Q′. In matrix Q′ remove the m − k columns of zeros to get the matrix Q of

size (l − 1) × n.

Let {U0, . . . ,Ul−1} and {Qγ−1
0 , . . . ,Qγ−1

γ−1,Qγ
0} denote the T-matchings of the ma-

trix Q′ and the V-matchings of the matrix Q, respectively. The following statements

follow from Claim 3.2.7 applied to the zero-padded matrix Q′.

U0 = Qγ−1
0

U1 = Qγ−1
1

· · ·
Uγ−1 = Qγ−1

γ−1

and

Uγ = · · · = Ul−1 = Qγ
0

Now from Lemma 3.1.9 in Section 3.1 we know that

Ti+1 − Ti = Ui − Ui−1 for i = 1, . . . , l − 1. (3.2.9)

Remark 3.2.8. Though we have used the same notation, please bear in mind that

we are referring to two different sets of matchings here and in Section 3.1. However

since we adopted the same procedure to go from one matrix to the other, the proof

continues to hold.
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Finally, combining Equation (3.2.9) and Claim 3.2.7 we obtain:

Qγ−1
1 − Qγ−1

0 = Lγ
2 − Lγ

1

Qγ−1
2 − Qγ−1

1 = Lγ
3 − Lγ

2

· · · · · · · · ·
Qγ−1

γ−1 − Qγ−1
γ−2 = Lγ

γ − Lγ
γ−1

Qγ
0 − Qγ−1

γ−1 = Lγ+1
0 − Lγ

γ .

This completes Step 1 of the induction.

Step 2: Again we reduce the problem to the one in Section 3.1 by working with

the matrices L′ and Q′ instead of the matrices L and Q. (Note that the necessary and

sufficient conditions for L to be in the pre-image of a particular realization of Q is

exactly same as the necessary and sufficient conditions for a L′ to be in the pre-image

of a particular realization of Q′.)

Let R1 denote all matrices L, that map to a particular realization of Q with e and

f in the same row. Let R2 denote all matrices L that map to a particular realization

of Q with e and f in different rows. Observe that in R2, L will map to the particular

realization of Q with probability 1
2

as in Section 3.1. We borrow the notation from

Section 3.1 for the rest of the proof.

(Before proceeding, it helps to make some remarks relating the quantities in this

section to their counterparts in Section 3.1. The matrix A had dimensions m×n; its

counterpart L′ has dimensions l× (m−k+n). The number of columns in A\Col(T0)

equaled n − m; now the number of columns in L′ \ Col(T0) equals m − k + n − l.

This implies that the value θ = T1 − T0 = Lγ
1 − Lγ

0 will be subtracted from precisely

l(m − k + n − l) elements of L′. Note also that the vector ~r, of length l − 1, has

exactly m − k zeroes and γ = k − m + l − 1 non-zero elements. The vector x is of

length m − k + n − l + 1.)

To simplify notation, set η = m− k + n− l; the number of columns from which θ
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is subtracted. Thus, the vector x has length η + 1. As in Section 3.1, let

~v = (Q, ~r, θ) and ~w = (~v, ~x).

We will evaluate fv(~v) =
∫

R1
fw(~v, ~x)d~x + 1

2

∫

R2
fw(~v, ~x)d~x, to obtain the marginal

density of ~v. As before the factor 1
2

comes from the fact that on R2, e and f occur

on different rows. Therefore, L will map to the desired Q with probability 1
2
.

On R1, we have that xi = xj < H for H as in Section 3.1. (The counterparts of

xa and xb in Section 3.1 were xi and xk, and these were defined according to Lemma

3.1.16.) We shall set ul = xl − xa for l 6= a, b. Finally, define

sv = q1,1 + · · ·+ ql−1,n + r1 + · · ·+ rk−m+l−1 + lηθ.

Thus, sv denotes the sum of all of the entries of L except those in ~x. We have

∫

R1

fw(~v, ~x)d~x

(a)
= 2l

(

η + 1

2

)
∫ H

0

∫∫∫ ∞

0

e−(sv+(q+1)xa+
P

l6=a,b ul)
∏

l 6=a,b

dul dxa

= l η e−sv
(

1 − e−(q+1)H
)

.

The factor
(

η+1
2

)

in equality (a) comes from the possible choices for a, b from the set

{1, . . . , η}, the factor l comes from the row choices available as in Section 3.1, and

the factor 2 corresponds to the partition, F1 or F2 (defined likewise), that L belongs

to.

Similarly, on R2, we have that xa = H and we shall set ul = xl − xa for l 6= a to

obtain

1

2

∫

R2

fw(~v, ~x)d~x

(b)
=

1

2

[

2 l η

∫∫∫ ∞

0

e−(sv+(q+1)H+
P

l6=a ul)
∏

l 6=a

dul

]

= l η e−sv e−(q+1)H .
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In equality (b) above, the factor η comes from the choice of positions available to xa

(note that xa cannot occur in the same column as the entry do which was defined in

Lemma 3.1.16). The factor l comes from the row choices available, and the factor 2

is due to the partition, F1 or F2, that L belongs to.

Substituting η = n − k + m − l and adding (3.2.10) and (3.2.10), we obtain

fv(~v) = l(n − k + m − l) e−sv

= e−(q1,1+...+ql−1,n)l(n − k + m − l)e−l(n−k+m−l)θe−(r1+...+rl+k−m−1).

We summarize the above in the following lemma.

Lemma 3.2.9. The following hold:

(i) Q consists of i.i.d. exp(1) variables.

(ii) θ = Lγ
1 − Lγ

0 is an exp l(n − k + m − l) random variable.

(iii) ~r consists of i.i.d. exp(1) variables and m − k zeroes.

(iv) Q, Lγ
1 − Lγ

0 , and ~r are independent.

This completes Step 2 of the induction.

From the inductive hypothesis we have Lγ
1 − Lγ

0 = V k
m−l+1 − V k

m−l. Further let us

substitute m − l = i. Hence we have the following corollary.

Corollary 3.2.10. V k
i+1 − V k

i ∼ exp(m − i)(n − k + i) for i = 0, 2, .., k − 1.

Note that we have shown that Q are Lγ
1 − Lγ

0 independent. This implies that, in

particular, V k
i+1−V k

i is independent if all the higher increments. Hence this completes

the proof of the equation 3.2.4 and shows that the increments under consideration

are independent.

To complete the proof of Theorem 3.2.3 we need to compute the distribution

of the “level-change” increment V k+1
0 − V k

k . At the last step of the induction, i.e.

l = m − k + 1, we have a matrix K of size m − k + 1 × n consisting of i.i.d. exp(1)

random variables. Let {K1
0,K1

1} denote the V-matchings of size 1. Let K2
0 denote the

smallest matching of size 2. From the induction carried out starting from the matrix

P to the matrix K, we have random variables K1
0 , K

1
1 , K

2
0 that satisfy the following:
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K1
1 − K1

0 = V k
k − V k

k−1 and K2
0 − K1

1 = V k+1
0 − V k

k . The following lemma (stated and

proved originally in [Na 02]) completes the proof of Theorem 3.2.3.

Lemma 3.2.11. The following holds: K2
0 − K1

1 ∼ exp(m − k)n.

Proof. This can be easily deduced from the memoryless property of the exponential

distribution.

Case 1: K1
0 and K1

1 occur in different rows. Then clearly K2
0, the smallest matching

of size two is formed by the entries K1
0 and K1

1 and hence in this case K2
0 − K1

1 =

K1
0 ∼ exp(m − k + 1)n.

Case 2: K1
0 and K1

1 occur in different rows. In this case, it is not hard to see that

K2
0 = K1

0 + K1
1 + X where X is an independent exponential of rate (m− k)n. Hence

in this case K2
0 −K1

1 is the sum of two independent exponentials of rates (m−k+1)n

and (m − k)n respectively.

Thus K2
0 −K1

1 is a random variable having the following distribution: with prob-

ability n−1
n

it is an exponential of rate (m− k)n and with probability 1
n

it is the sum

of independent exponentials of rates (m − k + 1)n and (m − k)n respectively. It is

not hard to see that such a random variable is distributed as an exponential of rate

(m − k)n.

Remark 3.2.12. There is a row and column interchange in the definitions of the V-

matchings in [Na 02].

Thus, we have fully established Theorem 3.2.3 and hence the Coppersmith-Sorkin

Conjecture.

This also gives an alternate proof to Parisi’s conjecture since [CS 99] shows that

En = F (n, n, n) =
∑n

i=1
1
i2

.

3.3 A generalization of Theorem 1.4.4

Let Q be an m×n matrix of i.i.d. exp(1) entries and let {Ti} denote its T -matchings.

Let Υ denote the set of all possible configurations of the row-wise minimum entries

of Q; for example, all the row-wise minima lie in the same column, all lie in dis-

tinct columns, etc. Consider any fixed configuration ξ ∈ Υ and let T ξ
i denote the
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T -matchings conditioned on the event that Q has its row-wise minima placement

according to ξ. For concreteness, let us assume that ξ = {ξ1, ..., ξn} where ξi denotes

the number of row-wise minima present in column i of Q. We claim that the following

generalization of Theorem 1.4.4 holds:

Theorem 3.3.1. The joint distribution of the vector {T ξ
j −T ξ

j−1}n−1
j=1 is the same for

all placements of the row-wise minima, ξ ∈ Υ. That is,

• T ξ
j − T ξ

j−1 ∼ exp(m − j + 1)(n − m + j − 1), for j = 1, . . . , m.

• T ξ
1 − T ξ

0 ⊥⊥ T ξ
2 − T ξ

1 ⊥⊥ · · · ⊥⊥ T ξ
m − T ξ

m−1.

Remark 3.3.2. On the event ξ̃ where all the row-wise minima lie in different columns,

it is quite easy to show that T ξ̃
i − T ξ̃

i−1 ∼ exp i(n − i) for i = 1, . . . , n − 1 and that

these increments are independent.

Consider an m × n matrix Aξ whose entries are independent and exponentially

distributed with rate one and conditioned on the event that the locations of the row-

wise minima are in agreement with ξ. Let T ξ
i denote the T -matchings of the matrix

Aξ. Further, let Bξ be the matrix that is obtained after the operations Φ and Λ. Let

ξB denote the placement of the row-wise minima in matrix Bξ.

We note the following property of the mapping Φ.

Lemma 3.3.3. Let A be an m× n matrix of positive entries and let µ(i), i = 1, .., m

denote the location of the row-wise minima, i.e. aiµ(i) ≤ aij. Let A∗ = Φ(A).

Then {µ(i)} continues to remain as the locations of the row-wise minima for A∗, i.e.

a∗
iµ(i) ≤ aij.

Proof. The proof is by contradiction. Note that the mapping Φ only modifies the

entries outside Col(T0). Assume there exists an entry ai0j0 in A∗ lying outside

Col(T0)(= Col(T ∗
0 )) such that ai0j0 < ai0j∀j ∈ Col(T0), then we can form a matching

T̃0 by replacing the entry of T0 in row i0 by the smaller entry ai0j0. However this will

imply that T ∗
0 < T0, a contradiction to Lemma 3.1.8 as from Lemma 3.1.8 we know

that T ∗
0 = T0.

Remark 3.3.4. The above lemma can also be seen from the property in Lemma 2.1.12.

From Lemma 3.1.8 we know that T ∗
0 = T0. From Lemma 2.1.12 we know that Col(T ∗

0 )
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contains all the columns of the row-wise minima. Since Φ does not change the elements

in these columns, the row-wise minima continue to be the same elements.

By a similar induction argument carried out before, it is easy to see that to prove

Theorem 3.3.1 it suffices to prove the following:

Theorem 3.3.5. The following holds:

• T ξ
1 − T ξ

0 ∼ exp m(n − m)

• The entries of the matrix Bξ are independent and exponentially distributed with

rate one and conditioned on the event that the row-wise minima are in agreement

with ξB.

• The entries of matrix Bξ are independent of T ξ
1 − T ξ

0 .

Proof. For every i ∈ {1, 2, ..., m} let µ(i) denote the column containing the minimum

entry in row i. Further assume that the locations of the row-wise minima are according

to ξ. Then it is easy to see that the entries of Aξ ≡ [aij] are distributed as follows.

• aiµ(i) ∼ exp(n)

• aij ∼ aiµ(i) + exp(1)

where all the exponentials are independent of each other.

Hence we note the following: The density function of any particular realization of

A is given by:

f(A) =







nme−
P

i,j aij , on ai,j ≥ ai,µ(i) ∀ i, j

0 else
(3.3.1)

To complete the proof we need to perform the integral in equation (3.1.8) using

the density function defined by the above equation (3.3.1). Assume that the matrix

B is obtained by the removal of the row i0 of matrix A∗. Further let ξB be the vector

corresponding to the arrangement of the row-wise minima of the matrix B ≡ [bij].

For this proof it is better to integrate out the ~r as well as ~x for reasons that will

become apparent. Thus we write
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f(B, θ) =

∫

R1

fw(~v, ~x)d~xd~r +
1

2

∫

R2

fw(~v, ~x)d~xd~r. (3.3.2)

We consider two cases.

Case 1: µ(i0) lies outside Col(T B
0 ). In this case observe that xi (as defined by

Lemma 3.1.16) is the row-wise minimum and hence rj > xi for all elements of ~r. Let

r̃j = rj − xi. Note that xi is the minimum entry in row io implies that xi + U > J

since U = T B
0 . Also observe that no point in region R2 possible in this case. This

is because replacing xi with the entry in row io chosen by the matching T1 (note

that by definition of region R2 this entry must be in columns Col(T B
0 )) leads to

a matching of smaller weight and hence contradicts the minimality of T1 being the

smallest matching that avoids at least one column of T0.

Let

sv1
= b1,1 + b1,2 + · · ·+ bm−1,n−m + m(n − m)θ

Thus, putting the density function defined by (3.3.1) in (3.3.2) we obtain

f(B, θ) =

∫

R1

fw(~v, ~x)d~xd~r

= m(n − m)nm

∫ ∞

0

∫∫∫ ∞

0

e−(sv1
+nxi+

P

l6=i,k ul)
P

j r̃j

∏

l 6=i,k

dul

∏

j

dr̃j dxi

= m(n − m)nm−1e−sv1 .

(3.3.3)

Note that the factor 2 and
(

n−m+1
2

)

, that were present in the earlier integral in

(3.1.9) are replaced by the single factor n − m as we are given the location of the

row minimum in row i0. Hence we just have n − m possible locations for xk. The

factor m appears (as before) from the fact that we have m choices for the row i0,

since the fact that the row-wise minima are in agreement with ξ does not change on

row-permutations.
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Hence

f(B, θ) = m(n − m)nm−1e−(b1,1+b1,2+···+bm−1,n−m+m(n−m)θ). (3.3.4)

Note that this completes the proof of Theorem 3.3.5 under Case 1.

Case 2: µ(i0) lies in Col(T B
0 ). Let ri0 denote the smallest entry. Let r̃j = rj − ri0

when j 6= i0. In this case, in the region R1 we have ri0 < xi < H.

We first integrate out ~x. Proceeding as in (3.1.9) and (3.1.10) we obtain

∫

R1

fw(~v, ~x)d~x

= 2m

(

n − m + 1

2

)

nm

∫ H

ri0

∫∫∫ ∞

0

e−(sv+(n−m+1)xi+
P

l6=i,k ul)
∏

l 6=i,k

dul dxi

= m(n − m)nme−sv
(

e−(n−m+1)ri0 − e−(n−m+1)H
)

.

(3.3.5)

and

1

2

∫

R2

fw(~v, ~x)d~x

=
1

2

[

2m(n − m)nm

∫∫∫ ∞

0

e−(sv+(n−m+1)H+
P

l6=i ul)
∏

l 6=i

dul

]

= m(n − m)e−svnme−(n−m+1)H .

(3.3.6)

Combining (3.3.5) and (3.3.6) we obtain

fv(~v) = m(n − m)nme−sve−(n−m+1)ri0

Note that

sv = sv1
+
∑

j 6=i0

r̃j + (m − 1)ri0
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Thus we obtain

f(B, θ) = m(n − m)nm

∫ ∞

0

∫∫∫ ∞

0

e−sv1e−
P

j 6=i0
r̃je−nri0

∏

j 6=i0

dr̃j dri0

= m(n − m)nm−1e−sv1

= m(n − m)nm−1e−(b1,1+b1,2+···+bm−1,n−m+m(n−m)θ).

(3.3.7)

This completes the proof of Case 2 and hence of Theorem 3.3.5 (therefore of

Theorem 3.3.1 as well).

3.4 The proof of a claim of Dotsenko

We now use Theorem 3.3.1 to complete an incomplete proof of the following claim of

Dotsenko in [Do 00].

Let A ≡ [aij] be an n × n matrix with the following distribution for the entries:

ai,i = 0, 1 ≤ i ≤ k and the rest of the entries are independent exponentials of mean 1.

We assume 1 ≤ k < n. Let T A denote the smallest matching in matrix A of size n.

Let B ≡ bij be an n × n matrix with the following distribution for the entries:

bi,i = 0, 1 ≤ i ≤ k − 1, b(k, k − 1) = 0 and the rest of the entries are independent

exponentials. Let T B denote the smallest matching in matrix B of size n.

Let P,Q denote the matrices formed using the first k rows of A and B respectively

and let {T P
i , T Q

i } denote their T-matchings.

Claim 3.4.1. IE(TB) − IE(TA) = IE(TQ
0 ) − IE(TP

0 )

We make the following observation. Let a1, ..., ak denote independent exponentials

of rate n (independent of the entries in A and B as well). For 1 ≤ i ≤ k, add ai to

the entries of the matrix A and B to form matrices A′ and B′ respectively. Now it is

easy to see that the entries of A′ and B′ are distributed as independent exponentials

of rate 1 and conditioned on the event that the minimum entry in row i, 1 ≤ i ≤ k,

occurs at the location of the zeroes in the matrices A and B.
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Further, if T̃ A and T̃ B denote the smallest matchings of the matrices A′ and

B′, then one can see that T̃A = TA +
∑

i ai and T̃B = TB +
∑

i ai. Let T̃P
i , T̃Q

i

denotes the T-matchings of size k of the k × n sub-matrices formed using the first

k rows of the matrices A′ and B′ respectively. Observe that T̃P
0 = TP

0 +
∑

i ai and

T̃Q
0 = TQ

0 +
∑

i ai. This implies that to show Claim 3.4.1 it suffices to show that

IE(T̃B) − IE(T̃A) = IE(T̃Q
0 ) − IE(T̃P

0 ) (3.4.1)

We prove equation (3.4.1) by proving a more general claim for which this is a

special case. Let ξk
A and ξk

B denote the arrangement of the row-wise minimum in the

first k, 1 ≤ k < m, rows of an m×n matrix. Assume m ≤ n. Formally ξk = {ξ1, ..., ξn}
and ξi denotes the number of the row-wise minima in the first k rows that occur in

column i.

Remark 3.4.2. In the previous case observe that the matrices A′ had a corresponding

ξ vector {1, 1, .., 1, 0, 0, .., 0} formed using k ones and n− k zeroes where as B′ had a

ξ vector {1, 1, .., 1, 2, 0, 0, ..., 0} formed using k − 2 ones, 1 two and n − k + 1 zeroes.

Let ξk
1 and ξk

2 be any two feasible ξk vectors corresponding to the arrangement

of the row-wise minimum in the first k rows of an m × n matrix. Let A and B be

two matrices formed using independent exponentials of rate 1 and conditioned on the

event that their row-wise minima in the first k rows occur according to ξk
A and ξk

B

respectively. As before, let P and Q denote the k × n sub-matrices formed using the

first k rows of the matrices A and B respectively. Then we claim the following:

Theorem 3.4.3. IE(TB) − IE(TA) = IE(TQ
0 ) − IE(TP

0 )

Proof. Before going into the details of the proof, it is worth noting that from Remark

3.4.2 we see that Claim 3.4.1 is a special case of Theorem 3.4.3.

The proof is by an induction on the number, k, of the rows for whom the row-wise

minima are according to a given arrangement. We start the induction at k = m − 1

and then proceed down to k = 1.

k = m-1 : Here P is an (m − 1) × n matrix of independent exponentials of rate

one conditioned on the event that its row-wise minima are in agreement with ξm−1
1 .
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(Here, ξm−1
1 is any arrangement of the row-wise minima in the first m − 1 columns.)

Let {a1, ..., an} denote the entries of the mth row of A. Note that TA = mini(ai+SP
i ).

Note that the matchings {T P
i } is just a re-ordering of the matchings {SP

i }. Hence

we can find a mapping, σ, of numbers {1, 2, ..., n} to the numbers {0, 1, .., m−1} such

that SP
i = T P

σ(i).

Note that, TA = mini(ai + TP
σ(i)). Therefore,

TA − TP
0 = min

i
(ai + TP

σ(i) − TP
0 )

From Theorem 3.3.1 we know that the distribution of mini(bi + TP
σ(i) − TP

0 ) does

not depend on the arrangement of the row-wise minima in the matrix P. Therefore

the distributions of mini(ai + TP
σ(i) − TP

0 ) and that of mini(bi + TQ
i − TQ

0 ), defined

similarly with the arrangement ξn−1
2 instead of the arrangement ξn−1

1 , are identical.

This implies, in particular, that their expected values are same and therefore we

obtain

IE(TA − TP
0 ) = IE(TB − TQ

0 ) (3.4.2)

This completes the proof of the Theorem 3.4.3 for the case k = m − 1.

Now let us assume that Theorem 3.3.5 holds until say k = j + 1, i.e. it holds

for k = m − 1, m − 2, .., j + 1. Let P and Q represent two j × n matrices of inde-

pendent exponentials of rate one conditioned on the fact that their row-wise minima

are arranged according to ξj
1 and ξj

2 respectively. Form matrices P1 and Q1 of size

(j + 1) × n by adding a common row {r1, .., rn} of independent exponential entries

of rate one to the matrices P and Q respectively. We know from the first step of

induction hypothesis that

IE(TP1 − TP
0 ) = IE(TQ1 − TQ

0 ) (3.4.3)

Therefore it suffices to show that

IE(TA − TP1

0 ) = IE(TB − TQ1

0 ) (3.4.4)
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Let us further condition on the event, Ei, that the minimum entry in the row j+1

that was added occurs in column i. Let ξj+1
1 and ξj+1

2 denote the arrangement of the

row-wise minima of the matrices P1 and Q1 conditioned on the event Ei.

From induction hypothesis we know that, for all 1 ≤ i ≤ n,

IE(TA − TP1

0 |Ei) = IE(TB − TQ1

0 |Ei)

Averaging over the events Ei we obtain

IE(TA − TP1

0 ) = IE(TB − TQ1

0 ).

This completes the proof of the induction step and hence of Theorem 3.4.3.

Thus, we see that that Claim 3.4.1 is indeed true. Using this claim one can

obtain yet another completion of Parisi’s conjecture following the line of arguments

in [Do 00].



CHAPTER 4

Conclusion

This thesis provides a proof of the conjectures by Parisi [Pa 98] and Coppersmith-

Sorkin [CS 99]. In the process of proving these conjectures, we have discovered some

interesting combinatorial and probabilistic properties of matchings that could be of

general interest. In this chapter we investigate a problem that our approach sheds

new light on.

Of particular interest is the determination of the distribution of the Cn, the random

variable that represents the cost of the minimum assignment. We use the methods we

developed in the earlier chapters to obtain some conjectures regarding the complete

distribution of Cn. In the last section of this chapter, we will touch upon some

connections between the assumptions in the methods employed by the physicists and

some of the results that we obtained rigorously in the earlier chapters.

60
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4.1 Distribution of Cn

4.1.1 Early work

As mentioned in the introduction, using the non-rigorous Replica Method, a technique

developed by Statistical Physicists to study interactions between particles, Mezard

and Parisi, argued that the limit of E(An) was π2

6
. They also computed the distri-

bution of a randomly chosen entry that was part of the smallest matching. Further,

they claimed that the assignment problem had the ’self averaging property’, i.e. the

distribution of An concentrates around the mean for large n.

In [Al 92], Aldous rigorously established that the limit of E(An) exists. Later, in

[Al 01], he established that the limit was π2

6
, as predicted by the physicists. He also

recovered the distribution for a random entry in the smallest assignment. As further

verification of the Physicists’ approach, Talagrand showed that the variance decayed

at a rate that was lower bounded by 1
n

and upper bounded by log4 n

n
.

For the case when the entries were independent exponentials of rate one, Parisi

conjectured that for every finite n

E(An) =

n
∑

i=1

1

n2

From the proof of this conjecture as described in the previous chapter, we know

that this expression can be broken down into sums of increments of matchings that

are exponentially distributed. Though the smallest matching of size n is the sum of

these increments, the increments (exponential random variables) are not independent

and hence we are unable to compute easily the distribution of An.

In this chapter, we conjecture the exact nature of these correlations in the large

n regime. If correct, these conjectures imply that

√
n(An − E(An))

w⇒ N(0, 2)

This result is not surprising given the following two previous guesses. In [Al 01],

Aldous commented that one would expect the limiting distribution to be Gaussian.
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In [AS 02], Alm and Sorkin conjectured that the limiting variance of
√

n(An−E(An))

is 2. The basis of the conjecture regarding the variance, according to Alm and Sorkin,

is based on a communication between Janson and them in which Janson guessed the

exact distribution for every finite n. This guess turned out to be incorrect for n ≥ 3

but seemed very close to the true distribution.

The conjecture in this chapter regarding the correlations in the large n regime,

when applied to finite n will yield distributions that are largely similar to that of

Janson’s guess. However, the finer nature of our conjectures and the differences in

some terms help us conclude that the limiting distribution is Gaussian rather easily.

4.2 Conjectures on correlations between increments

From Theorem 3.2.3 we have the following:

V k
i+1 − V k

i ∼ exp(m − i)(n − k + i), 0 ≤ i ≤ k − 1 (4.2.1)

and

V k+1
0 − V k

k ∼ exp(m − k)n. (4.2.2)

Further,

V k
1 − V k

0 ⊥⊥ V k
2 − V k

1 ⊥⊥ · · · ⊥⊥ V k
k − V k

k−1 ⊥⊥ V k+1
0 − V k

k (4.2.3)

Theorem 3.2.3 gives an explicit characterization of the distribution relating the

difference between the smallest matching of size k + 1 and the smallest matching of

size k in terms of sums of independent exponentials.

Remark: Note that Theorem 3.2.3 does not give the entire distribution as it does

not say anything regarding the dependence of the variables V k+1
0 −V k

0 and V k
0 −V k−1

1 .

Consider a set of variables ∆k
i defined by the following set of equations. All the
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random variables are assumed to be independent.

∆k
0 ∼ exp(n(n − k + 1)), for k = 1, ..., n

∆k
i ∼











0 w.p. n−i
n−i+1

exp(n − i)(n − k + i + 1) w.p. 1
n−i+1

1≤i≤k−1 , 2≤k≤n

Now define random variables Rk
i recursively according to the following relations:

R1
0 = ∆1

0

Rk
1 − Rk

0 = ∆k+1
0 for k = 1, ..., n − 1

R2
0 − R1

1 = R1
0 + ∆2

1

Rk
i+1 − Rk

i = Rk−1
i − Rk−1

i−1 + ∆k+1
i−1 for i = 1, .., k − 1

Rk+1
0 − Rk

k = Rk
0 − Rk−1

k + ∆k+1
k+1 for k = 2, .., n − 1

It is easy to see that the Rk
i ’s satisfy the conditions of Theorem 3.2.3, i.e.

Rk
i+1 − Rk

i ∼ exp(m − i)(n − k + i), 0 ≤ i ≤ k − 1 (4.2.4)

and

Rk+1
0 − Rk

k ∼ exp(m − k)n. (4.2.5)

Further,

Rk
1 − Rk

0 ⊥⊥ Rk
2 − Rk

1 ⊥⊥ · · · ⊥⊥ Rk
k − Rk

k−1 ⊥⊥ Rk+1
0 − Rk

k. (4.2.6)

Observe that this equivalence of the marginals of the increments also implies

E(V k
i ) = E(Rk

i ).

Remark: The initial guess by the author was that the distribution of Rk
i was in

fact the distribution of V k
i . However this was observed not to be true for n ≥ 3.

Calculations for n = 3 and n = 4 demonstrated that the distribution of Rk
i and

V k
i are very close to each other though not exactly equal. Simulations for higher n
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confirm this observation. This makes us conjecture that the under the correct scaling

(i.e. multiplication by
√

n) the error terms are of lower order and they die down as

n becomes large.

Conjecture 4.2.1. Let Fn(x) = P[
√

n(V n
0 −E(V n

0 )) ≤ x] and let Gn(x) = P[
√

n(Rn
0−

E(Rn
0 )) ≤ x]. Then |Fn(x) − Gn(x)| → 0, ∀x as n → ∞.

Assuming that Conjecture 1 is correct, then this would imply that if

√
n(Rn

0 − E(Rn
0 ))

w⇒ N(0, 2), then
√

n(An − E(An))
w⇒ N(0, 2), since V n

0 = An

We prove the first claim in the lemma below.

Lemma 4.2.2.
√

n(Rn
0 − E(Rn

0 ))
w⇒ N(0, 2).

Proof. Writing Rn
0 in terms of the random variables ∆k

i we obtain the following rela-

tion.

Rn
0 =

n
∑

k=1

k−1
∑

i=0

(n − k + 1)∆k
i

Let µk
i = E(∆k

i ) and let µn = E(Rn
0 ). Then we note the following:

lim
n

n(E(Rn
0 − µn)2) = lim

n
n

n
∑

k=1

k−1
∑

i=0

(n − k + 1)2E(∆k
i − µk

i )
2 = 2 (4.2.7)

lim
n

n2

n
∑

k=1

k−1
∑

i=0

(n − k + 1)4E(∆k
i − µk

i )
4 = 0 (4.2.8)

The proofs of these two equations were obtained using MATHEMATICA and

hence has been omitted from the paper.

Now we apply the Central Limit Theorem for arrays to finish the argument. Let

Xn,k,i =
√

n(n − k + 1)(∆k
i − µk

i ). Observe that
∑

k,i Xn,k,i =
√

n(Rn
1 − E(Rn

1 )).

Eqns (4.2.7) and (4.2.8) imply the following conditions for the zero-mean inde-

pendent random variables Xn,k,i.
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• limn

∑

k,i E(X2
n,k,i) = 2.

• limn

∑

k,i E(X4
n,k,i) = 0.

Hence they satisfy the Lyapunov conditions for CLT and thus we have

∑

k.i

Xn,k,i
w⇒ N(0, 2) as n → ∞

This completes the proof of the lemma and hence assuming Conjecture 1 is true, this

establishes the limiting distribution of An.

Remark: Though the Lyapunov CLT is normally stated with the third moment

rather than the fourth moment used here, it is easy to see that any 2 + δ moment is

sufficient.)

4.2.1 Combinatorial evidence

Now consider the increment Rk+1
0 − Rk

0 . The distribution for this increment can be

explicitly stated in terms of sums of independent exponentials as stated in Theorem 1.

However, from the definition of the random variables Rk
i we get the following relation:

Rk+1
0 − Rk

0 = Rk
0 − Rk−1

0 +

k
∑

i=0

∆k+1
i

Hence Rk+1
0 − Rk

0 > Rk
0 − Rk−1

0 . The following lemma shows that this is also true

for the V k
i ’s.

Lemma 4.2.3. V k+1
0 − V k

0 > V k
0 − V k−1

0

Proof. Re-arranging the terms it is sufficient to show that V k+1
0 + V k−1

0 > 2V k
0 .

Case 1: If the matching Vk+1
0 contains one element that lies outside the rows and

columns occupied by Vk−1
0 , then we can combine this element with the matching Vk−1

0

and get a matching of size k. Note that the rest of the elements of Vk+1
0 is a matching

of size k. Therefore we can identify two matchings of size k from among the elements

of Vk−1
0 and Vk+1

0 . Therefore the combined weight of these two matchings of size k

must be greater than twice the weight of the smallest matching of size k.
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Case 2: When there is no element of Vk+1
0 that lies outside the rows and columns of

Vk−1
0 we establish the lemma by using the following well-known property of matchings.

The rows and columns used by the smallest matching of size k contains all the rows

and columns used by the smallest matching of size k − 1. Call this the intersection

property of matchings.

Consider a bipartite graph formed by the elements of Vk+1
0 and Vk

0 . From the

intersection property this is a k + 1 × k + 1 bipartite graph. Color the k + 1 edges

represented by the elements of Vk+1
0 by red and the k − 1 edges represented by the

elements of Vk−1
0 by green. Now from the minimality of these matchings there cannot

be any cycles. The intersection property also implies that the alternating paths must

be of odd length and must have one extra red edge. (If it is of even length or has

one extra green edge then we see that property one is violated). Therefore, we can

decompose the bipartite graph into common edges and two alternating paths each

having one extra red edge.

Now form one matching of size k by picking the common edges, red edges from

first alternating path and green edges from second alternating path. Form the second

matching of size k by picking common edges, green edges from first alternating path

and red edges from second alternating path. Observe that the total weight of these

two matchings of size k is equal to V k+1
0 + V k−1

0 . But this should be greater than

twice the weight of the smallest matching of size k. This completes the proof of the

lemma for Case 2.

4.3 Final remarks

The random assignment problem has been of interest in various communities since the

early sixties. In this thesis we have presented proofs of the Parisi and Coppersmith-

Sorkin conjectures that are related to the expected cost of the smallest assignment.

In addition, we have presented some conjectures towards resolving the entire distri-

bution. The arguments that have been presented are both probabilistic and combina-

torial in nature; moreover several combinatorial properties regarding matchings that

may be of general interest have been discovered in this process.
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A non-rigorous approach, called the Replica Method, had been employed by the

Statistical Physicists to study the behavior of the minimum assignment in the asymp-

totic regime where the number of jobs and machines tend to infinity. This method

yielded a limiting expected cost of π2

6
for the smallest matching in the large number

of jobs limit. This non-rigorous result was later proved to be accurate using a new

probabilistic method, Objective Method, developed by Aldous.

The replica method and a similar non-rigorous method called the Cavity Method

have recently been extensively employed by physicists to study combinatorial opti-

mization problems and infer their limiting optimal values or optimal solutions. The

success of these heuristic methods sparked considerable interest among mathemati-

cians, computer scientists and electrical engineers, as the problems solved by these

heuristics have considerable importance in these fields.

One of the crucial non-rigorous assumptions of the Replica method is in the as-

sumption that a certain level of Replica Symmetry Breaking is optimal. The optimality

of this assumption is backed by a local analysis; however a proof of global optimality

remains a missing link in the rigorization of this method.

In this thesis we have seen instances where checking local optimality is sufficient

to infer global optimality, c.f. Remark 2.1.5. There have been other instances as well

in the properties of matchings where a local optimality guarantees global optimality.

It seems an interesting avenue of further research to make these connections precise.

One could make substantial advances in rigorizing the assumptions of the non-rigorous

methods if one is able to make general mathematical verifications under which a local

optimality proof implies a global optimality.
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[LW 00] S. Linusson and J. Wästlund. A Generalization of the Random Assignment
Problem. http://www.mai.liu.se/˜ svlin/
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