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Abstract

We compute the exact rate sum of a symmetric Gaussian interference channel for the Han-
Kobayashi region with Gaussian signaling for a subset of parameters in the weak interference
regime. In this subset we identify three regimes of operation: an initial set where treating
interference as noise is optimal, an intermediate regime where one employs a time-sharing strat-
egy (with power control) between treating interference as noise and time-division multiplexing
(TDM), and finally a regime where TDM is optimal. Beyond this regime our techniques do
not yield the exact sum-rate, however we do observe that one can achieve rates above those
prescribed by TDM, even for values of a that are close to 1.

1 Introduction

The Gaussian interference channel is one of the classical problems in multiple user information
theory. Its capacity region has been an open problem for over thirty years. Various authors have
considered specific cases of this problem [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]. We consider
the rate sum of a symmetric Gaussian interference channel in standard format, given by

Y1 = X1 + aX2 + Z1, (1)
Y2 = aX1 +X2 + Z2 (2)

withX1 andX2 constrained to average power P , and Z1 and Z2 distributed asN(0, 1). This problem
has been solved in the strong interference regime (a ≥ 1) [2, 6, 7] and in a very weak interference
regime, 2a(1 + a2P ) ≤ 1 [12, 13, 14]. It has been known that the naïve strategy of treating
interference as noise is optimal until 2a(1 + a2P ) = 1 and not optimal beyond 2a2(1 + a2P ) = 1. In
this work we compute the best mixed-Gaussian signaling strategy using power control. It is shown
that the naïve approach of treating interference as noise (without power control, i. e., without
separately adjusting the power associated with each strategy in a given combination) is not optimal
even for values of a smaller than 2a2(1 + a2P ) = 1.

In particular this strategy leads to the identification of four interference regimes. In the first
regime, associated with weak interference (small values of a), the interfering signal should be treated
as noise. The second regime is characterized by intermediate interference, with the parameter a
in a certain intermediary interval. In this transition region the best rate sum requires a convex
combination of two strategies: (i) treating interference as noise and (ii) time or frequency division
multiplexing (TDM/FDM). Next, for a in a subsequent segment of the (0, 1) interval, interference
is said to be moderate and requires pure TDM/FDM for maximizing the rate sum. Interestingly,
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this third region always start for a2 below the midpoint of the (0, 1) interval, regardless of the
parameters a and P .

Finally, for the remainder portion of the (0, 1) interval and high values of P , we may have the
case where interference is partially decoded in the best known approach for the rate sum. Thus
superposition coding is part of the best strategy in this region. The frontier of this peculiar regime,
which manages to supersede TDM/FDM, is still not well characterized, but it is known that it
happens with a above a2(1 + a2P ) = 1. We give a lower bound for the start of this fourth regime
characterized by almost strong (or forte ma non troppo) interference. We note that for high values
of P , this regime may dominate over a substantial portion of the (0, 1) interval of a.

2 An achievable rate sum via Gaussian signalling

In this section we compute the rate sum given by a naïve signalling strategy. We will show that the
same rate is given by the Han-Kobayashi signalling scheme for some initial range of parameters.

Theorem 1. The maximum value of I(X1;Y1|Q) + I(X2;Y2|Q) subject to Gaussian inputs and
individual power constraints, each being P , is given by the upper concave envelope1 of the following
function

max

{
1

2
log (1 + 2P ) , log

(
1 +

P

1 + a2P

)}
evaluated at P .

Proof. We wish to maximize I(X1;Y1|Q) + I(X2;Y2|Q) subject to Gaussian inputs and individual
power constraints, each being P . From Fenchel-Caratheodory arguments we know that we can
restrict |Q| ≤ 3. Hence the maximization takes the form

max

3∑
i=1

αi

(
1

2
log

(
1 +

P1i

1 + a2P2i

)
+

1

2
log

(
1 +

P2i

1 + a2P1i

))
subject to :

3∑
i=1

αiP1i ≤ P,
3∑
i=1

αiP2i ≤ P,
3∑
i=1

αi = 1,

αi, P1i, P2i ≥ 0, i = 1, 2, 3.

A symmetrization argument: Note that any valid maximizer induces another maximizer by the
transformation P1i ↔ P2i, i = 1, 2, 3. Thus by taking a convex combination (weighted by 1

2) of the
two maximizers, we can simplify the above optimization problem to

max

3∑
i=1

αi

(
1

2
log

(
1 +

P1i

1 + a2P2i

)
+

1

2
log

(
1 +

P2i

1 + a2P1i

))
subject to :

3∑
i=1

αi
2

(P1i + P2i) ≤ P,
3∑
i=1

αi = 1

αi, P1i, P2i ≥ 0, i = 1, 2, 3.

1The upper concave function of a function f(x) over a domain D is defined as

C[f ](x) := inf{g(x) : g(·) is concave on D, g(y) ≥ f(y), ∀y ∈ D}.
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For this problem we can reduce (by Fenchel-Caratheodory arguments) the number of convex
combinations to two. Denote Pi = P1i + P2i and βiPi = P1i. We can thus reduce the optimization
problem to

max

2∑
i=1

αi

(
1

2
log

(
1 +

βiPi
1 + a2β̄iPi

)
+

1

2
log

(
1 +

β̄iPi
1 + a2βiPi

))
subject to :

2∑
i=1

αi
2
Pi ≤ P,

2∑
i=1

αi = 1

αi, Pi ≥ 0, i = 1, 2.

Suppose βi ∈ (0, 1), then it must be that the following

1

2
log

(
1 +

βPi
1 + a2β̄Pi

)
+

1

2
log

(
1 +

β̄Pi
1 + a2βPi

)
viewed as a function of β achieves a local maximum at βi.

Differentiating w.r.t. to β yields that

Pi(1− a2)

1 + a2β̄Pi + βPi
+

a2Pi
1 + a2β̄Pi

− Pi(1− a2)

1 + a2βPi + β̄Pi
− a2Pi

1 + a2βPi
= 0.

This implies

(1− a2)2(β̄ − β)(1 + a2β̄Pi)(1 + a2βPi) = a4(β̄ − β)(1 + a2β̄Pi + βPi)(1 + a2βPi + β̄Pi).

Simple manipulations show that above holds if and only if either (i)β = 1
2 or (ii)(1 − 2a2 −

a4Pi)(1 + a2Pi) = 0.
When 1 − 2a2 − a4Pi = 0 one can verify that the function does not depend on β and hence

w.l.o.g we can take β = 1
2 . Thus we can replace

1

2
log

(
1 +

βiPi
1 + a2β̄iPi

)
+

1

2
log

(
1 +

β̄iPi
1 + a2βiPi

)
by the maximum value (over βi)

f∗(
Pi
2

) := max

{
1

2
log (1 + Pi) , log

(
1 +

Pi
2 + a2Pi

)}
,

which corresponds to the values at β = 0, β = 1
2 respectively.

Setting Qi = Pi
2 , the optimization problem reduces to

max

2∑
i=1

αif
∗(Qi)

subject to :

2∑
i=1

αiQi ≤ P,
2∑
i=1

αi = 1

αi, Pi ≥ 0, i = 1, 2.

which is the upper concave envelope of f∗(·) evaluated at P , as desired. The completes the proof
of Theorem 1.
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2.1 Explicit evaluation of the concave envelope

In this section we compute the concave envelope obtained in Theorem 1 explicitly. Let

f∗(P ) = max

{
1

2
log (1 + 2P ) , log

(
1 +

P

1 + a2P

)}
,

The upper concave envelope of f∗(·) is easy to compute. Both the functions

1

2
log (1 + 2P ) , log

(
1 +

P

1 + a2P

)
are concave and increasing in P ∈ [0,∞].

There are two cases of interest here:

Case 1: 2a2 > 1.
In this case the function 1

2 log (1 + 2P ) is always larger than log
(

1 + P
1+a2P

)
for all values of

P ∈ [0,∞] and hence the concave envelope is given by 1
2 log (1 + 2P ).

Case 2: 2a2 ≤ 1.
In this case the two functions have exactly one point of intersection which happens at P0 that sat-

isfies 2a2(1 +a2P0) = 1. Below this point the function log
(

1 + P
1+a2P

)
is larger than 1

2 log (1 + 2P )

and the contrary happens for P > P0. The concave envelope of the maximum is easy to compute
and is explicitly stated below. To note that the stated curve is indeed the concave envelope, note
that it is concave and is dominated by any concave function that dominates the underlying function.

The concave envelope of the function f∗(P ) is:

1. From 0 to P ∗I : the value is log
(

1 + P
1+a2P

)
,

2. From P ∗I to P ∗II : the value is

α log

(
1 +

P ∗I
1 + a2P ∗I

)
+

1− α
2

log(1 + 2P ∗II),

where α ∈ [0, 1] is the solution for P = αP ∗I + (1− α)P ∗II , and

3. From P ∗II to infinity: the value is 1
2 log(1 + 2P ).

Here P ∗I and P ∗II are defined by the points of intersection of a common tangent to both the curves.
In particular, they are given by solving the following two equations:

(1 + a2)

1 + P ∗
I (1 + a2)

− a2

1 + a2P ∗
I

=
1

1 + 2P ∗
II

1

2
log(1 + 2P ∗

II)− log

(
1 +

P ∗
I

1 + a2P ∗
I

)
=
P ∗
II − P ∗

I

1 + 2P ∗
II

.

with the logarithm in the natural base.
Solving this we obtain

(1 + 2P ∗II) = (1 + P ∗I (1 + a2))(1 + a2P ∗I ),

and that P ∗I is the solution of

3

2
log(1 + a2P ∗I )− 1

2
log(1 + P ∗I (1 + a2)) =

P ∗I (2a2 − 1) + a2(1 + a2)(P ∗I )2

2(1 + P ∗I (1 + a2))(1 + a2P ∗I )
.

4



0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0 50 100 150 200 250 300 350 400
P

R
a

te
 S

u
m

Figure 1: An achievable rate sum using Gaussian signaling

Figure 1 shows the achievable rate sum as a function of P when a2 = 0.05. The red curve
denotes the underlying function f∗(·) and the blue curve denotes its concave envelope. Here P ∗I
denotes the first point on the X-axis where the red curve and blue curve deviate and P ∗II denotes
the subsequent point on the X-axis where the curves merge again. An initial part of this curve
(extending beyond P ∗II) will turn out to be optimal under Gaussian signalling. We will elaborate
more on this after the next section, where we compute the optimal Gaussian signalling rate sum for
the Han-Kobayashi inner bound in certain parameter regimes.

Summarizing the results we obtain the following achievable region. Let P ∗I , P
∗
II be as defined

earlier.

Theorem 2. An inner bound to the sum-rate using Gaussian signalling of the Han-Kobayashi
scheme in the weak interference regime for the symmetric Gaussian interference channel is given by
the following:

• Case 1: 2a2 < 1:

1. From 0 to P ∗I : the value is log
(

1 + P
1+a2P

)
,

2. From P ∗I to P ∗II : the value is

α log

(
1 +

P ∗I
1 + a2P ∗I

)
+

1− α
2

log(1 + 2P ∗II),

where α ∈ [0, 1] is the solution for P = αP ∗I + (1− α)P ∗II , and

3. From P ∗II to infinity: the value is 1
2 log(1 + 2P ).

• Case 2: 2a2 ≥ 1: In this case the curve is 1
2 log (1 + 2P ).
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3 On sum rate of Han-Kobayashi scheme with Gaussian signalling

In this section we simplify the computation of the sum rate yielded by Han-Kobayashi scheme with
Gaussian signalling. From Han-Kobayashi inner bound one can achieve a sum-rate (R1 +R2) that
satisfies the following four inequalities

R1 +R2 ≤ I(X1;Y1|U2, Q) + I(X2;Y2|U1, Q)

R1 +R2 ≤ I(X1;Y1|U1, U2, Q) + I(U1, X2;Y2|Q)

R1 +R2 ≤ I(U2, X1;Y1|Q) + I(X2;Y2|U1, U2, Q) (3)
R1 +R2 ≤ I(U2, X1;Y1|U1, Q) + I(U1, X2;Y2|U2, Q)

for any p(q)p(u1, x1|q)p(u2, x2|q).
Remark: This is obtained using Fourier-Motzkin elimination on the original inner bound and

removing the redundant inequalities.
We now specialize this inner bound for Gaussian interference channel with weak interference

(a < 1) and restricting ourselves to Gaussian signaling. When Q = i let

P1 ∼ N (0, βiPi)

P2 ∼ N (0, β̄iPi)

U1 ∼ N (0, ᾱ1iβiPi)

U2 ∼ N (0, ᾱ2iβ̄iPi)

where βi, α1i, α2i ∈ [0, 1], Pi ≥ 0 and
∑

i βiPi ≤ P,
∑

i β̄iPi ≤ P .
Remark: Here conditioned on Q, we have X1 ∼ U1 + V1 where V1 is a zero-mean Gaussian

random variable independent of U1. Similarly X2 ∼ U2 + V2.
For this choice of auxiliary random variables, observe that

I(X1;Y1|U2, Q = i) + I(X2;Y2|U1, Q = i)

= I(X1, X2;Y1|U2, Q = i) + I(X1, X2;Y2|U1, Q = i)

− I(X2;Y1|X1, U2, Q = i)− I(X1;Y2|X2, U1, Q = i)

=
1

2
log(1 + a2α2iβ̄iPi + βiPi) +

1

2
log(1 + a2α1iβiPi + β̄iPi)

− I(X2;Y1|X1, U2, Q = i)− I(X1;Y2|X2, U1, Q = i)

It is a routine exercise to verify that (when βi, α1i, α2i ∈ [0, 1], Pi ≥ 0)

1

2
log(1 + a2α2iβ̄iPi + βiPi) +

1

2
log(1 + a2α1iβiPi + β̄iPi)

≥ 1

2
log(1 + α1iβiPi + a2β̄iPi) +

1

2
log(1 + α2iβ̄iPi + a2βiPi)

= I(X1, X2;Y1|U1, Q = i) + I(X1, X2;Y2|U2, Q = i)

holds. Hence the inequality I(X1;Y1|U2, Q)+I(X2;Y2|U1, Q) ≥ I(U2, X1;Y1|U1, Q)+I(U1, X2;Y2|U2, Q)
thus making the first of the four inequalities redundant. Thus under Gaussian signalling we only
need to consider the last three inequalities for the sum-rate in (3).

The symmetrization argument can be used in the following way to reduce the number of con-
straints to two. Split every instance Q = i into two parts Q′ = (i, 1), Q′ = (i, 2) with equal proba-
bility. Now when Q′ = (i, 1) generate U ′1, X ′1, U ′2, X ′2 ∼ U1, X1, U2, X2|Q = i and when Q′ = (i, 2)
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generate U ′1, X ′1 ∼ U2, X2|Q = i and U ′2, X ′2 ∼ U1, X1|Q = i (i.e when Q′ = (i, 2) interchange the
auxiliaries between the two receivers). Observe that the new auxiliaries satisfy the following:

I(X ′1;Y ′1 |U ′1, U ′2, Q′) + I(U ′1, X
′
2;Y ′2 |Q′)

= I(U ′2, X
′
1;Y ′1 |Q′) + I(X ′2;Y ′2 |U ′1, U ′2, Q′)

=
1

2
(I(X1;Y1|U1, U2, Q) + I(U1, X2;Y2|Q) + I(U2, X1;Y1|Q) + I(X2;Y2|U1, U2, Q))

I(U ′2, X
′
1;Y ′1 |U ′1, Q′) + I(U ′1, X

′
2;Y ′2 |U ′2, Q′)

= I(U2, X1;Y1|U1, Q) + I(U1, X2;Y2|U2, Q).

Hence the sum-rate does not decrease using this symmetrization transformation, and we are now
left with the following optimization problem. (By Fenchel-Caratheodory we can take |Q| = 3, i.e.
|Q′| = 6)

max R1 +R2

subject to :

R1 +R2 ≤
3∑
i=1

qi
2

1

2
log

(
1 +

α1iβiPi
1 + a2α2iβ̄iPi

)
+

1

2
log

(
1 +

β̄iPi + a2ᾱ1iβiPi
1 + a2α1iβiPi

)
+

1

2
log

(
1 +

α2iβ̄iPi
1 + a2α1iβiPi

)
+

1

2
log

(
1 +

βiPi + a2ᾱ2iβ̄iPi
1 + a2α2iβ̄iPi

)
(4)

R1 +R2 ≤
3∑
i=1

qi

(
1

2
log

(
1 +

a2ᾱ2iβ̄iPi + α1iβiPi
1 + a2α2iβ̄iPi

)
+

1

2
log

(
1 +

a2ᾱ1iβiPi + α2iβ̄iPi
1 + a2α1iβiPi

))
3∑
i=1

qi = 1,

3∑
i=1

qi
2
Pi ≤ P

0 ≤ qi, α1i, α2i, βi ≤ 1, i = 1, 2, 3

Pi ≥ 0, i = 1, 2, 3.

The above optimization problem yields the Han-Kobayashi sum-rate with Gaussian signalling.

3.1 Exact computation of Gaussian signalling in certain regimes

To obtain the exact sum-rate in some regimes we will first compute the following upper bound (by
ignoring the first constraint) to the solution of the optimization problem described earlier. Since we
have one less constraint, we can set |Q| = 2.

max R1 +R2

subject to :

R1 +R2 ≤
2∑
i=1

qi

(
1

2
log

(
1 +

a2ᾱ2iβ̄iPi + α1iβiPi
1 + a2α2iβ̄iPi

)
+

1

2
log

(
1 +

a2ᾱ1iβiPi + α2iβ̄iPi
1 + a2α1iβiPi

))
2∑
i=1

qi = 1,

2∑
i=1

qi
2
Pi ≤ P

0 ≤ qi, α1i, α2i, βi,≤ 1,

Pi ≥ 0.

This new optimization problem seeks to compute the upper concave envelope of the following
function

max
1

2
log

(
1 +

a2ᾱ2β̄P + α1βP

1 + a2α2β̄P

)
+

1

2
log

(
1 +

a2ᾱ1βP + α2β̄P

1 + a2α1βP

)
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subject to 0 ≤ α1, α2, β,≤ 1. It turns out that this can be computed explicitly.
Let

f(
P

2
) = max

0≤α1,α2,β≤1

1

2
log

(
1 +

a2ᾱ2β̄P + α1βP

1 + a2α2β̄P

)
+

1

2
log

(
1 +

a2ᾱ1βP + α2β̄P

1 + a2α1βP

)
= max

0≤α1,α2,β≤1

1

2
log

(
1 + a2β̄P + α1βP

1 + a2α2β̄P

)
+

1

2
log

(
1 + a2βP + α2β̄P

1 + a2α1βP

)
= max

0≤α1,α2,β≤1

1

2
log

(
1 + a2β̄P + α1βP

1 + a2α1βP

)
+

1

2
log

(
1 + a2βP + α2β̄P

1 + a2α2β̄P

)

Fix β ∈ [0, 1] and consider the problem of maximizing 1+a2β̄P+α1βP
1+a2α1βP

with respect to α1. It is
straightforward to check that the function is increasing if

(1 + a2α1βP )(βP )− (1 + a2β̄P + α1βP )a2βP > 0,

else it is decreasing. The above condition is true iff

1− a2 > a4β̄P.

Thus the optimal value is α1 = 1 if the above condition holds, else it is zero. Similarly the optimal
α2 = 1 if

1− a2 > a4βP

else it is zero. Thus f(P ) can be phrased as the maximum over β of the 4 functions each induced
by setting (α1, α2) = (0, 0), (0, 1), (1, 0), (1, 1). Indeed setting (α1, α2) = (0, 1) or (1, 0) yields a
symmetric function of β, hence

f(P ) = max
0≤β≤1

max

{
1

2
log
(
1 + a2β̄2P

)
+

1

2
log
(
1 + a2β2P

)
,

1

2
log
(
1 + a2β̄2P

)
+

1

2
log

(
1 + a2β2P + β̄2P

1 + a2β̄2P

)
,

1

2
log

(
1 + a2β̄2P + β2P

1 + a2β2P

)
+

1

2
log

(
1 + a2β2P + β̄2P

1 + a2β̄2P

)}

= max

{
max
0≤β≤1

1

2
log
(
1 + a2β̄2P

)
+

1

2
log
(
1 + a2β2P

)
, max
0≤β≤1

1

2
log
(
1 + a2β2P + β̄2P

)
,

max
0≤β≤1

1

2
log

(
1 + a2β̄2P + β2P

1 + a2β2P

)
+

1

2
log

(
1 + a2β2P + β̄2P

1 + a2β̄2P

)}

= max

{
log
(
1 + a2P

)
,

1

2
log (1 + 2P ) , log

(
1 +

P

1 + a2P

)}

3.1.1 Explicit evaluation of the concave envelope

The concave envelope can be computed explicitly as follows. There are a few cases to consider:

• 2a2 ≥ 1. Note that in this regime 1
2 log (1 + 2P ) ≥ log

(
1 + P

1+a2P

)
∀P ∈ [0,∞]. Hence we

are interested in the concave envelope of the maximum of the first two functions. Similar to
the analysis earlier, in this case the concave envelope consists of three parts:
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1. 0 ≤ P ≤ P ∗III : The concave envelope matches 1
2 log (1 + 2P ).

2. P ∗III ≤ P ≤ P ∗IV : The concave envelope is given by
α

2
log(1 + 2P ∗III) + (1− α) log(1 + a2P ∗IV ), where α is the solution of

αP ∗III + (1− α)P ∗IV = P.

3. P ∗IV ≤ P : In this range, the concave envelope matches log
(
1 + a2P

)
.

Here P ∗III and P
∗
IV refer to the points where the common tangent to the curves 1

2 log (1 + 2P )
and log

(
1 + a2P

)
meet the curves respectively. A simple calculation shows that P ∗III is the

solution of the equation

1

2
log
(
a4(1 + 2P ∗III)

)
=

1 + P ∗III − (1/a2)

1 + 2P ∗III
,

with the logarithm in the natural base, and

P ∗IV = 1 + 2P ∗III −
1

a2
.

• 2a2 ≤ 1. It is easy to see that each pair of curves have exactly one point of intersection
(and that it is a crossing of curves at this point. More formally, their first derivatives are
different). The curves log

(
1 + P

1+a2P

)
and 1

2 log(1 + 2P ) have a crossing point at P0 that

satisfies, 2a2(1 + a2P0) = 1, and the curves 1
2 log(1 + 2P ) and log(1 + a2P ) have a crossing

point at P00 that satisfies a2(2 + a2P00) = 2. Note that P0 ≤ P00. Essentially the picture is
the following:

1. 0 ≤ P ≤ P0: Here we have that log
(

1 + P
1+a2P

)
yields the maximum.

2. P0 ≤ P ≤ P00: In this regime, we have that 1
2 log(1 + 2P ) yields the maximum.

3. P00 ≤ P : In this range log(1 + a2P ) yields the maximum.

Since each of the component function is concave and increasing, there are two possibilities for
the concave envelope of the maximum of these three functions.

◦ The concave envelope has two straight line segments and three curves: this happens
precisely when the common tangent between the curves log

(
1 + P

1+a2P

)
and 1

2 log(1+2P )

has a larger slope than that between the curves log
(

1 + P
1+a2P

)
and log(1 + a2P ).

◦ The concave envelope of the maximum of the first and third function dominates the sec-
ond function and hence contains only one line segment: this happens when the common
tangent between the curves log

(
1 + P

1+a2P

)
and log(1 + a2P ) has a larger slope than

that between the curves log
(

1 + P
1+a2P

)
and 1

2 log(1 + 2P ).

Another equivalent and easier way to distinguish which of the above two cases we are in is
to compare the points P ∗I and P ∗a , where P ∗a is the value of P where the common tangent
between the curves log

(
1 + P

1+a2P

)
and log(1 + a2P ) meet the curve log

(
1 + P

1+a2P

)
. The

point P ∗I is the same the point described earlier. It is easy to see that if P ∗I ≤ P ∗a then we are
in the former case, and otherwise we are in the latter case.

Thus from Figure 2 we see that P ∗a ≥ P ∗I and therefore we are always in the former case, i.e.
two line segments and three curves. Thus the concave envelope consists of
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Figure 2: The difference P ∗a − P ∗I as a function of a

1. From 0 to P ∗I : the value is log
(

1 + P
1+a2P

)
,

2. From P ∗I to P ∗II : the value is

α log

(
1 +

P ∗I
1 + a2P ∗I

)
+

1− α
2

log(1 + 2P ∗II),

where α ∈ [0, 1] is the solution for P = αP ∗I + (1− α)P ∗II , and

3. P ∗II ≤ P ≤ P ∗III : the value is 1
2 log(1 + 2P ).

4. P ∗III ≤ P ≤ P ∗IV : The concave envelope is given by

α

2
log(1 + 2P ∗III) + (1− α) log(1 + a2P ∗IV ), where α is the solution of

αP ∗III + (1− α)P ∗IV = P.

5. P ∗IV ≤ P : In this range, the concave envelope matches log
(
1 + a2P

)
.

Here P ∗I , P
∗
II , P

∗
III , and P

∗
IV are exactly as defined in the earlier sections.

Figure 3 shows the achievable rate sum as a function of P when a2 = 0.05. The red curve
denotes the underlying function and the blue curve denotes its concave envelope.

We summarize the results of this section in the following theorem. We assume that P ∗I , P
∗
II ,

P ∗III , and P
∗
IV are as defined earlier.

Theorem 3. An outer bound to the sum-rate using Gaussian signalling of the Han-Kobayashi
scheme in the weak interference regime for the symmetric Gaussian interference channel is given by
the following:

• Case 1: 2a2 < 1.

10
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Figure 3: An outer bound to rate sum using Gaussian signaling

1. From 0 to P ∗I : the value is log
(

1 + P
1+a2P

)
,

2. From P ∗I to P ∗II : the value is

α log

(
1 +

P ∗I
1 + a2P ∗I

)
+

1− α
2

log(1 + 2P ∗II),

where α ∈ [0, 1] is the solution for P = αP ∗I + (1− α)P ∗II , and

3. P ∗II ≤ P ≤ P ∗III : the value is 1
2 log(1 + 2P ).

4. P ∗III ≤ P ≤ P ∗IV : The concave envelope is given by

α

2
log(1 + 2P ∗III) + (1− α) log(1 + a2P ∗IV ), where α is the solution of

αP ∗III + (1− α)P ∗IV = P.

5. P ∗IV ≤ P : In this range, the concave envelope matches log
(
1 + a2P

)
.

• Case 2: 2a2 ≥ 1.

1. 0 ≤ P ≤ P ∗III : The concave envelope matches 1
2 log (1 + 2P ).

2. P ∗III ≤ P ≤ P ∗IV : The concave envelope is given by

α

2
log(1 + 2P ∗III) + (1− α) log(1 + a2P ∗IV ), where α is the solution of

αP ∗III + (1− α)P ∗IV = P.

3. P ∗IV ≤ P : In this range, the concave envelope matches log
(
1 + a2P

)
.

11



3.1.2 Optimality in a certain initial regime

A key result of this paper is the following. We assume that P ∗I , P
∗
II , P

∗
III , and P

∗
IV are as defined

in the earlier sections.

Theorem 4. The optimal sum-rate using Gaussian signalling of the Han-Kobayashi scheme in the
weak interference regime for the symmetric Gaussian interference channel is given by the following:

• Case 1: 2a2 < 1. The optimal sum-rate for various regimes are

1. From 0 to P ∗I : the value is log
(

1 + P
1+a2P

)
,

2. From P ∗I to P ∗II : the value is

α log

(
1 +

P ∗I
1 + a2P ∗I

)
+

1− α
2

log(1 + 2P ∗II),

where α ∈ [0, 1] is the solution for P = αP ∗I + (1− α)P ∗II , and

3. P ∗II ≤ P ≤ P ∗III : the value is 1
2 log(1 + 2P ).

• Case 2: 2a2 ≥ 1. The optimal sum-rate for the following interval [0, P ∗III ] is given by 1
2 log(1+

2P ).

Proof. The proof follows by directly comparing the inner and the outer bounds in Theorem 2 and
Theorem 3 respectively.

In Figure 3, note that P ∗III denotes the point around P = 600 where the red curve and the blue
curve start to diverge. Theorem 4 shows that in the interval [0, P ∗III ] the blue curve is the optimal
achievable sum-rate by the Han-Kobayashi scheme using Gaussian signalling.

4 Various regimes of operation

Motivated from our results in the preceding sections we identify various regimes of operation. This
is similar to the W-picture that is present in [11]. However our analysis identifies that there are
more phase transitions within the Gaussian signalling regime than is indicated by the W-picture.

We fix an a ∈ [0, 1] and divide P ∈ [0,∞] into two regimes: a) determined regime consisting of
P ∈ [0, P ∗III ], b) nebulous regime where P ∈ (P ∗III ,∞).

Determined regime

If we consider a value of a such that 2a2 ≤ 1 we know that within the determined regime there are
three intervals where the operation modes are different:

1. From 0 to P ∗I : we treat interference as noise (IAN). This is the weak interference condition.
Note that the expression “weak interference” is usually associated with the broad region where
a2 ≤ 1. We prefer to restrict it to the particular region below P ∗I as there are many phase
transitions in the entire unit interval of a2.

2. From P ∗I to P ∗II : we do a time-sharing between the IAN strategy with power P ∗I and the time-
division multiplexing(TDM) strategy with power P ∗II , so that the average power consumed is
P . This condition may be labeled intermediate interference.
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Figure 4: Boundaries of regions of weak interference (interference as noise (IAN)), given by 0 ≤ P ≤
P ∗I , intermediate interference (time-sharing between IAN and TDM/FDM), given by P ∗I ≤ P ≤ P ∗II ,
and moderate interference (TDM/FDM), given by P ∗II ≤ P ≤ P ∗III , in the determined regime.

3. P ∗II ≤ P ≤ P ∗III : we do a simple TDM strategy. This situation may be referred to as moderate
interference.

On the other hand if we consider a value of a such that 2a2 > 1, then the optimal strategy in the
entire range P ∈ [0, P ∗III ] is time-division multiplexing(TDM). Therefore, in this range we encounter
moderate interference exclusively.

Figure 4 illustrates the three interference scenarios that occur in the determined regime: weak,
intermediate and moderate interference conditions.

Nebulous regime

For any fixed a ∈ (0, 1) in the regime P > P ∗III we are unable to determine the optimal sum-rate
using Gaussian signaling. Clearly the sum rate of 1

2 log(1 + 2P ) achievable using TDM is an inner
bound for this regime.

The first observation that the TDM rate sum could be beaten in high signal to noise ratios
(SNRs) was made by Sason [10]. This observation could also be made from Etkin, Tse and Wang’s
[11] result of approximating the capacity to within 1 bit. Both use a partial superposition coding
scheme with both decoders decoding identical proportions of the interfering signals. The sum-
rate given using this scheme can be computed by setting q1 = 1, β1 = 1

2 , α11 = α21 = α in the

13



optimization problem described by (4). Substituting these choices into (4) we obtain

max R1 +R2

subject to :

R1 +R2 ≤
1

2
log

(
1 +

αP

1 + a2αP

)
+

1

2
log

(
1 +

P + a2ᾱP

1 + a2αP

)
(5)

R1 +R2 ≤ log

(
1 +

a2ᾱP + αP

1 + a2αP

))
0 ≤ α ≤ 1.

Sason’s choice of parameters: Set α such that αP = a2(1 + a2P ) − 1, when a2(1 + a2P ) ≥ 1.
Indeed this is the optimal choice of α in (5) for a certain range of a2 and yields a rate sum given by

R1 +R2 = log

(
a2(1 + P + a2P )

1− a2 + a4(1 + a2P )

)
.

Etkin-Tse-Wang’s choice of parameters: Set α = 1
a2P

whenever a2P ≥ 1.
This astute heuristical choice of α gives a rate sum of

R1 +R2 =
1

2
log

(
(1 + P + a2P )(1 + 2a2)

4a2

)
for a certain range of a2, and the authors show that this scheme is able to beat TDM/FDM for high
SNR.

Optimal choice of parameters: When a2(1 + a2P ) ≥ 1, set α such that

αP = min

{
a2(1 + a2P )− 1,

1− a2

a2(1 + a2)

}
.

For this choice the rate sum is given by

log

(
a2(1 + P + a2P )

1− a2 + a4(1 + a2P )

)
,

when 0 ≤ αP = a2(1 + a2P ) − 1 ≤ 1−a2
a2(1+a2)

, a range that we call Sason’s Band. Subsequently,

when αP is set equal to 1−a2
a2(1+a2)

, i.e., for P ≥ 1−a6
a6(1+a2)

, the rate sum is given by

1

2
log

(
(1 + P + a2P )(1 + a2)2

4a2

)
.

When a2(1 + a2P ) < 1, set α equal to 1, disallowing any common information. For this choice
of α the rate sum is given by

log

(
1 +

P

1 + a2P

)
,

i.e., the interference as noise (IAN) approach. Naturally, in this region IAN competes with TDM/FDM,
and one of the three scenarios, weak, intermediate or moderate interference, shall prevail.

14



Partial superposition with high SNR and a close to 1

The schemes considered above fail to beat TDM for high SNR. More precisely, when a ∈ (a∗, 1) one
can find P large enough so that

1

2
log

(
(1 + P + a2P )(1 + a2)2

4a2

)
<

1

2
log (1 + 2P ) ,

where a∗ =
√√

5− 2 ≈ 0.4858683.
To beat the TDM rate when a is close to 1, an asymmetrical selection of α1a and α2a is ad-

vantageous. To this end, select the parameters as follows: let q = 1, so that there is no need for
α1b, α2b, βb, Pb. Choose Pa = 2P, βa = 1

2 , α1a = 0, α2a = α for some α ∈ (0, 1).
With these choice of parameters one can achieve

max (R1 +R2)

subject to :

R1 +R2 ≤
1

2
log
(
1 + P + a2P

)
+

1

4
log

(
1 + αP

1 + a2αP

)
R1 +R2 ≤

1

2
log

(
(1 + P + a2P )(1 + a2P + αP )

1 + a2αP

)
,

0 ≤ α ≤ 1.

Now one can always choose α ∈ (0, 1) to make these two constraints equal as long as a2(1 +
a2P ) > 1. Choose this α∗. Not let P →∞ we see that the first constraint grows like (independent
of α as long as α > 0)

1

2
logP (

1

a
+ a).

By our choice of α we also have that the second constraint matches the first constraint. Hence the
sum-rate is at least as large as

1

2
logP (

1

a
+ a).

This is larger than the growth of 1
2 log(1 + 2P ).

Thus the approach of partially decoding one of the interfering signals and fully decoding the
other can produce higher rate sums than achieved by TDM/FDM.

In this nebulous regime of interference, the conditions are not quite the same as what prevails
when a2 ≥ 1, which is usually named strong interference. But there is a sense that some of the
interference energy needs to be decoded and subsequently eliminated. For this reason we name this
interference scenario as “almost strong" interference, or interference that is “forte ma non troppo”.
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