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This paper analyses the stability and fairness of two classes of rate control algorithm for communication networks. The
algorithms provide natural generalisations to large-scale networks of simple additive increase/multiplicative decrease
schemes, and are shown to be stable about a system optimum characterised by a proportional fairness criterion. Stability
is established by showing that, with an appropriate formulation of the overall optimisation problem, the network's implicit
objective function provides a Lyapunov function for the dynamical system de®ned by the rate control algorithm. The
network's optimisation problem may be cast in primal or dual form: this leads naturally to two classes of algorithm, which
may be interpreted in terms of either congestion indication feedback signals or explicit rates based on shadow prices.
Both classes of algorithm may be generalised to include routing control, and provide natural implementations of
proportionally fair pricing.
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Introduction

The design and control of modern communication networks

raises several issues well suited to study using techniques

of operational research such as optimisation, network

programming and stochastic modelling. In this paper we

illustrate this theme, through the presentation and analysis

of a mathematical model that arises in connection with the

development and deployment of large-scale broadband

networks.

In future communication networks there are expected to

be applications that are able to modify their data transfer

rates according to the available bandwidth within the

network. Traf®c from such applications is termed elastic;1

a typical current example is TCP traf®c over the Internet,2

and future examples may include the controlled-load service

of the Internet Engineering Task Force3 and the Available

Bit Rate transfer capability of ATM (asynchronous transfer

mode) networks.4

The key issue we address in this paper concerns how the

available bandwidth within the network should be shared

between competing streams of elastic traf®c; in particular,

we present a tractable mathematical model and use it to

analyse the stability and fairness of a class of rate control

algorithms. Traditionally stability has been considered an

engineering issue, requiring an analysis of randomness and

feedback operating on fast time-scales, while fairness has

been considered an economic issue, involving static

comparisons of utility. In future networks the intelligence

embedded in end-systems, acting on behalf of human users,

is likely to lessen the distinction between engineering and

economic issues and increase the importance of an inter-

disciplinary view. (This general theme was the subject of

the 1996 Blackett Memorial Lecture; further aspects are

developed elsewhere, see Reference 5).

There is a substantial literature on rate control algo-

rithms, recently reviewed by Hernandez-Valencia et al.6

Key early papers of Jacobson2 and Chiu and Jain7 identi®ed

the advantages of adaptive schemes that either increase

¯ows linearly or decrease ¯ows multiplicatively, depending

on the absence or presence of congestion. Important recent

papers of Bolot and Shankar,8 Fendick et al9 and Bonomi et

al10 have analysed the stability of networks with a single

bottleneck resource, where congestion is signalled by the

build-up of a queue at the bottleneck's buffer, and where

propagation delays are signi®cant. (In wide-area networks

propagation times may be signi®cant in comparison with

queueing times: for a transatlantic link of 600 Megabits per

second, ten million bits may be in ¯ight between queues.)

The framework we adopt in this paper is simpler than that

analysed by these authors in that we directly model only

rates and not queue lengths, but more complex in that we

model a network with an arbitrary number of bottleneck

resources. Theoretical work11,12 on queues serving the

superposition of a large number of streams indicates circum-

stances when the busy period preceding a buffer over¯ow

may be relatively short, and several authors have argued the

advantages of preventing queue build-up through the bound-

ing of rates (see Charny et al ).13
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Any discussion of the performance of a rate control

scheme must address the issue of fairness, since there

exist situations where a given scheme might maximise

network throughput, for example, while denying access to

some users. The most commonly discussed fairness criter-

ion is that of max±min fairness: loosely, a set of rates is

max±min fair if no rate may be increased without simulta-

neously decreasing another rate which is already smaller. In

a network with a single bottleneck resource max±min

fairness implies an equal share of the resource for each

¯ow through it. Mazumdar et al14 have pointed out that

from a game-theoretic standpoint such an allocation is not

special, and have advocated instead the Nash bargaining

solution, from cooperative game theory, as capturing natural

assumptions as to what constitutes fairness.

The need for networks to operate in a public (and

therefore potentially non-cooperative) environment has

stimulated work on charging schemes for broadband

networks: see Kelly15 for a scheme based on time and

volume measurements for non-elastic traf®c, MacKie-

Mason and Varian16 for a description of a `smart market'

based on a per-packet charge when the network is congested,

and the collection edited by McKnight and Bailey17 for

several further papers and references. Kelly18 describes a

model for elastic traf®c in which a user chooses the charge

per unit time that the user is willing to pay; thereafter the

user's rate is determined by the network according to a

proportional fairness criterion applied to the rate per unit

charge. It was shown that a system optimum is achieved

when users' choices of charges and the network's choice of

allocated rates are in equilibrium. There remained the

question of how the proportional fairness criterion could

be implemented in a large-scale network. In this paper we

show that simple rate control algorithms, using additive

increase/multiplicative decrease rules or explicit rates based

on resource shadow prices, can provide stable convergence

to proportional fairness per unit charge, even in the presence

of random effects and delays.

Mechanisms by which supply and demand reach equili-

brium have, of course, long been a central concern of

economists, and there exists a substantial body of theory

on the stability of what are termed tatonnement

processes.19±21 From this viewpoint the rate control algo-

rithms described in this paper are particular embodiments of

a `Walrasian auctioneer', searching for market clearing

prices. The `Walrasian auctioneer' of tatonnement theory

is usually considered a rather implausible construct; we

show that the structure of a communication network

provides a natural context within which to investigate the

consequences for a tatonnement process of stochastic pertur-

bations and time lags.

The organisation of the paper is as follows. In the next

section we describe our basic model of a network, describe

two classes of rate control algorithm, and provide an

outline of our results. Detailed proofs are provided in the

next two sections, following which we illustrate our theo-

retical results through a discussion of some numerical

examples. We then consider user adaptation and routing,

and ®nally conclude with some remarks on open issues.

Outline of results

The basic model

Consider a network with a set J of resources, and let Cj be

the ®nite capacity of resource j, for j 2 J . Let a route r be a

non-empty subset of J, and write R for the set of possible

routes. Set Ajr � 1 if j 2 r, so that resource j lies on route r,

and set Ajr � 0 otherwise. This de®nes a 0±1 matrix

A � �Ajr; j 2 J ; r 2 R�.
Associate a route r with a user, and suppose that if a rate

xr is allocated to user r then this has utility Ur�xr� to the

user. Assume that the utility Ur�xr� is an increasing, strictly

concave and continuously differentiable function of xr over

the range xr 5 0 (following Shenker,1 we call traf®c that

leads to such a utility function elastic traf®c). Assume

further that utilities are additive, so that the aggregate

utility of rates x � �xr; r 2 R� is
P

r2R Ur�xr�. Let

U � �Ur���; r 2 R� and C � �Cj; j 2 J �. Under this model

the system optimal rates solve the following problem.

SYSTEM(U, A, C):

max
P
r2R

Ur�xr�

subject to

Ax4C

over

x5 0:

While this optimisation problem is mathematically fairly

tractable (with a strictly concave objective function and a

convex feasible region), it involves utilities U that are

unlikely to be known by the network. We are thus led to

consider two simpler problems.

Suppose that user r may choose an amount to pay per

unit time, wr, and receives in return a ¯ow xr proportional to

wr, say xr � wr=lr, where lr could be regarded as a charge

per unit ¯ow for user r. Then the utility maximisation

problem for user r is as follows.

USERr�Ur; lr� :

max Ur

wr

lr

� �
ÿ wr

over

wr 5 0:

Suppose next that the network knows the vector

w � �wr; r 2 R�, and attempts to maximize the function



P
r wr log xr. The network's optimisation problem is then as

follows.

NETWORK(A, C; w):

max
P
r2R

wr log xr

subject to

Ax4C

over

x5 0:

It is known18 that there always exist vectors l � �lr; r 2 R�,
w � �wr; r 2 R� and x � �xr; r 2 R�, satisfying wr � lrxr for

r 2 R, such that wr solves USERr�Ur; lr� for r 2 R and x

solves NETWORK(A, C; w); further, the vector x is then the

unique solution to SYSTEM(U, A, C).

A vector of rates x � �xr; r 2 R� is proportionally fair if

it is feasible, that is x5 0 and Ax4C, and if for any other

feasible vector x*, the aggregate of proportional changes is

zero or negative: P
r2R

xr*ÿ xr

xr

4 0: �1�

If wr � 1; r 2 R, then a vector of rates x solves

NETWORK�A;C; w� if and only if it is proportionally fair.

Such a vector is also the Nash bargaining solution (satisfy-

ing certain axioms of fairness22), and, as such, has been

advocated in the context of telecommunications by Mazum-

dar et al.14

A vector x is such that the rates per unit charge are

proportionally fair if x is feasible, and if for any other

feasible vector x* P
r2R

wr

xr*ÿ xr

xr

4 0: �2�

The relationship between the conditions (1) and (2) is well

illustrated when wr; r 2 R, are all integral. For each r 2 R,

replace the single user r by wr identical sub-users, construct

the proportionally fair allocation over the resulting
P

r wr

users, and provide to user r the aggregate rate allocated to

its wr sub-users; then the resulting rates per unit charge are

proportionally fair. This construction also illustrates the

need to adapt the notion of fairness to a non-cooperative

context, where it is possible for a single user to represent

itself as several distinct users. It is straightforward

to check18 that a vector of rates x solves

NETWORK�A;C; w� if and only if the rates per unit

charge are proportionally fair.

We note in passing that if, for a ®xed set of users and

arbitrary parameters w � �wr; r 2 R�, the network solves

NETWORK�A;C; w�, then the resulting rates x � �xr; r 2 R�
solve a variant of the problem SYSTEM �U ;A;C�, with a

weighted objective function
P

r arUr�xr� where

ar � wr=�xrU
0
r�xr�� for r 2 R. Thus a choice of the para-

meters w � �wr; r 2 R� by the network (rather than by users)

corresponds to an implicit weighting by the network of the

relative utilities of different users, with weights related to the

users' various marginal utilities.

Under the decomposition of the problem

SYSTEM �U ;A;C� into the problems NETWORK�A;C; w�
and USERr�Ur; lr�; r 2 R, the utility function Ur�xr� is not

required by the network, and only appears in the optimisa-

tion problem faced by user r. The Lagrangian23 for the

problem NETWORK�A;C; w� is

L�x; z; m� � P
r2R

wr log xr � mT �C ÿ Axÿ z�

where z5 0 is a vector of slack variables and m is a vector

of Lagrange multipliers (or shadow prices). Then

@L

@xr

� wr

xr

ÿP
j2r

mj;

and so the unique optimum to the primal problem is given

by

xr �
wr

Sj2rmj

�3�

where �xr; r 2 R�, �mj; j 2 J � solve

m5 0; Ax4C; mT �C ÿ Ax� � 0 �4�

and relation (3). Furthermore the associated dual problem

quickly reduces, after elision of terms not dependent on the

shadow prices m, to the following problem.

DUAL�A;C; w�:

max
P
r2R

wr log
P
j2J

mj

 !
ÿP

j2J

mjCj

over

m5 0:

While the problems NETWORK�A;C; w� and

DUAL�A;C; w� are mathematically tractable, it would be

dif®cult to implement a solution in any centralised manner.

A centralised processor, even if it were itself completely

reliable and could cope with the complexity of the computa-

tional task involved, would have its lines of communication

through the network vulnerable to delays and failures.

Rather, interest focuses on algorithms which are decentra-

lized and of a simple form: the challenge is to understand

how such algorithms can be designed so that the network as

a whole reacts intelligently to perturbations. Next we

describe two simple classes of decentralised algorithm,

designed to implement solutions to relaxations of the

problems NETWORK�A;C; w� and DUAL�A;C; w�.



A primal algorithm

Consider the system of differential equations

d

dt
xr�t� � k

�
wr ÿ xr�t�

P
j2r

mj�t�
�

�5�

where

mj�t� � pj

� P
s:j2s

xs�t�
�
: �6�

(Here and throughout we assume that, unless otherwise

speci®ed, r ranges over the set R and j ranges over the set

J.) We may motivate the relations (5)±(6) in several ways.

For example, suppose that pj�y� is a price charged by

resource j, per unit ¯ow through resource j, when the

total ¯ow through resource j is y. Then by adjusting the

¯ow on route r; xr�t�, in accordance with (5)±(6), the

network attempts to equalise the aggregate cost of this

¯ow, xr�t�
P

j2r mj�t�, with a target value wr, for every

r 2 R. (For an enlightening description of the technological

implementation of such algorithms in an ATM network, see

Courcoubetis et al24).

For an alternative motivation, suppose that resource j

generates a continuous stream of feedback signals at rate

pj�y� when the total ¯ow through resource j is y. Suppose

further that when resource j generates a feedback signal, a

copy is sent to each user r whose route passes through

resource j, where it is interpreted as a congestion indicator

requiring some reduction in the ¯ow xr. Then (5) corre-

sponds to a response by user r that comprise two compo-

nents: a steady increase at rate proportional to wr, and a

multiplicative decrease at rate proportional to the stream of

feedback signals received. (For early discussions of algo-

rithms with additive increase and multiplicative decrease see

Chiu and Jain7 and Jacobson2; Hernandez-Valencia et al 6

review several algorithms based on congestion indication

feedback.)

Later we establish that under mild regularity conditions

on the functions pj; j 2 J , the expression

u�x� � P
r2R

wr log xr ÿ
P
j2J

�Ss:j2sxs

0

pj�y�dy �7�

provides a Lyapunov function for the system of differential

equations (5)±(6), and we deduce that the vector x maxi-

mising u�x� is a stable point of the system, to which all

trajectories converge.

The functions pj; j 2 J , may be chosen so that the

maximisation of the Lyapunov function u�x� arbitrarily

closely approximates the optimisation problem

NETWORK�A;C; w�, and, in this sense, is a relaxation of

the network problem. In our penultimate section we shall see

that certain relaxations correspond naturally to a system

objective which takes into account loss or delays, as well as

¯ow rates.

The Lyapunov function (7) thus provides an enlightening

analysis of the global stability of the system (5)±(6), and of

the relationship between this system and the problem

NETWORK�A;C; w�. However, the system (5)±(6) has

omitted to model two important aspects of decentralised

systems, namely stochastic perturbations, and time lags. We

analyse these aspects by considering small perturbations to

the stable point x.

Stochastic perturbations within the network may well

arise from a resource's method of sensing its load. Equa-

tions (6) represents the response mj�t� of resource j as a

continuous function of a load, y �Ps:j2s xs, which is

assumed known. In practice a resource may assess its load

by an error-prone measurement mechanism, and then

choose a feedback signal from a small set of possible

signals. (See Hernandez-Valencia et al6 and Bonomi et

al10 for more detailed descriptions of binary feedback and

congestion indication rate control algorithms.) In the next

section we describe how such mechanisms motivate various

stochastic models of the network. One particular model

takes the form

dxr�t� � k
�

wr dt ÿ xr�t�
P
j2r

�
mj�t�dt � mj�t�1=2e1=2

j dBj�t�
��
�8�

where Bj�t� is a standard Brownian motion, representing

stochastic effects at resource j, and ej is a scaling parameter

for these effects. If the scaling parameters ej; j 2 J , are

small then the stochastic differential equation (8) has, as

solution, a multidimensional Ornstein±Uhlenbeck process,

centred on the stable point x of the differential equations

(5)±(6). The stationary distributions for �xr�t�; r 2 R� is a

multivariate normal distribution, with covariance matrix that

can be explicitly calculated in terms of the parameters of the

network.

Similarly we shall describe a model incorporating time

lags that generalises (5)±(6), and shall analyse its behaviour

close to the stable point x. Our models of stochastic effects

and of time-lags provide important insights into the beha-

viour of the network, and allows us to quantify the various

relationships and trade-offs between speed of convergence,

the magnitude of ¯uctuations about the equilibrium point,

and the stability of the network.

A dual algorithm

The equations (5)±(6) represent a system where rates vary

gradually, and shadow prices are given as functions of the

rates. Next we consider a system where shadow prices vary

gradually, with rates given as functions of the shadow

prices. Let

d

dt
mj�t� � k

P
r: j2r

xr�t� ÿ qj�mj�t��
 !

�9�



where

xr�t� �
wrP

k2r mk�t�
: �10�

The relationship between the algorithm (9)±(10) and the

problem DUAL�A;C; w� parallels that between the primal

algorithms (5)±(6) and the problem NETWORK�A;C; w�,
and, again, we may motivate the algorithm in several ways.

For example, suppose that qj�Z� is the ¯ow through resource

j which generates a price at resource j of Z. Then an

economist would describe the right hand side of (9) as

the vector of excess demand at prices �mj�t�; j 2 J �, and

would recognise (9)±(10) as a tatonnement process by which

prices adjust according to supply and demand (Varian,21

Chapter 21).

Later we establish that under mild regularity conditions

on the functions qj, j 2 J , the expression

v�m� � P
r2R

wr log
P
j2r

mj

 !
ÿP

j2J

�mj

0

qj�Z�dZ �11�

provides a Lyapunov function for the system of differential

equations (9)±(10), and we deduce that the vector m
maximising v�m� is a stable point of the system, to which

all trajectories converge. Further, by appropriate choice of

the functions qj; j 2 J , the maximisation of the function

v�m� can arbitrarily approximate the problem

DUAL�A;C; w�.
We consider stochastic perturbations of system (9)±(10),

with a typical example taking the form

dmj�t� � k
P

r: j2r

�xr�t�dt � xr�t�1=2e1=2
r dBr�t�� ÿ qj�mj�t��dt

 !
�12�

where Br�t� is a standard Brownian motion, representing

stochastic effects associated with the ¯ow on route r. If the

scaling parameters er; r 2 R, are small then the stationary

distribution for �mj�t�; j 2 J � is centred on the stable point m
of the differential equations (9)±(10), with a covariance

matrix that can be explicitly calculated in terms of the

parameters of the network. Also it is possible to analyse the

stability of the model (9)±(10) when time-lags are intro-

duced.

User adaptation

Our analyses of the primal algorithm (5)±(6) and the dual

algorithm (9)±(10) assume that the parameters �wr; r 2 R�
chosen by the users are ®xed, at least on the time scales

concerned in the analyses. With increasing intelligence

embedded in end-systems, users may in the future be able

to vary the parameters �wr; r 2 R� even within these short

time scales. Both the algorithms may be extended to this

situation.

Suppose that user r is able to monitor its rate xr�t�
continuously, and to vary smoothly the parameter wr�t� so

as to track accurately the optimum to USERr�Ur; lr�t��,
where lr�t� � wr�t�=xr�t� is the charge per unit ¯ow to

user r at time t. Then, using revised Lyapunov functions,

stability of both the primal and dual algorithms may again

be established.

Our next sections provide detailed proofs of the various

results outlined above together with some numerical illus-

trations. In our penultimate section we shall look again at

the system decomposition relating the problems

SYSTEM �U ;A;C� and NETWORK�A;C; w�, and extend

the discussion to include routing control.

A primal algorithm

In this section we establish the global stability of the primal

algorithm (5)±(6), determine the rate of convergence, and,

by considering perturbations about the stable point, model

stochastic effects and time lags.

Global stability

Let the function u�x� be de®ned by (7) where

wr > 0; r 2 R, and suppose that, for j 2 J , the function

pj�y�; y5 0, is a non-negative, continuous, increasing func-

tion of y, not identically zero.

Theorem 1 The strictly concave function u�x� is a

Lyapunov function for the system of differential equations

(5)±(6). The unique value x maximising u�x� is a stable

point of the system, to which all trajectories converge.

Proof. The assumptions on wr > 0; r 2 R, and pj; j 2 J,

ensure that u�x� is strictly concave on x5 0 with an interior

maximum; the maximising value of x is thus unique.

Observe that

@

@xr

u�x� � wr

xr

ÿP
j2r

pj

P
s: j2s

xs

 !
; �13�

setting these derivatives to zero identi®es the maximum.

Further

d

dt
u�x�t�� � P

r2R

@u

@xr

� d

dt
xr�t�

� k
P
r2R

1

xr�t�
wr ÿ xr�t�

P
j2r

pj

P
s: j2s

xx�t�
 ! !2

;

establishing that u�x�t�� is strictly increasing with t, unless

x�t� � x, the unique x maximising u�x�. The function u�x�
is thus a Lyapunov function for the system (5)±(6), and the

theorem follows (see Reference 25, Chapter 5). u

De®ne the continuous functions pj�y� � �yÿ Cj � e��=e2

for j 2 J. Then, as e! 0, the maximisation of the Lyapunov



function u�x� approximates arbitrarily closely the primal

problem NETWORK�A;C; w�; in particular the vector x

maximizing u�x� approaches the solution x to relations

(3) and (4). Note, however, that the derivative p0j�y� may

become arbitrarily large as the approximation improves.

Rate of convergence

We have seen, in Theorem 1, that the system (5)±(6)

converges to a unique stable point: next we investigate

the rate of convergence, by linearisation about the stable

point.

Let x identify the unique vector maximising u�x�, let

mj � pj�
P

s: j2s xs�, and suppose pj is differentiable at this

point, with derivative p0j. Let xr�t� � xr � x
1=2
r yr�t�. Then,

linearising the system (5)±(6) about x, we obtain

d

dt
yr�t� � ÿk

�
yr�t�

P
j2r

mj � x1=2
r

P
j2r

p0j
P

s: j2s

x1=2
s ys�t�

�
� ÿk wr

xr

yr�t� � x1=2
r

P
j

P
s

p0jAjrAjsx
1=2
s ys�t�

 !
:

We may write this in matrix form as

d

dt
y�t� � ÿk�WXÿ1 � X 1=2AT P0AX 1=2�y�t� �14�

where X � diag�xr; r 2 R�, W � diag�wr; r 2 R� and

P0 � diag�p0j; j 2 J �.
Let

GTFG � WXÿ1 � X 1=2AT P0AX 1=2 �15�
where G is an orthogonal matrix, GTG � I , and F �
diag�fr; r 2 R� is the matrix of eigenvalues, necessarily

positive, of the real, symmetric, positive de®nite matrix

(15). Then

d

dt
y�t� � ÿkGTFGy�t�; �16�

and thus the rate of convergence to the stable point is

determined by the smallest eigenvalue, fr; r 2 R, of the

matrix (15). Note that speed of convergence increases both

with the gain parameter k and with the magnitude of the

derivatives P0; we shall see that this conclusion requires

quali®cation in the presence of either stochastic effects or of

time-lags.

Our early assumption that pj�y�; j 2 J , are increasing

functions is convenient and often natural: it implies that u
is strictly concave with an interior maximum. If the func-

tions pj�y�; j 2 J , are not increasing, then u�x� may not

have an interior maximum or it may have multiple stationary

points: we describe an example later. Provided pj�y�; j 2 J ;
are differentiable at a stationary point, the local behaviour

near the stationary point is described by (16).

Stochastic analysis

Next we consider a stochastic perturbation of the linearised

equation (16). Let

dy�t� � ÿk�GTFGy�t�dt � F dB�t�� �17�

where F is an arbitrary jRj � jI j matrix and B�t� �
�Bi�t�; i2 I � is a collection of independent standard Brown-

ian motions, extended to ÿ1 < t <1. (Later we describe

how the modelling of different sources of randomness may

lead to various explicit forms for the matrix F.)

The stationary solution to the system (17) is

y�t� � ÿk
�t

ÿ1
eÿk�tÿt�G

TFGF dB�t�; �18�

as can be checked by differentiating both sides of (18) with

respect to t. The solution (18) is a linear transformation of

the Gaussian process �B�t�; t < t�; hence y�t� has a multi-

variate normal distribution, y�t� � N �0;S�, where

S � E�y�t�y�t�T �

� k2

�0

ÿ1
ektG

TFGFFT ektG
TFG dt

� kGT

�0

ÿ1
etFGFFTGT etF dt

� �
G:

De®ne the symmetric matrix �GF;F� by

�GF;F�rs �
�0

ÿ1
etFGFFTGT etF dt

� �
rs

� �GFFTGT �rs

fr � fs

:

Then

S � kGT �GF;F�G: �19�

Note that the covariance matrix increases linearly with

the gain parameter k; as k increases, the faster convergence

to equilibrium described by relation (16) is at the cost of a

greater spread at equilibrium. Varying the derivatives P0

has a more subtle effect, through relation (15) and the

construction (19), on the covariance matrix; broadly, as P0

increases, not only is convergence to equilibrium faster, but

also the spread at equilibrium decreases. However, we shall

see later that, in the presence of time-lags, increasing P0 may

compromise stability.

We next illustrate how various sources of randomness

may lead to different covariance structures.

Congestion indication with joint feedback. Consider the

following stochastic version of the system (5)±(6). Let



�Nj�t�; t5 0�, for j 2 J , be a collection of independent unit

rate Poisson processes, and let

dxr�t� � k
�

wr dt ÿ xr�t�
P
j2r

ej dNj eÿ1
j

�t

0

mj�t�dt
� ��

;

�20�

where the functions mj���, for j 2 J , are given by (6).

Equation (20) would describe the following model: resource

j generates feedback signals indicating congestion as a

time-dependent Poisson process at rate eÿ1
j mj�t�; when

resource j generates a feedback signal, a copy is sent to

each user r whose route passes through resource j; and user

r reacts to such a feedback signal by reducing xr�t� by an

amount kejxr�t�.
Now as e! 0, the normalised Poisson process

��eNj�t=e� ÿ t�eÿ1=2; t5 0� converges in distribution to a

standard Brownian motion. This motivates the approxima-

tion, valid when ej are small, of the Poisson driving equation

(20) by its Brownian version

dxr�t� � k wr dt ÿ xr�t�
P
j2r

�
mj�t�dt � e1=2

j mj�t�1=2 dBj�t�
� !

where �Bj�t�; t 5 0�, for j 2 J , are a collection of indepen-

dent standard Brownian motions.

The corresponding Brownian version of the linearised

system (16) is just (17) where B�t� � �Bj�t�; j 2 J �, and F is

an jRj � jJ j matrix with elements

Frj � e1=2
j m1=2

j Ajrx
1=2
r : �21�

Then

FFT � X 1=2AT EPAX 1=2; �22�

where E � diag�ej; j 2 J � and P � diag�mj; j 2 J �, and

hence the stationary covariance matrix S may be calculated

from expression (19).

Congestion indication with individual feedback. Consider

next the Poisson driving equation

dxr�t� � k wr dt ÿP
j2r

ej dNjr eÿ1
j

�t

0

xr�t�mj�t�dt
� � !

�23�

where �Njr�t�; t5 0�, for j 2 J ; r 2 R, are a collection of

independent unit rate Poisson processes. This would

describe the following model: feedback signals from

resource j to user r arise at rate eÿ1
j xr�t�mj�t�; and user r

reacts to such a feedback signal by reducing xr�t� by an

amount kej. The Brownian approximation, valid when ej are

small, becomes

dxr�t� � k wr dt ÿ xr�t�
P
j2r

�mj�t�dt

 

� e1=2
j xr�t�ÿ1=2mj�t�1=2 dBjr�t��

�
;

whose linearisation is (17) where the jRj � jJ j � jRj matrix

F is given by

Fr;�j;s� � e1=2
j m1=2

j AjrI �r � s�: �24�
Thus FFT is the matrix diag�Pj2r mjej; r 2 R�, and the

stationary covariance matrix S may be calculated from

expression (19). Later we provide a numerical illustration

of this calculation, and contrast the results derived from the

forms (21) and (24).

Source ¯uctuations. Consider the Brownian driving equa-

tion

dxr�t� � k wr dt ÿ xr�t�
P
j2r

mj�t�dt � e1=2
r xr�t�1=2 dBr�t�

 !
;

which might correspond to ¯uctuations arising at sources,

rather than within the network. For this system the jRj � jRj
matrix F is the diagonal matrix diag�e1=2

r ; r 2 R�.

Time lags

Consider next the lagged, discrete time system

xr�t � 1� � xr�t� � k wr ÿ xr�t�
P
j2r

mj�t ÿ d� j; r��
 !

�25�

where

mj�t� � pj

� P
s: j2s

xs�t ÿ d� j; s��
�
; �26�

and d� j; r�; j 2 J ; r 2 R, are non-negative integers. This

might correspond to a model of congestion indication with

joint feedback, where there is a delay of d� j; r� between

resource j generating a feedback signal and user r receiving

it, and another delay of d� j; r� between user r changing its

rate and the altered ¯ow reaching resource j. Say that a

vector x is an equilibrium point of the system (25)±(26) if

xr�t� � xr, for t � . . . ; 0; 1; 2; . . . ; satis®es these equations.

Theorem 2 The vector x maximising the strictly concave

function u�x� is the unique equilibrium point of the system

(25)±(26).

Proof. The vector x is an equilibrium point if and only if

it solves

wr � xr

P
j2r

pj

P
s: j2s

xs

 !
:



But this is precisely the stationarity condition implied by

the partial derivatives (13) of the function u�x�, a strictly

concave function with a unique maximum. u

For small enough values of k the equilibrium point will

be asymptotically stable, since if we replace k by kd in (25)

and let xr�t� � xr�t=d�, then as d! 0 we may approximate

arbitrarily closely a solution to (5)±(6). But for small values

of k convergence to the equilibrium point is slow, and so it

is of interest to investigate the local stability of the

equilibrium point for general values of k.

Let mj � pj�
P

s: j2s xs�, and suppose pj is differentiable at

this point, with derivative p0j. Let xr�t� � xr � x
1=2
r yr�t�. Then,

linearising the system (25)±(26) about x, we obtain

yr�t � 1� � yr�t� ÿ k yr�t�
P
j2r

mj � x1=2
r

P
j2r

p0j
P

s: j2s

x1=2
s

 

ys�t ÿ d� j; r� ÿ d� j; s��
!

� yr�t� ÿ k
wr

xr

yr�t� �
P

j

P
s

p0jAjrAjsx
1=2
r x1=2

s

 

ys�t ÿ d� j; r� ÿ d� j; s��
!

�27�

De®ne the jRj � jRj matrices �L�d�; d � 0; 1; . . . ;D� by

�L�d��rs �
P

j

p0jAjrAjsx
1=2
r x1=2

s I �d� j; r� � d�j; s� � d�

where D � maxj;r;sfd� j; r� � d� j; s�g. ThusPD
d�0

L�d� � X 1=2AT P0AX 1=2;

the second term of the key matrix (15). De®ne the vector

y�t� � �yr�t�; r 2 R�. Then we can rewrite (28) in the matrix

form

y�t � 1�
y�t�
..
.

y�t ÿ D� 1�

0BBB@
1CCCA � L

y�t�
y�t ÿ 1�

..

.

y�t ÿ D�

0BBB@
1CCCA �28�

where

L �
I ÿ k�WXÿ1 � L�0�� ÿkL�1� ÿkL�2� . . . ÿkL�D�

I 0 0 . . . 0

0 I 0

..

. ..
. ..

. ..
.

0 0 0 . . . 0

0BBBBBB@

1CCCCCCA:

�29�
The equilibrium point x of the system (25)±(26) is stable if

and only if the spectral radius of the matrix L is less than

unity. Recall that in our model of stochastic effects,

increasing the derivatives P0 had broadly the same reductive

effect on the convergence matrix (19) as decreasing the gain

parameter k; in contrast the destabilising effect on the

matrix (29) of increasing P0 is broadly the same as increas-

ing k.

For simplicity of notation we have used the same gain

parameter k for each r 2 R. If k is replaced by kr in (25),

then we again obtain relations (28)±(29), but now with k
interpreted as the matrix diag�kr; r 2 R�. An interesting

topic concerns how the time delays within a network

affect the choice of gain parameters; we might for example

study the problem of choosing diag�kr; r 2 R� in order to

minimize the spectral radius of the matrix L.

There exist other natural discrete time versions of the

equation (5)±(6), and these too may be analysed in a similar

manner. For example, consider the method of repeated

substitution xr�t � 1� � wr=
P

j2r mj�t ÿ d� j; r�� or its

damped version

xr�t � 1� � �1ÿ k�xr�t� � k
wrP

j2r mj�t ÿ d� j; r��
where mj�t� is again given by (26). Then the linearised

relations (28)±(29) are altered in that the top row of the

matrix (29) becomes

�I ÿ k�I � XWÿ1L�0��;ÿkXWÿ1L�1�; . . . ;ÿkXWÿ1L�D��:

A dual algorithm

In this section we investigate the stability of the dual

algorithm (9)±(10), including a perturbation analysis of

stochastic effects and time lags. Finally we note that the

system (9)±(10) is just one example of a dual algorithm,

and consider variants that share the Lyapunov function

(11).

Global stability

Let the function v�m� be de®ned by (11), where

wr > 0; r 2 R, and suppose that, for j 2 J ; qj�0� � 0 and

qj�Z�; Z5 0, is a continuous, strictly increasing function of

Z.

Theorem 3 The strictly concave function v�m� is a

Lyapunov function for the system of differential equations

(9)±(10). The unique value m maximising v�m� is a stable

point of the system, to which all trajectories converge.

Proof. The assumptions on wr > 0; r 2 R, and on

qj; j 2 J , ensure that v�m� is strictly concave on m5 0

with an interior maximum; the maximising value of m is thus

unique, and is determined by setting the derivatives

@

@mj

v�m� � P
r: j2r

wrP
k2r mk

ÿ qj�mj� �30�



to zero. Also,

d

dt
v�m�t�� �P

j2J

@v

@mj

� d

dt
mj�t�

� k
P
j2J

P
r: j2r

wrP
k2r mk�t�

ÿ qj�mj�t��
 !2

;

establishing that v�m�t�� is strictly increasing with t, unless

m�t� � m, the unique value m maximising v�m�. The func-

tion v�m� is thus a Lyapunov function for the system (9)±

(10), and the theorem follows.25 u

The maximisation of the Lyapunov function v�m�
becomes the dual problem if, for j 2 J ; Z > 0; qj�Z� � Cj.

These functions violate the assumption that qj�Z� is contin-

uous at Z � 0, but they may be arbitrarily closely approxi-

mated, for example by the functions qj�Z� � CjZ=�Z� e� for

small positive e. Note, however, that the derivative q0j�Z�
may become arbitrarily large as the approximation improves.

Rate of convergence

Let m identify the unique vector maximising v�m�, let

xr � wr=
P

k2r mk , and suppose qj�y� differentiable at the

point y � mj, with derivative q0j. Let mj�t� � mj � xj�t�. Then,

linearising the system (9)±(10) about m, we obtain, after

some reduction,

d

dt
x�t� � ÿk�AXWÿ1XAT � Q0�x�t�

where W � diag�wr; r 2 R� and Q0 � diag�q0j; j 2 J �. Let

YTCY � AXWÿ1XAT � Q0 �31�
where Y is an orthogonal matrix, YTY � I , and

C � diag�cj; j 2 J � is the matrix of eigenvalues, necessa-

rily non-negative, of the real, symmetric, positive semi-

de®nite matrix (31). Then

d

dt
x�t� � ÿkYTCYx�t�; �32�

and thus the rate of convergence to the stable point is

determined by the smallest eigenvalue of the matrix (31).

Note that the speed of convergence increases both with the

gain parameter k and with the magnitude of the derivatives

Q0.

Stochastic analysis

Next consider a stochastic perturbation of the linearized

equation (32). Let

dx�t� � ÿk�YTCYx�t�dt ÿ G dB�t�� �33�
where B�t� � �Bi�t�; I 2 I � is a collection of independent

standard Brownian motions, and G is a jJ j � jI j matrix.

A similar analysis to that of the last section determines

the stationary covariance matrix S of x�t�. De®ne the

symmetrix matrix �YG;C� by

�YG;C�jk �
�YGGTYT �jk

cj � ck

:

Then

S � kYT �YG;C�Y: �34�
Note that the covariance matrix increases linearly with the

gain parameter k; as k increases, the faster convergence to

equilibrium described by relation (32) is at the cost of a

greater spread at equilibrium.

Next we describe an example illustrating how a model of

the form (33) might arise.

Shadow prices inferred from ¯uctuating ¯ow rates.

Consider the Poisson driving equation

dmj�t� � k
P

r: j2r

er dNr eÿ1
r

�t

0

xr�t�dt
� �

ÿ qj�mj�t��dt

 !
where �Nr�t�; t5 0�, for r 2 R, are a collection of indepen-

dent unit rate Poisson processes. This would describe a

model where, on a very ®ne time-scale, the ¯ow on route r

takes the form of a time-dependent Poisson process of rate

xr�t�=er, with each point of the process containing a work-

load of size er. The Brownian approximation, valid when er

are small, becomes

dmj�t� � k
P

r: j2r

�xr�t�dt � e1=2
r xr�t�1=2 dBr�t�� ÿ qj�mj�t��dt

 !

whose linearisation is (33) where G is a jJ j � jRj matrix

with elements

Gjr � e1=2
r x1=2

r Ajr;

thus GGT � AXEAT where E � diag�er; r 2 R�.

Time lags

Consider next the system

mj�t � 1� � mj�t� � k
P

r: j2r

xr�t ÿ d�j; r�� ÿ qj�mj�t��
 !

�35�

where

xr�t�
wrP

k2r mk �t ÿ d�k; r�� : �36�

A vector m is an equilibrium point of the system (35)±(36)

if mj�t� � mj, for t � . . . ; 0; 1; 2; . . . ; satis®es these equa-

tions.

Theorem 4 The vector m maximising the strictly concave

function v�m� is the unique equilibrium point of the system

(35)±(36).



Proof. The vector m is an equilibrium point if and only if

solves P
r: j2r

wrP
k2r mk

� qj�mj�:

But this is precisely the stationarity condition implied by

the partial derivatives (30) of the function v�m�, a strictly

concave function with a unique maximum. The result

follows. u

Next we investigate the stability of the equilibrium point.

Let xr � wr=
P

k2r mk , and suppose qj is differentiable at the

point y � mj, with derivative q0j. Let mj�t� � mj � xj�t�. Then,

linearising the system (35)±(36) about m, we obtain

xj�t � 1� � xj�t� ÿ k
P

r: j2r

x2
r wÿ1

r

P
k2r

xk �t ÿ d� j; r� ÿ d�k; r��
 

� q0jxj�t�
!
: �37�

De®ne the jJ j � jJ j matrices �M �d�; d � 0; 1; . . . ;D� by

�M �d��jk �
P

r

xrAjrAkrI �d� j; r� � d�k; r� � d�

where now D � maxj;k;rfd� j; r� � d�k; r�g. Thus

PD
d�0

M �d� � AXWÿ1XAT :

De®ne the vector x�t� � �xj�t�; j 2 J �. Then we can rewrite

(37) in the matrix form

x�t � 1�
x�t�

..

.

x�t ÿ D� 1�

0BBB@
1CCCA � M

x�t�
x�t ÿ 1�

..

.

x�t ÿ D�

0BBB@
1CCCA

where

M �
I ÿ k�M �0� � Q0� ÿkM �1� ÿkM �2� . . . ÿkM �D�

I 0 0 . . . 0

0 I 0 . . . 0

..

. ..
. ..

. ..
.

0 0 0 . . . 0

0BBBBBB@

1CCCCCCA:

The equilibrium point m of the system (35)±(36) is stable if

the spectral radius of the matrix M is less than unity. With

stochastic effects, increasing the derivatives Q0 has broadly

the same reductive effect on the covariance matrix (34) as

decreasing the gain parameter k; in constrast the destabilis-

ing effect on the matrix (38) of increasing Q0 is broadly the

same as increasing k.

Variants

Several variants of the primal algorithm (5)±(6) and the

dual algorithm (9)±(10) allow a similar analysis. For

example, if the right hand side of (5) is multiplied by a

postive function fr�x�t�; m�t�� then Theorem 1 remains valid.

Similarly, if the right hand side of (9) is multiplied by a

positive function fj�x�t�; m�t�� then Theorem 3 remains valid.

As a simple example, we could divide the right hand side of

(5) by wr, or of (9) by qj�mj�t��.
A more subtle variation is obtained if (9) is replaced by

d

dt
mj�t� � k pj

P
r: j2r

xr�t�
 !

ÿ mj�t�
 !

; �39�

where pj is the inverse function of qj, and xr�t� is again

given by (10). Note that the expression (39) is of the same

sign as expression (9), and so the proof of Theorem 3 goes

through as before. Suppose pj�y� is differentiable at the

stable point with derivative p0j, and let mj�t� � mj � xj�t�.
Then, linearising the system (39) about the equilibrium

point, we obtain

d

dt
x�t� � ÿk�I � P0AXWÿ1XAT �x�t�

where P0 � diag�p0j; j 2 J �, allowing the local convergence

properties of the algorithm (39) to be studied.

Examples

In this section we illustrate the results of the last two

sections through a discussion of some examples. The ®rst

sub-section illustrates how the functions pj; j 2 J , may be

determined by the detailed stochastic behavior of resource j;

a simple four node network is used to facilitate compar-

isons between feedback mechanisms. The results of this

paper are, of course, intended to apply to large-scale

networks, and our second sub-section discusses the beha-

viour of a dual algorithm in a random network with 100

resources and 1000 routes.

Congestion indication in a four node network

Suppose that the total load y on a resource takes the form,

on a very ®ne time-scale, of a Poisson stream of cells at rate

y=e. Suppose that the time-axis is divided into non-over-

lapping slots each of length te, and that a feedback signal is

generated for a slot if the total number of cells arriving in

that slot exceeds a threshold N. (While there may well be a

queue at a resource, we suppose for the moment that the

feedback signals are generated by the process just

described, rather than, for example, by the queue size

exceeding a threshold.) Suppose that when a feedback

signal is generated, it is sent to each user r whose route

passes through resource j, where it is interpreted as a

congestion indicator requiring a reduction in the rate xr�t�



of size kexr�t�. If the probability that a signal is generated in

any single slot is small, then this model corresponds to (20),

with ej � e and

pj�y� �
1

t
P

n>N

eÿyt �yt�n
n!

: �40�

Consider the network illustrated in Figure 1, where

jJ j � jRj � 4. Let wr � 0:0002; r 2 R, suppose pj�y� is

given by (40), and choose N � 128; t � 50, so that the

equilibrium point is xr � 1:0; r 2 R; mj � 0:0001, j 2 J .

Then, from relations (19) and (22), the covariance matrix

of the rates �xr�t�; r 2 R� can be calculated to be

S1 � ke10ÿ2

2:4 0:8 ÿ0:8 0:8
0:8 2:4 0:8 ÿ0:8
ÿ0:8 0:8 2:4 0:8

0:8 ÿ0:8 0:8 2:4

0BB@
1CCA;

a matrix whose form we shall discuss shortly.

For a second example, suppose again that a feedback

signal is generated by a slot when the total number of cells

arriving in that slot exceeds a threshold, N. But now

suppose that when a feedback signal is generated at

resource j, it is directed at a random route r with probability

xr=y (for example, the signal might be sent to the route

responsible for the last cell arriving during the slot that

generated the feedback signal). If user r receives a feedback

signal, then the rate xr�t� is reduced by an amount ke. This

model corresponds to (23), with ej � e and

pj�y� �
1

ty

P
n>N

eÿyt �yt�n
n!

: �41�

Again let wr � 0:0002; r 2 R, and now choose N � 125,

t � 50 so that, now using (41), xr � 1:0, r 2 R;
mj � 0:0001, j 2 J , is once again an equilibrium point.

Then, from relations (19) and (24), the covariance matrix

of the rates �xr�t�; r 2 R� can be calculated to be

S2 � ke10ÿ1

1:5 ÿ1:2 1:1 ÿ1:2
ÿ1:2 1:5 ÿ1:2 1:1

1:1 ÿ1:2 1:5 ÿ1:2
ÿ1:2 1:1 ÿ1:2 1:5

0BB@
1CCA:

(The function (41) is not an increasing function of y for all

values of y. But it is increasing at the point y � 2, hence the

matrix (15) is positive de®nite and this implies that the

equilibrium point is locally stable. We note in passing that

function (41) provides an example where, if the parameters

wr; r 2 R, are set too large, the function u�x� has no interior

maximum and the system (5)±(6) has no equilibrium point).

It is interesting to compare the magnitudes, and structures

of the matrices S1 and S2. That S2 is larger in magni-

tude is expected, since with individual feedback there are

additional sources of variation in the random choice of

which rate is to be reduced by a feedback signal. Note

also that rates on routes sharing a node are positively corre-

ated for the joint feedback model. The explanation is that,

with joint feedback, congestion indication at a node causes

both routes through that node to decrease their rates simul-

taneously. However, for individual feedback, routes sharing

a node are negatively correlated. In this case, a decrease in

the ¯ow on a route will allow increases on routes sharing a

common node with it.

We have simulated (20) and (23), with e � 1:0;
k � 0:01, with results that agree well with the matrices S1

and S2.

Suppose next that when the number of cells within a slot

exceeds N, each of the cells within the slot causes a

feedback signal to be sent to the user responsible for that

cell. Suppose a user responds to each feedback signal by

reducing its rate by ke. Then the expected number of

feedback signals generated per slot isP
n>N

neÿyt �yt�n
n!
� yt

P
n5N

eÿyt �yt�n
n!

;

and so

pj�y� �
P

n5N

eÿyt �yt�n
n!

; �42�

an expression rather similar to the form (40). The covar-

iance structure of the model depends on the size of N

relative to the number of routes through a resource. If N is

large and most or all routes through a resource receive a

feedback signal when overload occurs, then the covariance

structure resembles that of the joint feedback model; if N is

small, and an essentially random set of routes receives a

feedback signal, the covariance structure resembles more

closely that of the individual feedback model.

Many other mechanisms for signal generation are possi-

ble. For example, suppose that cells pass through a buffer

which acts as a single server queue, and signals are

generated whenever a cell arrives to ®nd the buffer above

a threshold level. Under Poisson arrival assumptions the

rate of signal generation, and hence pj�y�, may be deter-

mined from the analysis of an M/D/1 queue. Note that the

buffer may well be a virtual buffer, with service rate lower

than that of a real buffer at the resource, in order to signal

congestion before the onset of cell loss.26
Figure 1 A four node network.



Poisson streams and non-overlapping slots allow simple

calculations, and are suggestive of the results that may be

obtained with more complex models.12 It is important to

note, however, that the main results of earlier sections do not

depend upon Poisson assumptions; the derivation of the

covariance structure (19) was based on a more general

central limit approximation, while Theorems 1 and 3 rely

only upon rather weak properties of the functions pj; qj;u
or v.

A random network

Next we consider a network where the elements of the

matrix A are independent random variables, each taking the

value 1 with probability p and the value 0 otherwise, and

where the elements of the matrix d are independent random

variables uniformly distributed over the set f0; 1; . . . ;Dg.
Let wr �

P
j A�j; r�, and let qj�Z� � Z

P
s A�j; s�, so that the

unique stable point for the system (9)±(10) is

xr � 1; r 2 R; mj � 1; j 2 J .

Consider the system

mj�t � 1� � mj�t� � k
P

r: j2r

Nr�t ÿ d�j; r�� ÿ qj�mj�t��
 !

�43�

where �Nr�t�; t � 1; 2; . . .�, for r 2 R, are a collection of

independent Poisson random variables, and Nr�t� has mean

xr�t� as de®ned by (36). The system (43) is thus a discrete

time version of the dual algorithm that combines both

stochastic ¯uctuations and time lags.

Figures 2 and 3 illustrate the behaviour of ®ve randomly

chosen routes and ®ve randomly chosen resources for the

following parameter choices: J � 100; R � 1000; p �
0:1;D � 10; k � 0:005. For these parameter choices the

average length of a route is 10, the average number of

routes through a resource is 100, and the largest time delay

between a source and a resource is 10 time units. Note that

for this example rates oscillate within a narrower band than

shadow prices, and both are relatively well controlled.

In Figure 4, the curve labelled a � 1 records the effect of

the gain parameter k on the mean square deviation of

shadow prices, s2, de®ned as the expected value of

�mj�t� ÿ 1�2 averaged over all resources, j 2 J . For small

values of k, the relationship is approximately linear, with a

slope in good agreement with that predicted by relation

(34). However as k increases, the mean square deviation

diverges, with an asymptote at the value of k (approxi-

mately 0.011) at which the spectral radius of the matrix

(38) reaches unity and the deterministic time-lagged system

becomes unstable.

Finally, let us consider brie¯y the effect of more general

choices for the functions qj; j 2 J , describing the relation-

ship between ¯ow rates and shadow prices at resources.

Suppose that qj�Z� � �a�Zÿ 1� � 1�Ps A�j; s�, so that the

unique stable point for the system (9)±(10) is again

xr � 1; r 2 R, mj � 1; j 2 J . The case a � 1 is that

discussed so far; the case a � 2, also illustrated in Figure

Figure 2 Rates on three randomly chosen routes.

Figure 3 Shadow prices for three randomly chosen resources.

Figure 4 Relation between the gain parameter k and the mean
square deviation of shadow prices, s2, for the resources of the
random network. The parameter a labels the sensitivity of the
relationship between ¯ow rates and shadow prices at resources.



4, corresponds to a doubling of the matrix of derivatives Q0.
As predicted by our earlier analysis, the effect of increasing

a is to reduce variability for smaller values of k, but also to

lower the critical value of k at which the system becomes

unstable.

User adaptation

In this section we consider the stability of systems where

users are able to adapt very quickly to their experience of

congestion, and illustrate brie¯y how our methods extend to

this situation.

Suppose that user r is able to monitor its rate xr�t�
continuously, and to vary smoothly the parameter wr�t� so

as to track accurately the optimum to USERr�Ur; lr�t��,
where lr�t� � wr�t�=xr�t� is the charge per unit ¯ow to

user r at time t. A simple differentiation establishes that

the solution to the problem USERr�Ur; lr� has wr �
xrU

0
r�xr�, where xr � wr=lr. Thus, under accurate tracking

by user r of the optimum to USERr�Ur; lr�t��, the parameter

wr�t� will satisfy

wr�t� � xr�t�U 0r�xr�t��; �44�
while, for the primal algorithm, xr�t� evolves according to

the revised differential equation

d

dt
xr�t� � k wr�t� ÿ xr�t�

P
j2r

mj�t�
 !

where mj�t� is given by (6).

We shall establish stability of the revised system, by

using a revision of the argument leading to Theorem 1.

Consider the revised expression

u�x� � P
r2R

Ur�xr� ÿ
P
j2J

�Ss: j2sxs

0

pj�y�dy:

Note that

@

@xr

u�x� � U 0r�xr� ÿ
P
j2r

pj

P
s: j2s

xs

 !
;

and thus

d

dt
u�x�t�� � P

r2R

@u

@xr

� d

dt
xr�t�

� k
P
r2R

1

xr�t�
�

wr�t� ÿ xr�t�
P
j2r

pj

� P
s: j2s

xs�t�
��2

;

using relation (44) to substitute for U 0r�xr�t��. Hence u�x�
provides a Lyapunov function for the revised system, and

the unique value maximising u�x� is a stable point of the

system, to which all trajectories converge. Linearisation may

again be used to investigate behaviour near the stable point:

for example, the revised form of (14) becomes

d

dt
y�t� � ÿkX 1=2�AT P0Aÿ U 00�X 1=2y�t�

where U 00 � diag�U 00r �xr�; r 2 R�.
A similar analysis is possible for the dual algorithm.

Under accurate tracking by user r of the optimum to

USERr�Ur; lr�t�� the parameter wr�t� will be given by

(44), where, for the dual algorithm,

xr�t� �
wr�t�P
k2r mk�t�

and mj�t� evolves according to the differential equation (9).

To ®nd a Lyapunov function for this system, it is helpful to

®rst construct the dual to problem SYSTEM �U ;A;C�. Let

Dr�l� � xr, where xr is the solution to l � U 0r�xr�, with

Dr�l� � 0 if l5U 0r�0� and Dr�l� � 1 if l4U 0r�1�.
Then, after elision of a constant term, the dual of the

problem SYSTEM �U ;A;C� becomes

max
P
r2R

�lr

Dr�z�dzÿ
P
j2J

mjCj

subject to

l4mT A

over

m5 0

where the lower limit in the integral of the function Dr can

be chosen to be any ®xed value in the range �U 0r�1�;U 0r�0��.
We may interpret Dr�l� as the demand of user r when

confronted with a price per unit ¯ow of l; under accurate

tracking by user r

xr�t� � Dr

P
j2r

mj�t�
 !

: �45�

Consider now the revised Lyapunov function

v�m� � P
r2R

�Sj2rmj

Dr�z�dzÿ
P
j2J

�mj

0

qj�Z�dZ:

Note that

@

@mj

v�m� � P
r: j2r

Dr

P
k2r

mk

� �
ÿ qj�mj�

and thus

d

dt
v�m�t�� �P

j2J

@v

@mj

� d

dt
mj�t�

� k
P
j2J

P
r: j2r

xr�t� ÿ qj�mj�t��
 !2

;



using (9) and relation (45). Hence v�m� provides a Lyapu-

nov function for the revised system, and the unique value

maximising v�m� is a stable point of the system, to which

all trajectories converge.

The models considered in this section assume very fast

adaptation of the users, indeed so rapid that user r is

essentially varying its rate xr�t� optimally in response to

the resource shadow prices �mj�t�; j 2 J �. Interesting ques-

tions remain concerning the stability of the system under

more general assumptions on users' speed of adaptation.

A more general optimisation problem

The optimisation problem implicitly solved by the primal

algorithm (5)±(6) is not our initial network problem

NETWORK�A;C; w�, but rather the maximisation of the

Lyapunov function (7). We begin this section by discussing

a possible interpretation of this relaxation of the network

problem, where the constraint Ax4C is replaced by penal-

ties, perhaps expressed in terms of delay or loss, that

increase as the capacity of a resource is approached.

Following this we indicate how the system problem

SYSTEM �U ;A;C� may be recast both to motivate the

relaxation of the network problem, and to allow routing

choices.

Delay or loss

Suppose that when a resource is heavily loaded the network

incurs some cost, perhaps expressed in terms of delay or

loss. Then the optimisation of the Lyapunov function (7)

might be interpreted in terms of a penalty function

Cj�y� �
�y

0

pj�Z�dZ �46�

that describes the rate at which cost is incurred at resource j

when the load through it is y.

For example, suppose the rate at which cost is incurrred

at resource j is

Cj�y� �
1

t
P

n>N

�nÿ N �eÿyt �yt�n
n!

when the load is y, that is, e times the expected number of

cells per unit time that exceed a threshold N in the slotted

Poisson model of the previous section. Then a simple

differentiation establishes that pj�y�, determined by (46),

is given by (42).

Routing

Next we extend the basic model to allow routing choices to

be made. Let s 2 S now label a user, and suppose s is

identi®ed with a subset of R, the routes available to serve

the user s. Set Hsr � 1 if r 2 s, so that route r serves user s,

and set Hsr � 0 otherwise. This de®nes a 0±1 matrix

H � �Hsr; s 2 S; r 2 R�. For each r 2 R let s�r� identify a

value s 2 S such that Hsr � 1, and suppose this value is

unique; view s�r� as the user served by route r.

Now let yr be the ¯ow on route r, and suppose that

resource j incurs a cost Cj�
P

r: j2r yr� dependent on the ¯ow

through that resource, where Cj��� is a strictly convex

function. Consider the following optimisation problems.

SYSTEM �U ;H;A;C� :

max
P
s2S

Us�xs� ÿ
P
j2J

Cj

P
r: j2r

yr

 !

subject to

Hy � x

over

x; y5 0:

NETWORK�H;A;C; w� :

max
P
s2S

ws log
P
r2s

yr

� �
ÿP

j2J

Cj

P
r: j2r

yr

 !

over

y5 0:

Then, following the approach of Kelly,18 it is possible to

show that there exist vectors l � �ls; s 2 S�, w �
�ws; s 2 S� and x � �xs; s 2 S� satisfying ws � lsxs for

s 2 S, such that ws solves USERs�Us; ls� for s 2 S and x

solves NETWORK�H;A;C; w�; further x is then the unique

vector with the property that there exists a vector y such

that �x; y� solves SYSTEM �U ;H;A;C�.
Thus the relaxation of the network problem may be

motivated by a similar relaxation of the overall system

problem and both problems may be generalised to include

routing choices. Finally we sketch the natural generalisa-

tions of the primal and dual algorithms, and their corre-

sponding Lyapunov functions.

Suppose that pj and Cj are related by (46). Generalise the

primal algorithm (5)±(6) to become

d

dt
yr�t� � k ws�r� ÿ

P
a2s�r�

ya�t�
 !P

j2r

mj�t�
 !

�47�

(or zero if this expression is negative and yr�t� � 0� where

mj�t� � pj

P
r: j2r

yr�t�
 !

; �48�

and let

u�y� �P
s2S

ws log
P
r2s

yr

� �
ÿP

j2J

�Sr: j2ryr

0

pj�y�dy:



Then the dynamical system (47)±(48) has the property that

d

dt
u�y�t�� > 0

unless y solves NETWORK�H;A;C; w�.
Similarly the dual algorithm (9)±(10) may be generalized

to incorporate a form of least cost routing. For s 2 S letP
r2s

yr�t� � xs�t� �
ws

minr2s

P
j2r mj�t�

;

and suppose yr�t� is only positive on routes r that attain the

minimum in the denominator. Then the dynamical system

d

dt
mj�t� � k

P
r: j2r

yr�t� ÿ qj�mj�t��
 !

has the property that v�m�t�� is an increasing function of t,

where

v�m� �P
s2S

ws log

�
min
r2s

P
j2r

mj

�
ÿP

j2J

�mj

0

qj�Z�dZ:

Thus routing, as well as rate control, may be naturally

integrated with proportionally fair pricing.

Concluding remarks

In this paper we have addressed the issue of how available

bandwidth within a large-scale broadband network should

be shared between competing streams of elastic traf®c. An

optimisation framework leads to a decomposition of the

overall system problem into a separate problem for each

user, in which the user chooses a charge per unit time that

the user is willing to pay, and one for the network; we have

shown that two classes of rate control algorithm are

naturally associated with the objective functions appearing

in, respectively, the primal and dual formulation of the

network's problem. In consequence the algorithms provide

natural implementations of proportionally fair pricing. We

have studied the stability of the algorithms in the presence

of stochastic perturbations and time lags, and have illu-

strated our results with a study of random network with a

hundred resources and a thousand routes. Interesting and

challenging questions remain concerning the stability of the

entire system under more general assumptions on users'

reactions to the rates allocated to them by the network, and

when the numbers of users and the amounts of capacity

available for elastic traf®c vary randomly. An outstanding

practical issue concerns how protocols, such as TCP in the

Internet or the Available Bit Rate transfer capability of an

ATM network, can be adapted to be charge sensitive.
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