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Abstract—We derive a genie-based outer bound for the sum
rate of discrete memoryless interference channels. We define a
class of very weak interference channels and study a sub-class
called the binary skewed-Z interference channel. We use the genie
based outer bound to deduce the sum-capacity in a non-trivial
regime of parameters for this sub-class.

I. INTRODUCTION

The interference channel is a model for communication
of two (or more) pairs of transmitters and receivers over a
common medium. Each sender wants to send a private message
to its intended receiver and one is interested in characterizing
the region of rate-pairs that are simultaneously achievable, i.e.
the capacity region. The characterization of the capacity region
is a classical and fundamental open problem in multi-terminal
information theory. For some background on this problem and
problem definition, please refer to Chapter 6 in [4].

M1

M2

Encoder 1

Encoder 2

Xn
1

Xn
2

q(y1, y2|x1, x2)

Y n1

Y n2

Decoder 1

Decoder 2

M̂1

M̂2

Fig. 1. Discrete memoryless interference channel

A rate pair (R1, R2) is said to be achievable if there is a se-
quence of encoding schemes such that Pe := Pr{(M1,M2) 6=
(M̂1, M̂2)} → 0 as n → ∞, when the messages M1,M2 are
distributed uniformly over [1 : b2nR1c] × [1 : b2nR2c]. The
capacity region is the closure of the set of achievable rate
pairs (R1, R2).

In this paper, we restrict ourselves to maximizing the sum-
rate (R1 +R2).

II. INNER AND OUTER BOUNDS FOR THE SUM-RATE

A. Inner bound

The sum-capacity of interference channel is not known
in general. The best known achievable region is the Han-
Kobayashi inner bound [5], [3], which subsumes all other
known inner bounds. Performing Fourier-Motzkin elimination
on this region will allow us to obtain the corresponding sum-
rate inner bound.

Theorem 1 (Han-Kobayashi sum-rate inner bound). Any non-
negative value R1 +R2 satisfying the constraints

R1 +R2 ≤ I(X1;Y1|U2, Q) + I(X2;Y2|U1, Q) (1a)
R1 +R2 ≤ I(U2X1;Y1|Q) + I(X2;Y2|U2U1Q) (1b)
R1 +R2 ≤ I(U1X2;Y2|Q) + I(X1;Y1|U2U1Q) (1c)
R1 +R2 ≤ I(U2X1;Y1|U1Q) + I(U1X2;Y2|U2Q) (1d)

for some p(q)p(u1, x1|q)p(u2, x2|q) is achievable.

There are some outer bounds for the discrete memoryless
interference channel

B. A routine outer bound

Theorem 2. It can be shown1 that any achievable rate pair
(R1, R2) must satisfy

R1 ≤ min{I(U2X1;Y1|Q), I(X1;Y1|X2Q)}
R2 ≤ min{I(U1X2;Y2|Q), I(X2;Y2|X1Q)}

R1 +R2 ≤ I(U2X1;Y1|Q) + I(X2;Y2|U2X1Q)

R1 +R2 ≤ I(U1X2;Y2|Q) + I(X1;Y1|U1X2Q),

for some distribution of the form p(q, u1, u2, x1, x2) =
p(q)p(u1, u2|q)p(x1|u1, u2, q)p(x2|u1, u2, q).

To deduce this outer bound one can use routine arguments
along with the following identification for the auxiliaries:
U1i = (X

n\i
2 , Y i−1

11 , Y n2i+1), U2i = (X
n\i
1 , Y i−1

11 , Y n2i+1). The
first two constraints are straightforward. To obtain the third
constraint, observe that (by Fano’s inequality)
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≤
n∑
i=1

I(U2i, X1i;Y1i) + I(X2i;Y2i|U2i, X1i)

where (a) uses Csiszar sum lemma. The fourth constraint
follows similarly and the Markov chains are reasonably
straightforward to establish using the d-separation principle
of Bayesian networks.

1This outer bound is due to Nair. It is an unpublished result first used as a
mid-term question in Network Information Theory class: a version of it was
used in Fall ‘09 and a complete version in Fall ‘11. In 2012, a similar version
of this was independently discovered by other researchers as well.



Applying Fourier-Motzkin elimination on the aforemen-
tioned outer bound and eliminating redundant inequalities, we
obtain the following sum-rate outer bound for an interference
channel.

Corollary 1 (Sum-rate outer bound). Any sum-rate R1 +R2

that is achievable must satisfy the constraints

R1 +R2 ≤ I(X1;Y1|X2Q) + I(X2;Y2|X1Q) (2a)
R1 +R2 ≤ I(U2X1;Y1|Q) + I(U1X2;Y2|Q) (2b)
R1 +R2 ≤ I(U2X1;Y1|Q) + I(X2;Y2|U2X1Q) (2c)
R1 +R2 ≤ I(U1X2;Y2|Q) + I(X1;Y1|U1X2Q) (2d)

for some distribution of the form p(q, u1, u2, x1, x2) =
p(q)p(u1, u2|q)p(x1|u1, u2, q)p(x2|u1, u2, q).

C. Genie based outer bound

In the scalar Gaussian interference channel it was shown
that treating interference as noise is optimal, for sum-capacity,
under a certain weak interference condition (see Chapter 6 in
[4]). The optimality (or converse) was shown using “genie-
aided” receivers. Inspired by this technique, we develop the
following outer bound for a general discrete memoryless inter-
ference channel. We will then show that this new outer bound
helps us determine the sum-capacity for certain new classes
of discrete memoryless interference channels, in addition to
recovering the Gaussian result.

Theorem 3. Let T1, T2 be any pair of random vari-
ables such that: p(y1, t1|x1, x2) = p(t1|x1)p(y1|t1, x1, x2),
p(y2, t2|x1, x2) = p(t2|x2)p(y2|t2, x1, x2), and the marginals
are consistent with the given channel transition probabili-
ties, i.e. p(y1|x1, x2) = q(y1|x1, x2) and p(y2|x1, x2) =
q(y2|x1, x2). The achievable sum-rate of the discrete mem-
oryless interference channel characterized by q(y1, y2|x1, x2)
can be upper bounded as follows:

R1 +R2 ≤ max
p1(x1)p2(x2)

I(X1;T1Y1) + I(X2;T2Y2)

+ C[I(X2;T2|X1T1)− I(X2;Y1|T1X1)]

− I(X2;T2|X1T1) + I(X2;Y1|T1X1) (3)
+ C[I(X1;T1|X2T2)− I(X1;Y2|T2X2)]

− I(X1;T1|X2T2) + I(X1;Y2|T2X2),

where C[I(X2;T2|X1T1) − I(X2;Y1|T1X1)] denotes
the upper concave envelope of the function
I(X2;T2|X1T1) − I(X2;Y1|T1X1) with respect to product
distributions pa(x1)pb(x2) evaluated at p1(x1)p2(x2).
Similarly the term C[I(X1;T1|X2T2) − I(X1;Y2|T2X2)]
denotes the upper concave envelope of the function
I(X1;T1|X2T2)− I(X1;Y2|T2X2) with respect to to product
distributions pa(x1)pb(x2) evaluated at p1(x1)p2(x2).

Proof: Consider a sequence of codebooks such that their
decoding error probabilities tend to zero as the block length

n tends to infinity. A distribution on the n-tuples given by
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p(t1i|x1i)p(y1i|x1i, x2i, t1i)p(t2i|x2i)p(y2i|x1i, x2i, t2i).

Keep in mind that the capacity only depends on the
marginals q(y1|x1, x2) and q(y2|x1, x2) and the above dis-
tribution is consistent with the marginal distributions by the
assumptions on (T1, T2). One can get an upper bound on sum-
rate by following manipulations. The initial part mimics the
manipulations in the Gaussian argument as presented in the
Appendix of Chapter 6 in [4].
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One can verify that X1i → Ui → X2i in the Appendix.
Similarly

H(Tn2 )−H(Y n1 |Xn
1 T

n
1 )

=
∑
i

H(T2i|ViX1iT1i)−H(Y1i|ViX1iT1i)

where Vi = (Y n1,i+1, T
i−1
2 , T

n\i
1 , X

n\i
1 ) and X1i → Vi → X2i.
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From the chain rule and that conditioning reduces entropy
we also obtain

H(Y n1 |Tn1 ) ≤
n∑
i=1

H(Y1i|T1i),

H(Y n2 |Tn2 ) ≤
n∑
i=1

H(Y2i|T2i).

Combining the above arguments, we obtain using routine
manipulations that

n(R1 +R2)

≤H(Tn1 )−H(Tn1 |Xn
1 ) +H(Y n1 |Tn1 )−H(Y n1 |Tn1 Xn
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+H(T1i|UiX2iT2i)−H(Y2i|UiX2iT2i)

−H(T2i|X2i) +H(Y2i|T2i) + nε

=
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=
∑
i
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(since I(ViX2i;T2i|X1iT1i) = I(X2i;T2i|X1iT1i) )
+ I(X1i;Y1i|T1i) + I(Vi;Y1i|T1iX1i)

+ I(X1i;T1i|X2iT2i)− I(Ui;T1i|X2iT2i)
(since I(UiX1i;T1i|X2iT2i) = I(X1i;T1i|X2iT2i) )
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I(X2i;T2i)− I(Vi;T2i|X1iT1i)

+ I(X1i;Y1i|T1i) + I(Vi;Y1i|T1iX1i)

+ I(X1i;T1i)− I(Ui;T1i|X2iT2i)

+ I(X2i;Y2i|T2i) + I(Ui;Y2i|T2iX2i) + nε
(since (X1, T1) and (X2, T2) are independent.)

=
∑
i

I(X1i;T1iY1i) + I(X2i;T2iY2i)

− I(Vi;T2i|X1iT1i) + I(Vi;Y1i|T1iX1i)

− I(Ui;T1i|X2iT2i) + I(Ui;Y2i|T2iX2i) + nε

Now since Vi → (X1i, T1i, X2i) → (Y1i, T2i) and Ui →
(X1i, X2i, T2i)→ (Y2i, T1i), one can rewrite the above as

n(R1 +R2)

≤
∑
i

I(X1i;T1iY1i) + I(X2i;T2iY2i)

− I(X2i;T2i|X1iT1i) + I(X2i;Y1i|T1iX1i)

+ I(X2i;T2i|Vi, X1iT1i)− I(X2i;Y1i|Vi, T1iX1i)

− I(X1i;T1i|X2iT2i) + I(X1i;Y2i|T2iX2i)

+ I(X1i;T1i|Ui, X2iT2i)− I(X1i;Y2i|Ui, T2iX2i) + nε

≤
∑
i

I(X1i;T1iY1i) + I(X2i;T2iY2i) + nε

− I(X2i;T2i|X1iT1i) + I(X2i;Y1i|T1iX1i)

+ C[I(X2i;T2i|X1iT1i)− I(X2i;Y1i|T1iX1i)]

− I(X1i;T1i|X2iT2i) + I(X1i;Y2i|T2iX2i)

+ C[I(X1i;T1i|X2iT2i)− I(X1i;Y2i|T2iX2i)].

Here C[I(X2i;T2i|X1iT1i)−I(X2i;Y1i|T1iX1i)] represents an
upper concave envelope of the function I(X2i;T2i|X1iT1i)−
I(X2i;Y1i|T1iX1i) defined on the space of distributions
p1(x1)p2(x2). It is easy to see from the definition of the upper
concave envelope that

C[I(X2i;T2i|X1iT1i)− I(X2i;Y1i|T1iX1i)]

= sup
U :X1i→U→X2i

U→(X1i,X2i)→(Y1i,T2i,T1i)

I(X1i;T1i|U,X2iT2i)

− I(X1i;Y2i|U, T2iX2i).

By Bunt’s extension of Caratheodory’s theorem indeed it
suffices to consider U such that |U| ≤ |X1||X2| to compute
the upper concave envelope.

Thus for any valid choice of genies T1, T2, we obtain an
outer bound to the sum-rate given by

R1 +R2

≤ max
p1(x1)p2(x2)

I(X1;T1Y1) + I(X2;T2Y2)

+ C[I(X2;T2|X1T1)− I(X2;Y1|T1X1)]

− I(X2;T2|X1T1) + I(X2;Y1|T1X1)

+ C[I(X1;T1|X2T2)− I(X1;Y2|T2X2)]

− I(X1;T1|X2T2) + I(X1;Y2|T2X2) (4)

Remark 1. The following observations are worth noting.
(a) Since every valid pair T1, T2 (or genies) yields an outer

bound, one minimizes the above expression over the choice
of valid genies to obtain the best genie based outer bound
for the sum-rate. However, since every pair of valid genies
yields an outer bound, it is not necessary to provide a
cardinality bound on the size of the genie that one needs
to consider to make the above region computable.

(b) The above genie based outer bound recovers the known
result in the scalar Gaussian weak interference regime.
Useful genies [1], [8], [7] turn out to be choices of T1, T2

so that the functions I(X2;T2|X1T1) − I(X2;Y1|T1X1)
and I(X1;T1|X2T2) − I(X1;Y2|T2X2) become concave
in p2(x2) and p1(x1) respectively. For such genies observe
that the outer bound reduces to

R1 +R2 ≤ max
p1(x1)p2(x2)

I(X1;T1Y1) + I(X2;T2Y2),

since the concave envelope of a concave function is itself.
The maximizing distributions (X1∗, X2∗) can be shown to
be Gaussian by an application of EPI.



Within this class of genies where Gaussian signaling is
optimal, smart genies [1] ensure that Xi∗ → Yi → Ti, i =
1, 2 becomes Markov. Therefore the presence of useful and
smart genies reduces the upper bound to

R1 +R2 ≤ I(X1∗;Y1∗) + I(X2∗;Y2∗),

which is achievable by treating interference as noise.
(c) Concave envelopes are just a compact way of representing

maximizations over auxiliary random variables.

III. VERY WEAK INTERFERENCE CLASS OF INTERFERENCE
CHANNELS

In this section we define the very weak interference class,
bearing in mind that our interest is in computing the sum-
capacity. Our definition (and nomenclature) is motivated in
part by the definition of very strong interference channel [2]
presented below.

Definition 1. A DM-IC is said to have very strong interference
if

I(X1;Y1|X2) ≤ I(X1;Y2),

I(X2;Y2|X1) ≤ I(X2;Y1)

for all p1(x1)p2(x2).

Remark 2. In layman’s terms a phrasing of the definition is
the following: If the interference at the unintended receiver is
so strong that one can decode the interfering signal treating
ones own signal as noise at a higher rate than the rate at which
the true receiver can decode its intended signal even if some
genie provides the interfering signal, then the interference is
said to be very strong. The optimal strategy indeed turns out
to be to decode the interfering signal first and then decodes
ones intended signal.

In a very weak interference setting one expects the intended
receiver to treat the interference signal as noise. Additionally,
the true receiver should not even try to decode any part of the
interfering signal. Motivated by this intuition, we make the
following definition.

Definition 2. A discrete memoryless interference channel
characterized by the transition matrix q(y1, y2|x1, x2) is called
a very weak interference channel if for every pair of auxiliaries
(U1, U2) such that the joint probability distribution takes
the form p1(u1, x1)p2(u2, x2)q(y1, y2|x1, x2) the following
inequalities hold:

I(U1;Y1) ≥ I(U1;Y2|X2)

I(U2;Y2) ≥ I(U2;Y1|X1). (5)

Remark 3. The following remarks capture some of the intu-
ition as well as limitations of the above definition of very weak
interference channels. It would be nice to formally prove this
in the sense of [6]. Such a formal proof seems currently out
of reach.

1) The term I(U1;Y1) captures the rate of information from
U1 (a part of X1 or a cloud centre among Xn

1 sequences)

to Y1 when Y1 tries to decode U1 while treating the
rest as noise. However, the receiver Y1 could do some
interference cancellation of part of X2 before decoding
U1; hence this is an underestimate of the information rate
from U1 to Y1.
The term I(U1;Y2|X2) captures the rate of information
from U1 to receiver Y2, after Y2 has (magically) cleaned
any effect from X2. This is the maximum rate from U1

that receiver Y2 can hope to decode.
Thus the direction of the inequality states that if U1 (part
of X1) is to be decoded at Y2 then this imposes a penalty
on the rate from U1 to Y1 even under the most favorable
(unfavorable) decoding scenario at Y2 (Y1). Thus if one is
interested in maximizing R1 +R2 then one would expect
that Y2 should not attempt to decode any part of X1.

2) Note that if one is interested in optimizing λR1 + R2,
λ 6= 1, then one must use a different criterion than the
one given above to expect treating interference as noise to
remain optimal. In particular if one were to maximize R2,
then as long as channels do not have deterministic com-
ponents, one expects that to obtain R2 = I(X2;Y2|X1)
the receiver Y2 must end up decoding X1, so treating
interference as noise may never be optimal.

Proposition 1. The conditions given in (5) are equivalent
to the following conditions: for a fixed p2(x2) the function
I(X1;Y1)−I(X1;Y2|X2) is concave in p1(x1) and for a fixed
p1(x1) the function I(X2;Y2) − I(X2;Y1|X1) is concave in
p2(x2).

Proof: Since U1 → X1 → (X2, Y1, Y2) is Markov
observe that

I(U1;Y1) ≥ I(U1;Y2|X2) ⇐⇒
I(X1;Y1)− I(X1;Y2|X2) ≥ I(X1;Y1|U1)− I(X1;Y2|U1X2).

The right hand side is clearly equivalent to concavity w.r.t.
p1(x1).

Proposition 2. Let SRHK(q) denote the maximum sum-rate
achievable using the Han-Kobayashi encoding strategy. Under
the very weak interference channel definition in (5), the Han-
Kobayashi sum-rate reduces to

SRHK(q) = max
p1(x1)p2(x2)

I(X1;Y1) + I(X2;Y2).

Proof: Clearly by setting Q = U1 = U2 = 0 the trivial
random variable (i.e. by treating interference as noise) one can
indeed achieve the above sum-rate using the Han-Kobayashi
scheme.

To observe the reverse direction consider equation (1d) and
note the following

I(U2X1;Y1|U1Q) + I(U1X2;Y2|U2Q)

(a)
= I(U2X1;Y1|Q)− I(U1;Y1|Q)

+ I(U1X2;Y2Q)− I(U2;Y2|Q)

= I(X1;Y1|Q) + I(U2;Y1|X1Q)− I(U2;Y2|Q)

+ I(X2;Y2|Q)− I(U1;Y1|Q) + I(U1;Y2|X2Q)

(b)

≤ I(X1;Y1|Q) + I(X2;Y2|Q).



Here (a) is a consequence of the Markov chains U1 → X1 →
(U2, X2, Y1, Y2) and U2 → X2 → (U1, X1, Y1, Y2) which
hold conditioned on Q = q. Inequality (b) is an immediate
consequence of our definition of very weak interference chan-
nel. Since the average over Q is dominated by the maximum
value the lemma is established.

IV. BINARY SKEWED-Z INTERFERENCE CHANNEL

In this section we introduce a class of channels that satisfies
the very weak interference condition for a certain set of
parameters. We focus on the sum-rate capacity of this class
of channels under very weak interference for the rest of the
article.
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Fig. 2. Binary skewed-Z interference channel (BSZIC)

Figure 2 depicts the transition probabilities of the direct
channels for different values of interfering signal. We call
such a channel to be Binary Skewed-Z Interference Channel
(BSZIC).

Proposition 3. The binary skewed-Z interference channel
shown in Figure 2 is a very weak interference channel if and
only if 0 ≤ p+ q ≤ 1.

Proof: From Proposition 1, it suffices to determine the
conditions under which I(X1;Y1)− I(X1;Y2|X2) is concave
in p1(x1) for all fixed p2(x2). Let H(x) = −x log2 x− (1−
x) log2(1−x) denote the binary entropy function. Let P(X2 =
0) = a and P(X1 = 0) = x. We need to determine the
values of p, q ∈ [0, 1] with which I(X1;Y1) − I(X1;Y2|X2)
is concave in x for all a ∈ [0, 1].

I(X1;Y1)− I(X1;Y2|X2)

=H(x(1− āp))− xH(1− āp)− āH(xq) + āxH(q),

where ā = 1− a. Note that the second and the last terms are
linear in x. After taking second derivative, one could see that
the concavity of the above expression w.r.t x is equivalent to
showing that

1− āp
1− x(1− āp)

≥ āq

1− xq
,

i.e. (1− āp)(1− xq) ≥ āq(1− x(1− āp)).

The above condition must hold for every x ∈ [0, 1]. Since both
sides of the inequality are linear in x, it suffices to verify only

at x = 0 and x = 1. Substituting, we obtain the following two
conditions, respectively.{

1− āp ≥ āq,
(1− āp)(1− q) ≥ pqā2.

Both conditions have to be satisfied at the same time for all
a ∈ [0, 1]. It is easy to check that this is equivalent to p+q ≤ 1.

Remark 4. We are not able to isolate any non-trivial subset
of parameters in the scalar Gaussian interference channel that
satisfies the very weak interference condition.

p

q

1
3

1
3

0

1

1

Fig. 3. Regime of parameters where the sum-capacity is established for the
Skewed-Z interference channel

Theorem 4. Treating interference as noise is sum-rate optimal
for BSZIC with channel parameters (p, q) satisfying

0 ≤ p ≤ 1

3
,

p ≤ q ≤ 1− p
1 + 3p

or
0 ≤ q ≤ 1

3
,

q ≤ p ≤ 1− q
1 + 3q

The regime of parameters (as a subset of the weak-interference
regime) is shown in Figure 3.

Proof:
In the green region of Figure 3, there is a valid choice of

genie T1 , T2 such that

• Xi∗ → Yi → Ti, i = 1, 2
• The functions I(X2;T2|X1T1) − I(X2;Y1|T1X1) and
I(X1;T1|X2T2) − I(X1;Y2|T2X2) become concave in
p2(x2) and p1(x1) respectively.

This would then imply immediately that the equations (3)
reduce to

max
p1(x1)p2(x2)

I(x1;Y1) + I(X2;Y2)

which is achievable, hence establishing the sum-capacity.
Let x = Pr(X1 = 0), y = Pr(X2 = 1). Consider binary

(say Ti = {0, 1}) genies T1, T2 with the following joint
distribution:



X1 X2 Y1 T1 Probability
0 0 0 0 x(1− y)(1− p)a
0 1 0 0 xy(1− p)a
0 0 0 1 x(1− y)((1− p)(1− a) + p)
1 0 1 1 (1− x)(1− y)
0 1 0 1 xy(1− p)(1− a)
0 1 1 1 xyp
1 1 1 1 (1− x)y.

X1 X2 Y2 T2 Probability
1 1 1 0 (1− x)y(1− q)c
0 1 1 0 xy(1− q)c
1 1 1 1 (1− x)y((1− q)(1− c) + q)
0 1 0 1 xyq
1 0 0 1 (1− x)(1− y)
0 1 1 1 xy(1− q)(1− c)
0 0 0 1 x(1− y).

Parameters 0 < a < 1, 0 < c < 1 will be determined later.
It is easy to check this distribution has the laws p(y1|x1, x2)
which are consistent with the channel. So this setting gives a
valid genie.

Below we check the Markov chains Xi → Yi → Ti, i = 1, 2


p(T1 = 0|X1 = 0, Y1 = 0) = p(T1 = 0|Y1 = 0)

= (1−p)a
1−y+y(1−p)

p(T1 = 0|X1 = 0, Y1 = 1) = p(T1 = 0|X1 = 1, Y1 = 1)

= p(T1 = 0|Y1 = 1) = 0
p(T2 = 0|X2 = 1, Y2 = 1) = p(T2 = 0|Y2 = 1)

= (1−q)c
1−x+x(1−q)

p(T2 = 0|X2 = 0, Y2 = 0) = p(T2 = 0|X2 = 1, Y2 = 0)

= p(T2 = 0|Y2 = 0) = 0

Second, we show I(X2;T2|X1T1) − I(X2;Y1|T1X1) is
concave in p2(x2) for any distribution of X2:

Define

f(x, y) :=
(
I(X2;T2|X1T1)− I(X2;Y1|T1X1)

)
|P(X1=0)=x,P(X2=1)=y .

For simplicity of notation, for a generic variable x ∈ [0, 1],
let x̄ = 1− x and L(x) = −x log2 x. Then

f(x, y)

=L(yq̄c)− yL(q̄c) + L(ȳ + y(q̄c̄+ q))− yL(q̄c̄+ q)

− (xp+ xp̄ā)L

(
yp

p+ p̄ā

)
− x(p+ p̄ā)L

(
ȳp+ p̄ā

p+ p̄ā

)
+ xy(p+ p̄ā)L

(
p

p+ p̄ā

)
+ xy(pb+ p̄ā)L

(
p̄ā

p+ p̄ā

)
.

It remains to show ∂2f
∂y2 ≤ 0.

∂2f

∂y2

=− q̄c

y
− q̄2c2

1− yq̄c
+
xp

y
+

xp2

ȳp+ p̄ā

≤− q̄c

y
− q̄2c2

1− yq̄c
+
p

y
+

p2

ȳp+ p̄ā

=− q̄c

y(1− yq̄c)
+

p2 + pp̄ā

y(ȳp+ p̄ā)

=− 1

y

(
q̄c

1− yq̄c
− p2 + pp̄ā

ȳp+ p̄ā

)
=− 1

y

(
(p̄ā+ p− 1)pq̄cy + q̄cp+ q̄p̄cā− p2 − pp̄ā

(1− yq̄c)(ȳp+ p̄ā)

)
≤− 1

y

(
(p̄ā+ p− 1)pq̄c+ q̄cp+ q̄p̄cā− p2 − pp̄ā

(1− yq̄c)(ȳp+ p̄ā)

)
=− 1

y

(
(p̄āp+ p2 + p̄ā)q̄c− p2 − pp̄ā

(1− yq̄c)(ȳp+ p̄ā)

)

We choose

c =
p2 + pp̄ā

q̄(p2 + pp̄ā+ p̄ā)

where a is determined later and the validity of c will be shown
after a is determined. Then we have

∂2f

∂y2 ≤ 0

Third, we show that I(X1;T1|X2T2)− I(X1;Y2|T2X2) is
concave in p1(x1). We use similar approach:

Define

f̃(x, y)

:=
(
I(X1;T1|X2T2)− I(X1;Y2|T2X2)

)
|P(X1=0)=x,P(X2=1)=y.

and compute its second derivative

∂2f̃

∂x2 ≤ −
1

x

(
(q̄c̄q + q2 + q̄c̄)p̄a− q2 − qq̄c̄

(1− xp̄a)(x̄q + q̄c̄)

)

To make the second derivative less than 0, it suffices to



show for some a ∈ [0, 1],

p̄a ≥ q2 + qq̄c̄

q2 + qq̄c̄+ q̄c̄

=1− q̄c̄

q2 + qq̄c̄+ q̄c̄

=1− 1
q2

q̄c̄ + q + 1

=1− 1
q2

q̄− p2+pp̄ā

p2+pp̄ā+p̄ā

+ q + 1

=1− 1
q2

q̄p2+q̄pp̄ā+q̄p̄ā−p2−pp̄ā

p2+pp̄ā+p̄ā

+ q + 1

=1− 1
q2p2+q2pp̄ā+q2p̄ā
q̄p̄ā−p2q−pp̄āq + q + 1

=1− q̄p̄ā− p2q − pp̄āq
q2p̄ā+ qq̄p̄ā+ q̄p̄ā− p2q − pp̄āq

=
qp̄ā

qp̄ā+ q̄p̄ā− p2q − pp̄āq

=
qp̄ā

p̄ā− p2q − pp̄āq

=
qp̄ā

(1− pq)p̄ā− p2q

or equivalently,

(1− pq)(1− p)a− (1− pq)(1− p)a2 − p2qa ≥q − qa
(1− pq)(1− p)a2 − (1− p)(1 + q)a+ q ≤0.

Now let’s take a = 1+q
2(1−pq) . then

a =
1 + q

2(1− pq)
(∗)
≤ 1 + q

2(1− q 1−q
1+3q )

=
(1 + q)(1 + 3q)

2(1 + q)2

=
1 + 3q

2 + 2q
≤ 1

where (*) comes from the constraints on p, q. Then

(1− pq)(1− p)a2 − (1− p)(1 + q)a+ q

=
(1− q)(1 + 3q)

(
p− 1−q

1+3q

)
4(1− pq)

≤ 0

Hence f̃(x) is concave.

It remains to check c ≤ 1.

c =
p2 + pp̄ā

q̄(p2 + pp̄ā+ p̄ā)

=
p2 + pp̄(1− 1+q

2−2pq )

q̄(p2 + pp̄ā+ p̄(1− 1+q
2−2pq ))

=
p2 + pp̄( 1−2pq−q

2−2pq )

q̄(p2 + pp̄ā+ p̄(1− 1+q
2−2pq ))

=
p2 + pp̄−2p2p̄q−pp̄q

2−2pq

q̄(p2 + pp̄ā+ p̄−2pp̄q−p̄q
2−2pq )

=
p2 + pp̄q̄−2p2p̄q

2−2pq

q̄(p2 + pp̄q̄−2p2p̄q
2−2pq + p̄−2pp̄q−p̄q

2−2pq )

=
p2(2− 2pq) + pp̄q̄ − 2p2p̄q

q̄(p2(2− 2pq) + pp̄q̄ − 2p2p̄q + p̄− 2pp̄q − p̄q)

=
2p2 − 2p2q + pp̄q̄

q̄(p2(2− 2pq) + pp̄q̄ − 2p2p̄q + p̄− 2pp̄q − p̄q)

=
pq̄(1 + p)

q̄(pq̄(1 + p) + p̄− 2pp̄q − p̄q)

=
p(1 + p)

pq̄ + p2q̄ + p̄− 2pp̄q − p̄q

=
p(1 + p)

q̄ + p2q̄ − 2pp̄q

=
p(1 + p)

1 + p2 − (1 + q2)q − (2p− 2p2)q

=
p(1 + p)

1 + p2 − (1 + 2p− p2)q

By the constraints on p, q,

p(1 + p)

1 + p2 − (1 + 2p− p2)q

≤ p(1 + p)

1 + p2 − (1 + 2p− p2) 1−p
1+3p

=
p(1 + p)(1 + 3p)

(1 + p2)(1 + 3p)− (1 + 2p− p2)(1− p)

=
p(1 + p)(1 + 3p)

1 + 3p+ p2 + 3p3 − (1 + 2p− p2 − p− 2p2 + p3)

=
p(1 + p)(1 + 3p)

1 + 3p+ p2 + 3p3 − (1 + p− 3p2 + p3)

=
p(1 + p)(1 + 3p)

2p+ 4p2 + 2p3

=
1 + 3p

2 + 2p

=1− 1− p
2 + 2p

≤1

Remark 5. In appendix we also show that the above condi-
tions on (p, q) are necessary for the existence of genies such



that the difference of mutual information terms are concave
and the Markov chain holds.

A. More on the genie based outer bound

In this section, we analyze the necessary conditions2 when
the genie based outer bound for the skewed-Z interference
channel reduces to the sum-rate yielded by treating interfer-
ence as noise. Since our setting is a discrete setting we are
able to perform a much more exhaustive analysis of the bound
than that possible in the Gaussian setting.

For a given (valid) pair of genies (T1, T2) consider the sum-
rate outer bound given by Theorem 3. Further let p∗1(x1)p∗2(x2)
be a maximizing product distribution (i.e. the product distri-
bution that yields the outer bound for this particular choice of
genies). For the expression in (3) to reduce to

I(X1;Y1) + I(X2;Y2)

at p∗1(x1)p∗2(x2), it is easy to see that the following equalities
must hold:

I(X1;T1|Y1) = 0,

I(X2;T2|Y2) = 0,

C[I(X2;T2|X1T1)− I(X2;Y1|T1X1)]

= I(X2;T2|X1T1) + I(X2;Y1|T1X1),

C[I(X1;T1|X2T2)− I(X1;Y2|T2X2)]

= I(X1;T1|X2T2) + I(X1;Y2|T2X2).

However these inequalities need to hold only at the maximiz-
ing distribution p∗1(x1)p∗2(x2). Further if such genies exist, by
virtue of the fact that the expression I(X1;Y1) + I(X2;Y2)
at p∗1(x1)p∗2(x2) yields an outer bound to the sum-rate, it
must also hold that p∗1(x1)p∗2(x2) is also a maximizer of the
expression I(X1;Y1)+I(X2;Y2) over all product distributions
(since the maximum of I(X1;Y1)+I(X2;Y2) is an achievable
sum-rate).

We first restrict our attention to genies (taking values in
some finite alphabet) such that the Markov chains X1 → Y1 →
T1 and X2 → Y2 → T2 hold at some distribution P(X1 =
0) = x∗ and P(X2 = 1) = y∗. One can easily verify that for
the Markov chains to hold, the probability distributions must
take the form

X1 X2 Y1 T1 Probability
0 0 0 i x∗(1− y∗)((1− p)ai + pbi))
1 0 1 i (1− x∗)(1− y)bi
0 1 0 i x∗y∗(1− p)ai
0 1 1 i x∗y∗pbi
1 1 1 i (1− x∗)y∗bi

for some 0 ≤ a,bi ≤ 1. A similar structure also holds for
the distribution of (X1, X2, Y2, T2). An interesting observation
is that if the Markov chain holds for some x∗, y∗ > 0 then
the Markov condition continues to hold for any product dis-
tribution. This is a chance observation (peculiar to the Binary
skewed-Z interference channel) which greatly simplified our
analysis.

2Note that the previous result only dealt with the sufficient conditions.

Among the class of genies that satisfy the Markov chain,
one is further interested in a subclass for which the upper
concave envelopes of the differences of mutual information
match the function value at p∗1(x1)p∗2(x2). To this end, define
f(x, y) as

I(X2;T2|X1T1)− I(X2;Y1|T1X1)|P(X1=0)=x,P(X2=1)=y.

Expanding the terms and noting the linearity in x can express
f(x, y) = (1 − x)g0(y) + xg1(y), where g0(y) = f(0, y) is
a concave function of y and g1(y) = f(1, y) is in general
neither convex nor concave in the entire interval y ∈ [0, 1].

The following proposition aids in our computation of the
upper concave envelope of f(x, y).

Proposition 4. Let C[f ](x, y) denote the upper concave enve-
lope of f(x, y) over the space of product distributions notated
by P(X1 = 0) = x,P(X2 = 1) = y. Then

C[f ](x, y) = (1− x)C[g0](y) + xC[g1(y)],

where C[g0](y),C[g1](y) denotes the upper concave envelope
ofs g0(y), g1(y) respectively over y ∈ [0, 1].

Proof: Consider a maximizing convex combination: i.e.
a probability vector {αi} and points (xi, yi) ∈ [0, 1] × [0, 1]
such that

∑
i αif(xi, yi) = C[f ](x, y). We know that∑

i

αixiyi = xy,
∑
i

αixi = x,
∑
i

αiyi = y.

Obtain a new convex combination as follows: with probabil-
ity αi(1−xi) choose (0, yi) and with probability αixi choose
(1, yi). Observe that∑

i

αi(1− xi)f(0, yi) + αixif(1, yi)

=
∑
i

αi((1− xi)f(0, yi) + xif(1, yi))

=
∑
i

αif(xi, yi) = C[f ](x, y).

Since
∑
i
αi(1−xi)

(1−x) = 1 and
∑
i
αi(1−xi)

(1−x) yi = y we have∑
i αi(1 − xi)f(0, yi) ≤ (1 − x)C[g0](y). Similarly we

have αixif(1, yi) ≤ xC[g1(y)]. Thus C[f ](x, y) ≤ (1 −
x)C[g0](y) + xC[g1(y)].

The other direction is immediate as one can always take
the convex combination that achieves C[g0](y) and the con-
vex combination that achieves C[g1](y) to obtain a value
(1− x)C[g0](y) + xC[g1(y)].

For the binary skewed-Z interference channel, g0(y) is con-
cave and hence C[g0](y) = g0(y). We will seek to answer the
following question: In the class of genies such that the Markov
chain holds, are there genies such that C[g1(y)] = g1(y) at
y∗, the maximizing distribution? If the answer is affirmative
whenever p + q ≤ 1, then the genie based outer bound will
yield the sum-capacity in the entire weak interference regime
of parameters. However, we shall see that this is not the case.



1) Genie approach in an intermediate regime: We restrict
our attention to the symmetric case where p = q. When p =
q ≤ 1

3 we observe that there are genies for which g1(y) is
concave when y ∈ [0, 1].

Now we consider the range 1
3 ≤ p = q ≤ 1

2 . Suppose we
restrict ourselves to genies with binary alphabets, then g1(y)
displays an interesting behavior. The function is concave in
some interval [0, ŷ] and convex in the remainder. Hence the
concave envelope of g1(y) matches the function in the interval
[0, y†] (y† ≤ ŷ) and follows the tangent to the curve g1(y) (at
y†) in the interval [y†, 1]. Here y† is the unique point in [0, 1]
such the tangent to the curve g1(y) at y† passes through g1(1)
when y = 1.

Numerical simulations indicate that there are such genies
when 0 ≤ p = q ≤ 0.39. Since we have very explicit
expressions, it is not difficult to convert the simulations to
a complete argument, but we refrain from doing so because
of the following negative result.

Proposition 5. For the binary skewed-Z interference channel
when p = q = 1

2 , the genie based outer bound is strictly
greater than treating interference as noise inner bound.

Proof:
As before define f(x, y) as

I(X2;T2|X1T1)− I(X2;Y1|T1X1)|P(X1=0)=x,P(X2=1)=y.

The joint laws are as defined in Table I in the Appendix.
We evaluate f(x, y) as follow. For a generic variable x ∈

[0, 1], let x̄ = 1− x and L(x) = −x log2 x. Then

f(x, y) =
∑
i

(
L(ȳdi + y(q̄ci + qdi))− ȳL(di)

− yL(q̄ci + qdi)− (xpbi + xp̄ai)L

(
ypbi

pbi + p̄ai

)
− x(pbi + p̄ai)L

(
ȳpbi + p̄ai
pbi + p̄ai

)
+ xy(pbi + p̄ai)L

(
pbi

pbi + p̄ai

)
+ xy(pbi + p̄ai)L

(
p̄ai

pbi + p̄ai

))
.

Split f(x, y) into two functions g0(y) = f(0, y) and
g1(y) = f(1, y) as in Proposition 4. Then

g0(y) :=
∑
i

L(ȳdi + y(q̄ci + qdi))− ȳL(di)− yL(q̄ci + qdi),

g1(y) :=
∑
i

(
L(ȳdi + y(q̄ci + qdi))− ȳL(di)− yL(q̄ci + qdi)

− (pbi + p̄ai)L

(
ypbi

pbi + p̄ai

)
− (pbi + p̄ai)L

(
ȳpbi + p̄ai

pbi + p̄ai

)
+ y(pbi + p̄ai)L

(
pbi

pbi + p̄ai

)
+ y(pbi + p̄ai)L

(
p̄ai

pbi + p̄ai

))
.

Setting p = q = 1
2 , compute second derivative of g1(y)

d2g1(y)

dy2

=
∑
i

(
− (ci − di)

2

2y(ci − di) + 4di
+

bi
2y

+
b2i

2ȳbi + 2ai

)
=−

∑
i

(ci − di)
2

2y(ci − di) + 4di
+
∑
i

bi
2y

+
∑
i

yb2i
2y(ȳbi + ai)

≥−
∑
i

c2i + d2i
2y(ci − di) + 4di

+
∑
i

bi
2y

+
∑
i

yb2i
2y(ȳbi + ai)

=−
∑
i

c2i
2yci − 2ydi + 4di

−
∑
i

d2i
2yci − 2ydi + 4di

+
1

2y
+
∑
i

yb2i
2y(ȳbi + ai)

≥−
∑
i

c2i
2yci

−
∑
i

d2i
−2ydi + 4di

+
1

2y
+
∑
i

yb2i
2y(ȳbi + ai)

=− 1

2y
− 1

−2y + 4
+

1

2y

+
ȳ + 1

2

(∑
i

ȳbi + ai

ȳ + 1

b2i
(ȳbi + ai)2

)
(a)

≥ − 1

−2y + 4
+

ȳ + 1

2

(∑
i

ȳbi + ai

ȳ + 1

bi
ȳbi + ai

)2

=− 1

−2y + 4
+

1

2(ȳ + 1)

=0

where (a) follows since E(X2) ≥ E(X)2. Thus g1(y) is
convex in general. The only hope for the outer bound to work
would be if g1(y) was a straight line. So, we next analyze if
this is possible,

Note d2g1(y)
dy2 = 0 would imply that cidi = 0 (for the first

inequality to be equality) and ai = bi (for the inequality
labeled (a) to be an equality).

For the symmetric condition to hold, define f̃(x, y) as

I(X1;T1|X2T2)− I(X1;Y2|T2X2)|P(X1=0)=x,P(X2=1)=y

Split f̃(x, y) in same way as for f(x, y),

f̃(x, y) = (1− y)g̃0(x) + yg̃1(x)

Computing derivative of g̃1(x), we have

d2g̃1(x)

dx2
≥ 0

with equality holding only iff aibi = 0 and ci = di.
Clearly, both equalities cannot hold at the same time. At

least one of g1 and g̃1 is strictly convex. Therefore, for any
(x, y) ∈ (0, 1)2,

C[f ](x, y) + C[f̃ ](x, y)

=xC[g0](y) + (1− x)C[g1](y) + yC[g̃0](x) + (1− y)C[g̃1](x)

>xg0(y) + (1− x)g1(y) + yg̃0(x) + (1− y)g̃1(x)

=f(x, y) + fci,di,ai,bi(y, x)



CONCLUSION

We defined the class of very weak interference channels
and showed that a subset of parameters of a binary skewed-
Z interference channel belongs to this class. We developed a
genie based outer bound for the sum-rate of discrete memory-
less interference channels. Using this outer bound we showed
that treating interference as noise is optimal for a subset
of parameters of the binary skewed-Z interference channel
in the very weak interference regime. We also showed that
the genie based outer bound will not reduce to the sum-
rate yielded by interference as noise in the entire very weak
interference regime. This work shows that employing genies as
a mathematical gadget for proving converses remains largely
an unexplored area.
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APPENDIX

A. Analysis of dependence in Genie based outer bound

This section aims to verify Markov condition presented in
deriving Genie based outer bound

Lemma 1. X1i → (Y n2,i+1, T
i−1
1 , T

n\i
2 , X

n\i
2 ) → X2i is

Markov.

Proof: Consider a Bayesian network representation of the
variables as follows: It is clear that any path from X1i to

X1i X2i

Xi−1
11

X n
1i+1

Xi−1
21

X n
2i+1

T n
2i+1Y n

2i+1

T i−1
11 T i−1

21

X2i is d-separated. Indeed the variable X n
2i+1 d-separates the

variables into two sets.

B. Necessary condition for Theorem 4

One might doubt if the green region in figure 3 can be
improved. As stated in Remark 5, the optimality region must
be the region given by Theorem 4, if one insists on genies
satisfying the following two conditions.

Markov chain condition:
Xi∗ → Yi → Ti, i = 1, 2.

Concavity condition:
The function I(X2;T2|X1T1)−I(X2;Y1|T1X1) and
I(X1;T1|X2T2)− I(X1;Y2|T2X2) become concave
in p2(x2) and p1(x1) respectively.

TABLE I
GENERIC PROBABILITY DISTRIBUTION FOR GENIES THAT SATISFY THE

MARKOV CONDITIONS

X1 X2 Y1 T1 Probability
0 0 0 i x(1− y)((1− p)ai + pbi))
1 0 1 i (1− x)(1− y)bi
0 1 0 i xy(1− p)ai
0 1 1 i xypbi
1 1 1 i (1− x)ybi.

X1 X2 Y2 T2 Probability
1 1 1 i (1− x)y((1− q)ci + qdi))
0 1 0 i xyqdi
1 0 0 i (1− x)(1− y)di
0 1 1 i xy(1− q)ci
0 0 0 i x(1− y)di.

The catch here is to make genie outer bound optimal, the
above two condition need to hold at distribution p∗1(x1)p∗2(x2),
rather than any product distribution. One should be aware that
the necessary condition is NOT genie outer bound optimal
condition.

Let us restrict our class of genie satisfying Markov con-
dition: Xi∗ → Yi → Ti, i = 1, 2. Given that valid genies
also satisfy T2 → X2 → X1 → T1, by algebraic manipu-
lations one can verify that the only admissible distributions
p1(x1, x2, y1, t1) and p2(x1, x2, y2, t2) that satisfy the above
Markov conditions must be of the form given in Table I.

Here {ai}, {bi} are two generic probability vectors of size
|T1| and {ci}, {di} are two generic probability vectors of size
|T2|. p(X1 = 0) = x, p(X2 = 1) = y.

In the rest part, we will discuss concavity condition for
genies.

1) Cardinality bound on Genies: Traditionally, we need
to find some cardinality bounds for the auxiliaries in outer
bounds. This is because we have to set the auxiliaries to
every possible distribution before we could determine the outer
bound from the union of all regions derived. This is not true for
the genie case because any particular genie pair corresponds
to a valid outer bound. Therefore, we do not necessarily need
a cardinality bound. That being said, the essence of having
one, though, lies in search of the best genies, i.e. to which
dimension do we go while we search for the best before we
know for sure that there are no better ones beyond. Unfor-
tunately, traditional methods of bounding cardinalities using
Caratheodory theorem does not go through as the cardinality
bounds for T1 and T2 would end up depending on each other’s.
We will deploy a tailored method for our case.

By Proposition 4, g1(y) is concave for y ∈ [0, 1] if genies
satisfy concavity condition. Taking second derivative of g1(y)
with respect to y,

d2g1(y)

dy2
=
∑
i

(
− q̄2(ci − di)2

yq̄(ci − di) + di
+
pbi
y

+
p2b2i

ȳpbi + p̄ai

)
T2 is characterized by {ci} and {di}. The following lemma

provides cardinality bound for T2.

Lemma 2. Let n ≥ 3 and T2n be the set of all ge-
nies with cardinality n. If T2n(c,d) is a genie defined by



c = (c1, c2, . . . , cn) and d = (d1, d2, . . . , dn) such that
d2g1(y)
dy2 ≤ 0, then there is always another set of coefficients

ĉ, d̂ with (n − 1) coordinates each such that T2(n−1)(ĉ, d̂)

defines a genie such that d2g1(y)
dy2 ≤ 0.

Proof:
For 1 ≤ i ≤ n, let ε ≥ 0 and c′i = ci(1 + εli), d′i =

di(1 + εli). c′ = (c′1, . . . , c
′
n) and d′ = (d′1, . . . , d

′
n) form a

valid T2n(c′,d′) with some l = (l1, l2, . . . , ln) if
∑
i cili = 0,∑

i dili = 0 and ε small enough. Note that as long as there
exists of a non-zero l independent of ε such that T2n(c′,d′)

forcing d2g1(y)
dy2 ≤ 0 for 0 ≤ ε ≤ ε0, we could increase ε from

0 gradually until for some i, 1+εli becomes 0. Dropping the 0
coefficients, we get an equivalent genie in T2(n−1). Therefore,
it suffices to show the existence of one such l for n ≥ 3.

Note that one of the di’s has to be 0 and the corresponding
ci has to satisfy q̄ci ≥ p in order for d2g1(y)

dy2 to be non-positive
when y → 0. In cases where more than one of the di’s are 0,
we could sum over the corresponding ci’s and form a new
smart and useful genie with smaller cardinality. Therefore,
without loss of generality, we assume that d1 = 0, q̄c1 ≥ p
and di > 0,∀i ≥ 2. All assumptions about c and d are as
below.

c ≥ 0,∑n
i=1 ci = 1,

p̄c1 ≥ p,
d1 = 0,

(d2, d3, . . . , dn) > 0,∑n
i=2 di = 1,

− q̄c1y + pb1
y +

p2b21
ȳpb1+p̄a1

+
∑n
i=2

(
− q̄2(ci−di)2

yq̄(ci−di)+di + pbi
y +

p2b2i
ȳpbi+p̄ai

)
≤ 0,∀y ∈ [0, 1].

We need to find l such that

l 6= 0,

c1l1 +
∑n
i=2 lici = 0,∑n

i=2 lidi = 0,

− q̄c1(1+εl1)
y + pb1

y +
p2b21

ȳpb1+p̄a1

+
∑n
i=2

(
− q̄

2(ci−di)2(1+εli)
yq̄(ci−di)+di + pbi

y +
p2b2i

ȳpbi+p̄ai

)
≤ 0,

∀y ∈ [0, 1], ε ∈ [0, ε0]

Combining above two sets of conditions, and given ε ≥ 0
l 6= 0,

c1l1 +
∑n
i=2 lici = 0,∑n

i=2 lidi = 0,

− q̄c1l1y −
∑n
i=2

q̄2(ci−di)2li
yq̄(ci−di)+di ≤ 0,∀y ∈ [0, 1].

Since c1 > 0, set l1 = −
∑n

i=2 lici
c1

. We get the new set of
conditions for l2, . . . , ln.{∑n

i=2 lidi = 0,∑n
i=2

lidi(yq̄(ci−di)+ci)
y(yq̄(ci−di)+di) ≤ 0,∀y ∈ [0, 1].

Setting li = 0,∀i ≥ 4, we get{
l2d2 + l3d3 = 0,
l2d2(yq̄(c2−d2)+c2)
yq̄(c2−d2)+d2

+ l3d3(yq̄(c3−d3)+c3)
yq̄(c3−d3)+d3

≤ 0,∀y ∈ [0, 1].

Let l3 = − l2d2

d3
. It reduces to show the existence of (c2, c3),

(d2, d3) and l2 such that

l2d2

(
yq̄(c2 − d2) + c2
yq̄(c2 − d2) + d2

− yq̄(c3 − d3) + c3
yq̄(c3 − d3) + d3

)
≤ 0,∀y ∈ [0, 1].

This is equivalent to

l2d2(c2d3 − c3d2)

(yq̄c2 + (1− yq̄)d2)(yq̄c3 + (1− yq̄)d3)
≤ 0,∀y ∈ [0, 1].

Therefore, by setting l2 = 1
d2

when c2d3 ≤ c3d2 and setting
l2 = − 1

d2
when c2d3 > c3d2, we get a particular non-zero l.

l =


(
−c2d3 + d2c3

c1d2d3
,

1

d2
,− 1

d3
, 0, . . . , 0

)
, if c2d3 ≤ c3d2(

c2d3 − d2c3
c1d2d3

,− 1

d2
,

1

d3
, 0, . . . , 0

)
, if c2d3 > c3d2

The above lemma means that for a particular (p, q), the
existence of a smart and useful genie with cardinality greater
or equal to 3 implies the existence of such a genie within
smaller cardinalities. In other words, we could stop searching
if we do not find any smart and useful genie within binary
choices.

Similar argument can be applied to T1 .
2) Necessary Conditions: Based on last section, it is safe to

consider only binary genies. Setting a1 = a, a2 = ā, b1 = b,
b2 = b̄, c1 = c, c2 = c̄, d1 = d and d2 = d̄, we will look at
the concavity conditions.

In Proposition 4, we decompose the difference of mutual
information as f(x, y) = (1 − x)g0(y) + xg1(y). Similar
for ˜f(x, y) defined in the proof of Theorem 4, f̃(x, y) =
(1 − y)g̃0(x) + yg̃1(x). Then by Proposition 4 the concavity
condition is equivalent to the condition for g1(y) to be concave
for all y ∈ (0, 1) and g̃1(x) is concave for all x ∈ (0, 1).

Take the second derivative of g1(y) and g̃1(x), both has to
be non-positive, i.e.

2∑
i=1

− q̄2(ci − di)2

ȳdi + y(q̄ci + pdi)
+
pbi
y

+
p2b2i

ȳpbi + p̄ai
≤ 0 (6)

and

2∑
i=1

− p̄2(ai − bi)2

x̄bi + y(p̄ai + pbi)
+
qdi
x

+
q2d2

i

x̄qdi + q̄ci
≤ 0 (7)

Note that in (6), either d1 or d2 has to be 0 in order to
cancel pbi

y while y → 0+. Similarly, either b1 or b2 has to be
zero because of (7). Without loss of generosity, we assume



that d1 = d = 0 and b1 = b = 0. Therefore, (6) becomes
equivalent to, for all y ∈ (0, 1),

− q̄c

y
+
p

y
− q̄2(c̄− 1)2

ȳ + y(q̄c̄+ q)
+

p2

ȳp+ p̄ā
≤ 0

⇔p− p̄c
y
− p̄2c2

1− yp̄c
+

p2

ȳp+ p̄ā
≤ 0

⇔p

y
+

p2

ȳp+ p̄ā
≤ p̄c

y
+

p̄2c2

1− yp̄c

⇔p2 + pp̄ā

ȳp+ p̄ā
≤ p̄c

1− yp̄c
⇔(p2 + pp̄ā)(1− yp̄c) ≤ (p̄c)(ȳp+ p̄ā),∀y ∈ (0, 1) (8)

As the expression is linear in y on both sides, it suffices to
check the validity of (8) for when y = 0 and y = 1, i.e. (8)
is equivalent to {

p ≤ q̄c,
p+ p2

p̄ā ≤
q̄c

1−q̄c .

Rearranging the first inequality we get{
p
p̄ ≤

q̄c
1−q̄c ,

p+ p2

p̄ā ≤
q̄c

1−q̄c .

Note that p+ p2

p̄ā = p(1 + p/ā
p̄ ) ≥ p(1 + p

p̄ ) = p
p̄ . Therefore,

the first inequality is redundant and we are left with a single
constraint

p+
p2

p̄ā
≤ q̄c

1− q̄c
.

Similarly, inequality (7) is equivalent to the following,

q +
q2

q̄c̄
≤ p̄a

1− p̄a
.

Further, without loss of generality, we assume p ≤ q. Putting
all the conditions together, we get

0 ≤ a ≤ 1 (9)
0 ≤ c ≤ 1 (10)

0 ≤ p ≤ q ≤ 1 (11)
0 ≤ p+ q ≤ 1 (12)

p+
p2

p̄ā
≤ q̄c

1− q̄c
(13)

q +
q2

q̄c̄
≤ p̄a

1− p̄a
(14)

Rearranging (13), we have

p̄a ≤ p̄q̄c− pp̄
q̄c− p2q̄c− pp̄

p̄a

1− p̄a
≤ q̄c− p

pq̄c

Note
q̄c− p
pq̄c

=
1− p/q̄c

p
≤ p̄

1− p̄
This means (9) is redundant.

Combining with (14) we have the condition

qq̄c̄+ q2

c̄
≤ q̄c− p

pc

(1− pq)q̄c2 − (1 + p)q̄c+ p ≤ 0 (15)

This inequality must holds for some c ∈ [0, 1].
When c = 1+p

2(1−pq) . 0 ≤ c ≤ 1 is given by the following

0 ≤ 1 + p

2(1− pq)
=

1 + p

1 + (1− 2pq)
≤ 1 + p

1 + (1− q)
≤ 1 + p

1 + (1− p̄)
= 1

where first inequality is due to p ≤ 1
2 and the second one is

due to q ≤ p̄. So we can let c = 1+p
2(1−pq) .

Then inequality (15) gives

p− (1 + p)2q̄

4(1− pq)
≤ 0

q ≤ 1− p
1 + 3p

To satisfy (11), we need p ≤ 1−p
1+3p . That is 0 ≤ p ≤ 1

3 .
Same analysis can be applied to the case q ≤ p.
Hence we derive the conditions for the existence of smart

and useful genie,

0 ≤ p ≤ 1

3
,

p ≤ q ≤ 1− p
1 + 3p

or
0 ≤ q ≤ 1

3
,

q ≤ p ≤ 1− q
1 + 3q
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