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Abstract— An outer bound to the discrete memoryless broad-
cast channel is presented. We compare it to the known outer
bounds and show that the outer bound presented is at least as
tight as the existing bounds.

I. I NTRODUCTION

There has been a series of outer bounds presented to the
capacity region of the broadcast channel [2], [3], [4]. All
the bounds follow from the use of Fano’s inequality and the
Csiszar sum lemma[1]. In this note, we present another outer
bound along these lines that is at least as tight as the known
bounds.

II. T WO RECEIVER BROADCAST CHANNEL WITH PRIVATE

MESSAGES ONLY

The following lemma presents an outer bound for the capac-
ity region of the two receiver discrete memoryless broadcast
channels.

Lemma 1: Consider the set of all random variables
U, V, W1, W2 such that(U, V, W1, W2) → X → (Y1, Y2) for a
Markov chain. Further assume thatU andV are independent;
and the distribution(U, V, W1, W2, X, Y1, Y2) satisfies the
following equalities:

I(U ; Y1|W1) = I(U ; Y1|V, W1)

I(V ; Y2|W2) = I(V ; Y2|U, W2)

I(U ; V |W1, W2, Y1) = I(U ; V |W1, W2, Y2)

I(W2; Y1|W1) = I(W1; Y2|W2)

I(W2; Y1|U, W1) = I(W1; Y2|U, W2) (1)

I(W2; Y1|V, W1) = I(W1; Y2|V, W2)

I(W2; Y1|U, V, W1) = I(W1; Y2|U, V, W2).

Then the set of rate pairsR1, R2 satisfying

R1 ≤ I(U ; Y1|W1)

R2 ≤ I(V ; Y2|W2)

constitutes an outer bound to the capacity region of the discrete
memoryless broadcast channel.

Proof: The inequalities follows immediately from Fano’s
inequality and the following identifications:

Ŵ1i = Y i−1
1

Ŵ2i = Y n

2 i+1

U = M1

V = M2.

We then setW1 = (Ŵ1, Q), W2 = (Ŵ2, Q), where Q is
an independent random variable chosen uniformly at random
from the interval{1, ..., n}.

The last four equalities are a direct application of the
Csiszar sum lemma [1] and the proof is omitted. The first two
equalities follow from Fano’s inequality and the independence
of M1 and M2; and the proof is again omitted. The third
equality follows as follows:

I(U ; V |W1, W2, Y1) − I(U ; V |W1, W2, Y2)

= lim
n→∞

1

n

n∑

i=1

I(M1; M2|Y
i

1 , Y n

2 i+1) − I(M1; M2|Y
i−1
1 , Y n

2 i
)

= lim
n→∞

1

n
(I(M1; M2|Y

n

1 ) − I(M1; M2|Y
n

2 ))

= 0

The last step follows from Fano’s inequality.
Remark 1: We note the following divergence from the

normal presentation of the outer bounds: the absence of a
sum rate constraint, as well as the presence of a number of
equalities.

We will compare this bound to the following existing
bound1 for the same setting.

Bound 1: The union of rate pairs(R1, R2) that satisfy the
following inequalities

R1 ≤ I(U, W ; Y1)

R2 ≤ I(V, W ; Y2)

R1 + R2 ≤ min{I(W ; Y1), I(W ; Y2)} + I(U ; Y1|W )

+ I(V ; Y2|U, W )

R1 + R2 ≤ min{I(W ; Y1), I(W ; Y2)} + I(U ; Y1|V, W )

+ I(V ; Y2|W ).

1The equivalence of the bounds can be observed from the fact that for the
identifications in [2]I(U ;V |W, Y1) = I(U ;V |W, Y2), and this implies the
bound presented in [3].



2

over all p(u)p(v)p(w|u, v)p(x|u, v, w)p(y1, y2|x) forms an
outer bound to the capacity region.

Claim 1: The region specified by the lemma 1 is at least
as tight as the region specified by Bound 1.

Proof: We need to show that any(R1, R2) satisfying the
constraints of Lemma 1 is contained in the region described
by Bound 1. To show the inclusion, we setW = (W1, W2).

Observe that

I(V ; Y2|U, W1, W2) = I(V ; Y2|W1, W2)

− I(U ; V |W1, W2) + I(V ; U |W1, W2, Y2)

Using the equality

I(V ; U |W1, W2, Y2) = I(V ; U |W1, W2, Y1)

it is easy to see that

I(U ; Y1|W1, W2) + I(V ; Y2|U, W1, W2)

= I(U ; Y1|V, W1, W2) + I(V ; Y2|W1, W2). (2)

Therefore the two sum rate constraints in Lemma 1 are
identical.

Hence it suffices to prove that

I(U ; Y1|W1) + I(V ; Y2|W2)

≤ I(W1, W2; Y1) + I(U ; Y1|W1, W2)

+ I(V ; Y2|U, W1, W2).

(The other one obtained by replacingI(W1, W2; Y1) with
I(W1, W2; Y2) follows similarly. To get the symmetric expres-
sion, just use (2).)

Observe that

I(U, W1, W2; Y1) + I(V ; Y2|U, W1, W2)

= I(W1; Y1) + I(U ; Y1|W1) + I(W2; Y1|U, W1)

+ I(V ; Y2|U, W1, W2)

= I(W1; Y1) + I(U ; Y1|W1) + I(W1; Y2|U, W2)

+ I(V ; Y2|U, W1, W2)

= I(W1; Y1) + I(U ; Y1|W1) + I(V, W1; Y2|U, W2)

= I(W1; Y1) + I(U ; Y1|W1) + I(W1; Y2|U, V, W2)

+ I(V ; Y2|U, W2)

(a)
= I(W1; Y1) + I(U ; Y1|W1) + I(W1; Y2|U, V, W2)

+ I(V ; Y2|W2)

≥ I(U ; Y1|W1) + I(V ; Y2|W2),

where(a) follows from the following:

I(V ; Y2|U, W2) = I(V ; Y2|W2).

III. T WO RECEIVER BROADCAST CHANNEL WITH

COMMON MESSAGE AS WELL AS PRIVATE MESSAGES

The following outer bound was presented in [4] for the
capacity region of the broadcast channel for two receivers with
a common message as well as private messages.

Bound 2: [4] The capacity region is a subset of theNew-
Jersey region, which can be obtained by taking the union of
rate triples(R0, R1, R2) satisfying

R0 ≤ min I(T ; Y1|W1), I(T ; Y2|W2)

R1 ≤ I(U ; Y1|W1)

R2 ≤ I(V ; Y2|W )

R0 + R1 ≤ I(T, U ; Y1|W1)

R0 + R1 ≤ I(U ; Y1|T, W1, W2) + I(T, W1; Y2|W2)

R0 + R2 ≤ I(T, U ; Y2|W2)

R0 + R2 ≤ I(V ; Y2|T, W1, W2) + I(T, W2; Y1|W1)

R0 + R1 + R2 ≤ I(U ; Y1|T, V, W1, W2) + I(T, V, W1; Y2|W2)

R0 + R1 + R2 ≤ I(V ; Y2|T, U, W1, W2) + I(T, U, W2; Y1|W1)

R0 + R1 + R2 ≤ I(U ; Y1|T, V, W1, W2) + I(T, W1, W2; Y1)

+ I(V ; Y2|T, W1, W2)

R0 + R1 + R2 ≤ I(V ; Y2|T, U, W1, W2) + I(T, W1, W2; Y2)

+ I(U ; Y1|T, W1, W2)

for somep(u)p(v)p(t)p(w1, w2|u, v, t)p(x|u, v, t, w1, w2)p(y1, y2|x).
Further one can restrictX to be a deterministic function of
(u, v, t, w1, w2) and also assume that the marginals ofU, V, T

are uniform.
Similar to lemma 1 we can write an outer bound for this

case as well, and this region is at least as tight as theNew
Jersey outer bound.

Lemma 2: Consider the set of all random variables
T, U, V, W1, W2 such that (T, U, V, W1, W2) → X →
(Y1, Y2) for a Markov chain. Further assume that
T ,U , and V are independent; and the distribution
(U, V, W1, W2, X, Y1, Y2) satisfies the following equalities:

I(T ; Y1|W1) = I(T ; Y2|W2)

I(T ; Y1|W1) = I(T ; Y1|V, W1) = I(T ; Y1|U, W1)

= I(T ; Y1|U, V, W1)

I(T ; Y2|W2) = I(T ; Y2|V, W2) = I(T ; Y2|U, W2) (3)

= I(T ; Y2|U, V, W2)

I(U ; Y1|W1) = I(U ; Y1|V, W1) = I(U ; Y1|T, W1)

= I(U ; Y1|T, V, W1)

I(V ; Y2|W2) = I(V ; Y2|U, W2) = I(V ; Y2|T, W2)

= I(V ; Y2|T, U, W2),

I(B1; B2|A, W1, W2, Y1) = I(B1; B2|A, W1, W2, Y2) (4)

holds for allA ⊆ {T, U, V }, B1 ⊆ {T, U}, B2 ⊆ {T, V }, and

I(W2; Y1|A, W1) = I(W1; Y2|A, W2) (5)

holds for allA ⊆ {T, U, V }.
Then the set of rate tuples(R0, R1, R2) satisfying

R0 ≤ min{I(T ; Y1|W1), I(T ; Y2|W2)}

R1 ≤ I(U ; Y1|W1)

R2 ≤ I(V ; Y2|W2)

constitutes an outer bound to the capacity region of the discrete
memoryless broadcast channel.
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Further, just as in Lemma 2 one can restrictX to be a
deterministic function of(u, v, t, w1, w2) and also assume that
the marginals ofU, V, T are uniform.

Proof: T = M0 is the only new identification as
compared to Lemma 1. The arguments for this lemma are
similar to those of Lemma 1 and are omitted.

Claim 2: The region presented by Lemma 2 is at least as
tight as theNew-Jersey outer bound.

Proof: Again the arguments are similar to those of Claim
1 and are omitted.

IV. CONCLUSION

An outer bound to the capacity region to the two receiver
broadcast channel (with and without common information)
is determined. In both cases, this is at least as tight as the
currently best known bounds.
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