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Abstract

We derive alternate characterizations for the hypercontractive region of a pair of random variables using information measures.

1. Introduction

A pair of random variables (X,Y) defined on some probability space (Ω,F , µ), is said to be (p, q)-hypercontractive
for 1 ≤ q ≤ p < ∞ if the inequality

‖E[g(Y)|X]‖p ≤ ‖g(Y)‖q

holds for every bounded measurable function g(Y).
The following is another well-known equivalent definition (equivalence being a direct application of Hölder’s

inequality). A pair of random variables (X,Y) defined on some probability space (Ω,F , µ), is said to be (p, q)-
hypercontractive for 1 ≤ q ≤ p < ∞ if the inequality

E[ f (X)g(Y)] ≤ ‖ f (X)‖p′‖g(Y)‖q

holds for every pair of bounded measurable functions f (X), g(Y). Here p′ =
p

p−1 denotes the Hölder conjugate
of p.

For any p ≥ 1 one can define

qp(X; Y) = inf{q : (X,Y) is (p, q)-hypercontractive}.

Define the ratio rp(X; Y) =
qp(X;Y)

p .
Hypercontractive inequalities have found a variety of applications in quantum physics [3], theoretical

computer science [4], analysis [6], and in information theory [1, 2]. In this talk we present the following alternate
characterizations of rp(X; Y) using information measures.

A very useful property of the hypercontractive parameter rp(X; Y) is the so-called tensorization property
which states: if {(Xi,Yi)}ni=1 are independent random variables, then

rp(Xn; Yn) =
n

max
i=1

rp(Xi; Yi).

For the purpose of this manuscript, let us assume that the random variables X,Y take values in a finite alphabet
spaceX×Y. Thus we can talk about a probability mass function µXY (x, y) and the induced marginal distributions
µX(x), µY (y). We assume, without loss of generality, that µX(x) > 0,∀x ∈ X and µY (y) > 0,∀y ∈ Y. We will omit
the subscripts on the measures when there is no ambuguity.
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Consider two measures ν and µ on a space, say X. If the measure ν is absolutely continuous with respect
to the measure µ, then we denote it as ν � µ. Let D(ν(x)||µ(x)) =

∑
x∈X ν(x) log2

ν(x)
µ(x) be the relative entropy

between the two measures ν(x) and µ(x), when ν � µ.
For p ≥ 1, define

kp(X; Y) := sup
ν(X,Y)�µ(X,Y)
ν(X,Y),µ(X,Y)

D(ν(y)||µ(y))
pD(ν(x, y)||D(µ(x, y)) − (p − 1)D(ν(x)||D(µ(x))

.

Let Pµ = {νUXY (u, x, y) : u ∈ U, |U| < ∞,
∑

u∈U ν(u, x, y) = µ(x, y) ∀x ∈ X, y ∈ Y} be the collection of
measures induced by random variables (U, X,Y) such that the marginal law of (X,Y) is consistent with µ(X,Y).
Here U is a random variable taking finitely many values and is often referred to as an auxiliary random variable
in multiuser information theory. Later we will see that we can restrict the size of |U| to |X||Y|.

For p ≥ 1 define

up(X; Y) = sup
νUXY∈Pµ

I(U;XY)>0

I(U; Y)
pI(U; XY) − (p − 1)I(U; X)

.

Theorem 1. The following equivalence holds:

rp(X; Y) = kp(X; Y) = up(X; Y).

Further the common value is also equal to

inf{λ : H(Y) − λpH(X,Y) + λ(p − 1)H(X) = K[H(Y) − λpH(X,Y) + λ(p − 1)H(X)]µXY },

where K[ f ]x represents the lower convex envelope of the function f evaluated at x.

Remark: The above result generalizes the equivalence results in both [1] and [2] which deal with the limiting
case p→ ∞.

2. Proof of the main result

The equality in Theorem 1 will be established by showing a sequence of inequalities. In particular, we will
show that

(i) rp(X; Y) ≤ kp(X; Y)

(ii) kp(X; Y) ≤ up(X; Y)

(iii) up(X; Y) ≤ rp(X; Y).

Proof of rp(X; Y) ≤ kp(X; Y): Given p > 1, and ε > 0 arbitrary, let non-negative functions f (X) and g(Y)
satisfy

E( f (X)g(Y)) > || f (X)||p′ ||g(Y)||(rp−ε)p. (1)

W.l.o.g. assume that || f (X)||p′ = ||g(Y)||(rp−ε)p = 1.
Define f (x)p′ = h(x) and g(y)(rp−ε)p = j(y). We have∑

x

µ(x)h(x) =
∑

y

µ(y) j(y) = 1.

Since E( f (X)g(Y)) > 1, let C < 1 be such that∑
x,y

Cµ(x, y)h(x)
1
p′ j(y)

1
(rp−ε)p = 1.

Define
ν(x, y) := Cµ(x, y)h(x)

1
p′ j(y)

1
(rp−ε)p .

One easily verifies that νXY � µXY and νXY , µXY .
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Now observe that

pD(ν(x, y)||µ(x, y)) − (p − 1)D(ν(x)||µ(x))

= p log C +
p
p′

∑
x

ν(x) log h(x) +
1

(rp − ε)

∑
y

ν(y) log j(y) − (p − 1)
∑

x

ν(x) log
ν(x)
µ(x)

= p log C + (p − 1)
∑

x

ν(x) log
µ(x)h(x)
ν(x)

+
1

(rp − ε)

∑
y

ν(y) log
µ(y) j(y)
ν(y)

+
1

(rp − ε)

∑
y

ν(y) log
ν(y)
µ(y)

≤
1

(rp − ε)

∑
y

ν(y) log
ν(y)
µ(y)

=
1

(rp − ε)
D(ν(y)||µ(y)).

Here the last inequality follows since C < 1,
∑

x µ(x)h(x) = 1,
∑

y µ(y) j(y) = 1. Since ε > 0 is arbitrary we are
done.

Proof of kp(X; Y) ≤ up(X; Y): The argument below is identical to the argument in [2] which in turn is
motivated by similar arguments in [5].

Let δ ∈ (0, kp(X; Y)) be arbitrary. Let νXY � µXY , νXY , µXY be any distribution satisfying

D(ν(y)||µ(y))
pD(ν(x, y)||D(µ(x, y)) − (p − 1)D(ν(x)||D(µ(x))

> kp(X; Y) − δ.

LetUε := {1, 2}. Fix a sufficiently small1 ε > 0 and define a triple (Uε , X,Y) according to:

• P(Uε = 1) = ε; Conditional distribution of (X,Y)|(Uε = 1) = νXY ,

• P(Uε = 2) = 1 − ε; Conditional distribution of (X,Y)|(Uε = 2) = µXY + ε
1−ε (µXY − νXY ) = 1

1−εµXY −
ε

1−ε νXY .

Note that for any ε > 0 the distribution of (Uε , X,Y) belongs to Pµ.
For any 0 < λ < kp(X; Y) − δ define the function

g(ε) := I(Uε ; Y) − λ(pI(Uε ; X,Y) − (p − 1)I(Uε ; X)).

Elementary calculations yield that

dg(ε)
dε

∣∣∣∣
ε↓0

= D
(
ν(y)‖µ(y)

)
− λ(pD

(
ν(x, y)‖µ(x, y)

)
− (p − 1)D

(
ν(x)‖µ(x)

)
> 0,

where the last inequality is because of the choice of ν(X,Y) and as 0 < λ < kp(X; Y) − δ. Since g(0) = 0
this implies that for some ε′ > 0 we have I(U′ε ; Y) − λ(pI(U′ε ; X,Y) − (p − 1)I(U′ε ; X)) > 0. Note also that
I(U′ε ; X,Y) > 0 since νXY , µXY .

This implies that

sup
νUXY∈Pµ

I(U;XY)>0

I(U; Y)
pI(U; XY) − (p − 1)I(U; X)

≥
I(Uε′ ; Y)

pI(U′ε ; X,Y) − (p − 1)I(U′ε ; X)
> λ.

Since the above holds for all λ < kp(X; Y) − δ we have

up(X; Y) = sup
νUXY∈Pµ

I(U;XY)>0

I(U; Y)
pI(U; XY) − (p − 1)I(U; X)

≥ kp(X; Y) − δ.

Finally, since δ > 0 is arbitrary, we are done.

1 For instance ε < min(x,y):ν(x,y)>0
µ(x,y)
ν(x,y) and ε > 1 −max(x,y) µ(x, y) suffices. Observe that such an ε exists if X and Y are not constants.
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Proof of up(X; Y) ≤ rp(X; Y): This proof uses the tensorization property of rp(X; Y) as well as the notion of
typical sequences often employed in multi-terminal information theory.

Consider any (U, X,Y) ∼ νUXY ∈ Pµ. Consider (Un, Xn,Yn) distributed according to
∏

i νUXY (ui, xi, yi), i.e.
the components are independent and identically distributed.

Pick a single un such that
{|{i : ui = u}| − nνU(u) ≤ |U|}.

For instance, letU = {1, 2, . . . ,m} and set the first dnνU(1)e entries of un to be 1, then next dnνU(2)e entries of un

to be 2, and so on. At the end one would have at least

n −
m−1∑
i=1

dnνU(i)e ≥ n − (m − 1) − n
m−1∑
i=1

νU(i) = nνU(m) − (m − 1)

entries taking the final value m.
Define two sets according to

A = {xn :
∣∣∣|{i : (ui, xi) = (u, x)}| − nνUX(u, x)

∣∣∣ ≤ √n log(n)νUX(u, x) for all (u, x)}

and
B = {yn :

∣∣∣|{i : (ui, yi) = (u, y)}| − nνUY (u, y)
∣∣∣ ≤ √n log(n)νUY (u, y) for all (u, y)}.

In the language used in network information theory, these are the sets of sequences xn and yn respectively that
are jointly typical with the un sequence chosen earlier.

Note that for any setA and B we have (Lemma 1 in [1])

P(Xn ∈ A,Yn ∈ B) = E(1A E(1B|Xn)) ≤ P(A)1− 1
p ‖E(1B|Xn)‖p ≤ P(A)1− 1

p P(B)
1

rp p . (2)

The first inequality follows from Hölder and the second one by the definition and tensorization property of
rp(X; Y) (which implies rp(Xn; Yn) = rp(X; Y) when {Xi,Yi} are i.i.d. according to (X,Y)).

It is known (by a simple counting argument) that 1
n log2 P(A) → −I(U; X) and 1

n log2 P(B) → −I(U; Y) as
n→ ∞.

Define

C = {(xn, yn) :
∣∣∣|{i : (ui, xi, yi) = (u, x, y)}| − nνUXY (u, x, y)

∣∣∣ ≤ √n log(n)νUXY (u, x, y) for all (u, x, y)}.

Clearly if (xn, yn) ∈ C then xn ∈ A and yn ∈ B. Thus P(C) ≤ P(Xn ∈ A,Yn ∈ B). A counting argument again
shows that 1

n log2 P(C)→ −I(U; XY).
Since we have

P(C) ≤ P(Xn ∈ A,Yn ∈ B) ≤ P(A)1− 1
p P(B)

1
rp p

by taking logarithms and dividing by n and letting n go to infinity, we obtain that

−I(U; XY) ≤ −
(
1 −

1
p

)
I(U; X) −

1
rp p

I(U; Y).

This implies that
rp(pI(U; XY) − (p − 1)I(U; X)) ≥ I(U; Y)

for every νUXY ∈ Pµ. When I(U; XY) > 0 we see that pI(U; XY) − (p − 1)I(U; X) > 0 implying

rp ≥ sup
νUXY∈Pµ

I(U;XY)>0

I(U; Y)
pI(U; XY) − (p − 1)I(U; X)

= up(X; Y),

as desired.
The remaining part of the proof is to show that the common value is also given by

inf{λ : H(Y) − λpH(X,Y) + λ(p − 1)H(X) = K[H(Y) − λpH(X,Y) + λ(p − 1)H(X)]µXY }. (3)
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It is an easy exercise to observe that

K[H(Y) − λpH(X,Y) + λ(p − 1)H(X)]µXY = inf
νUXY∈Pµ

H(Y |U) − λpH(X,Y |U) + λ(p − 1)H(X|U).

Thus if the equality

H(Y) − λpH(X,Y) + λ(p − 1)H(X) = K[H(Y) − λpH(X,Y) + λ(p − 1)H(X)]µXY

holds for some λ then for every νUXY ∈ Pµ

H(Y |U) − λpH(X,Y |U) + λ(p − 1)H(X|U) ≥ H(Y) − λpH(X,Y) + λ(p − 1)H(X).

Rearrangement yields
λ(pI(U; XY) − (p − 1)I(U; X)) ≥ I(U; Y),

implying

λ ≥ sup
νUXY∈Pµ

I(U;XY)>0

I(U; Y)
pI(U; XY) − (p − 1)I(U; X)

= up(X; Y).

Let λp(X; Y) denote the infimum of λ satisfying (3). Then we have λp(X; Y) ≥ up(X; Y).
On the other hand, for any ε > 0 there must exist a νUXY ∈ Pµ such that

H(Y |U) − (λp(X; Y) − ε)pH(X,Y |U) + (λp(X; Y) − ε)(p − 1)H(X|U)
< H(Y) − (λp(X; Y) − ε)pH(X,Y) + (λp(X; Y) − ε)(p − 1)H(X).

Re-arrangement yields

(λp(X; Y) − ε)(pI(U; XY) − (p − 1)I(U; X)) < I(U; Y).

For such a νUXY clearly I(U; XY) > 0, hence

λp(X; Y) − ε <
I(U; Y)

pI(U; XY) − (p − 1)I(U; X)
≤ up(X; Y).

Taking ε → 0 yields the desired equality that λp(X; Y) ≤ up(X; Y) completing the proof of the equivalence.
The last part of this section is to show that in the above calculations one can restrict to random variables U

that take at most |X||Y| distinct values. (These are also standard arguments in network information theory.)
For any distribution νXY on X ×Y define the function

f (ν) = H(Y) − λpH(X,Y) + λ(p − 1)H(X)

where the entropies are evaluated at the distribution νXY .
Observe that (by Caratheodory-Fenchel-Bunt theorem) the lower convex envelope of f (ν) and the distribution

µXY denoted earlier as
K[H(Y) − λpH(X,Y) + λ(p − 1)H(X)]µXY

can be computed as a convex combination of at most |X||Y| distributions ν(i)
XY , i = 1, .., |X||Y|. Consider ν(i)

XY to be
the conditional distribution of (X,Y) when U = i and thus observe that we have

K[H(Y) − λpH(X,Y) + λ(p − 1)H(X)]µXY = inf
νUXY∈Pµ
|U|≤|X||Y|

H(Y |U) − λpH(X,Y |U) + λ(p − 1)H(X|U).

Remark 1. This remark is for those unfamiliar with the cardinality bounding arguments in network information
theory. To apply Caratheodory-Fenchel-Bunt theorem one considers the continuous mapping from νXY to
S ⊂ R|X||Y| where the first |X||Y| − 1 co-ordinates represent the values of νXY (i, j) (except the entry i = X,
j = Y, whose value is forced by the remaining entries since νXY is a probability vector) and the last co-ordinate
is the value f (ν). One is interested in obtaining a particular point in the convex hull of S using as few points from
S as possible. Since S is connected it suffices to use |X||Y| distinct points. This improvement over Caratheodory
is due to Fenchel and later generalized by Bunt.
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