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Abstract 
 

TCP throughput instability is a well-known 
phenomenon in IEEE 802.11 multi-hop ad-hoc networks. 
However, we find that this problem is not restricted to 
TCP traffic only, but also occurs in UDP traffic. The 
associated throughput oscillations are not acceptable for 
real-time applications such as video conferencing and 
voice over IP. This paper re-defines this throughput 
fluctuation as a “re-routing instability problem” since it 
is caused by the triggering of the re-routing function. In 
particular, we show that the throughput instability is 
mainly induced by re-routing, not the binary exponential 
back-off of the IEEE 802.11 MAC protocol. Turning off 
the re-routing function, for example, eliminates the 
problem. We believe that this is the first paper in the 
literature to study this phenomenon in the context of re-
routing instability. We propose to modify the ad-hoc 
routing protocols with a “don’t-break-before-you-can-
make” strategy. The scheme does not require 
modifications of the IEEE 802.11 standard, making it 
readily deployable using existing commercial Wireless 
LAN (WLAN) products. Simulations show that the 
proposed scheme can significantly reduce the throughput 
variation in a traffic flow by 50-70% and improve the 
average throughput by up to 11%. 
 
1. Introduction 
 

The performance of wireless ad-hoc networks based 
on IEEE 802.11 has been extensively studied. Much of 
the previous work attempts to solve the one-hop 
performance problems [1][2]. In the multi-hop scenario, 
most of investigations focused on TCP performance 
[3][4]. Besides traditional TCP applications like file 
transfer and e-mail, the demands for real-time 
applications like multi-media streaming and voice 
services are also increasing. These real-time services are 
usually transported on UDP rather than TCP. In this 
paper, we investigate a common phenomenon that leads 
to throughput degradations and oscillations for both TCP 

and UDP traffic in multi-hop networks: the re-routing 
instability problem. 

Previous studies [5][6][7] showed that the so-called 
“TCP instability problem” exists in a multi-hop flow. 
References [5][6] provided a solution to solve TCP 
instability by limiting the traffic at the transport layer. 
The solution assumes TCP Vegas and limits the TCP 
window size to at most 4. This limit bounds the number 
of packets in the path to prevent individual nodes from 
capturing the channel for a sustained period of time. Two 
observations are as follows. First, it is not clear that the 
solution is effective when there are multiple TCP flows 
along the same path, or when TCP flows on adjacent 
paths may interfere with the flow. Second, perhaps more 
importantly, the instability problem is caused by false 
declaration of link failures which is rooted at the link 
layer. In other words, this problem is not a phenomenon 
for TCP traffic only, but also for other types of traffic. 
The declaration of link failures in turn triggers the re-
routing function, which exacerbates the situation. We 
believe that the problem should be properly defined as a 
“re-routing instability problem”, and a more general 
approach should be used to solve the problem by 
eliminating its root cause directly. 

Reference [7] reconfirmed the TCP throughput 
instability and proposed a modification of the IEEE 
802.11 back-off algorithm such that only two back-off 
window sizes could be used. The main idea is to adopt 
the larger window for the next packet after a successful 
transmission. This allows other nodes using the smaller 
window to transmit with less chance of collisions. 
However, the decision for the choice of the value of these 
two back-off window sizes is based on the assumption 
that the packet payload is fixed at 1460bytes. We believe 
this assumption is not valid in real wireless LAN 
networks. When packets could be of different size, this 
scheme may fail to work properly. 

The rest of this paper is organized as follows. Section 
2 gives details of the simulation set-up in this paper. In 
Section 3, we review the throughput instability problem. 
Section 4 introduces the existing ad-hoc routing protocols 
and describes how they handle link-layer failures. In 
Section 5, we suggest a solution to deal with re-routing 
instability and show how our solution can be applied to 
the AODV routing protocol to eliminate instability. 
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Section 6 provides simulation results quantifying the 
improvements that can be obtained by our proposed 
scheme. Section 7 analyzes factors that cause the 
triggering of re-routing. Finally, in Section 8, we 
investigate the link-layer penalty in a scenario with 
multiple flows interfering with each other. 
 
2. Simulation Set-up 
 

The simulations in this paper were conducted using 
NS2 [8]. All nodes communicate using identical, half-
duplex wireless radio based on the IEEE 802.11 
Distributed Coordination Function (DCF), with data and 
basic rates set at 11Mbps. The RTS/CTS mechanism is 
turned off. Nodes are stationary. The transmission range 
is 250m, the carrier-sensing range is 550m, and the 
capture threshold, CPThreshold, is set to 10dB. Each 
node has a drop-tail FIFO queue which holds up to 500 
packets. This large link-layer buffer size eliminates the 
chance of throughput oscillations caused by packet losses 
due to buffer overflow. The Ad-hoc On-Demand 
Distance Vector (AODV) routing protocol and the two-
ray propagation model are used. Unless otherwise 
indicated, all traffic streams use fixed packet size of 
1460bytes. The TCP Reno algorithm is used since it is the 
most widely deployed TCP version. The advertised 
window (window_) of TCP is set to a large value to 
prevent the TCP traffic from being limited by the 
receiver. The throughputs plotted in this paper are 
obtained by averaging over one-second intervals. 
 
3. Re-routing Instability 
 

In this section, we use a 7-node string multi-hop 
network as an example to illustrate the “re-routing 
instability” problem. In Fig. 1, node 1 sends a UDP or 
TCP traffic stream to node 7. For UDP, the traffic is 
generated at node 1 in a saturated manner, in which as 
soon as a packet is transmitted to node 2, another is 
waiting in line. The traffic at later nodes all originates 
from node 1 and the later nodes are not saturated. For 
TCP, the traffic injected into the network by node 1 is 
restricted by the congestion control algorithm of the TCP 
Reno. 
 

 
Figure 1. UDP/TCP traffic flow with node 1 as the 

source and node 7 as the destination in a 7-node multi-
hop network 

 
Figure 2 shows that the UDP throughput tends to 

oscillate widely over time. The throughput oscillations 
are caused by triggering of the re-routing function. In the 
multi-hop path, nodes 1 and 2 sense fewer interfering 
stations than later nodes. As a result, they pump more 
traffic into the network than can be supported. This 
results in high contention rates at later nodes.  

When one of the later nodes fails to transmit a packet 
after a number of retries, it declares the link as being 
broken. The routing agent is then invoked to look for a 
new route. Before a new route is discovered, no packet 
can be transmitted, and this causes the throughput to drop 
drastically.  

 

 
Figure 2. UDP end-to-end throughput in a 7-node flow 

using the routing agent in the original AODV 
 

In this string network topology, there is only one 
route from node 1 to node 7, so the routing agent will 
eventually “re-discover” the same route again. The 
breaking and rediscovery of the path results in the drastic 
throughput oscillations observed. For a general network 
with multiple possible paths from source to destination, 
the same throughput oscillations will still be expected. 
This is because the declaration of the link failure is 
caused by self-interference of traffic of the same flow.  
 
3.1 Hidden-Terminal Problem 

The hidden-terminal problem can increase the chance 
of link-failure declarations significantly. Consider the 
illustration in Fig. 3. When node 6 sends a packet to node 
7, node 4 senses the channel to be busy while node 3 
senses the channel to be idle, since node 6 is inside the 
carrier-sensing range of node 4 but outside that of node 3. 
Once node 3 senses the channel as idle, it may count 
down its back-off contention window until zero and 
transmit a packet to node 4.  

 

 
Figure 3. Node 6 as a hidden terminal to node 3 

 
If the transmission from node 6 is still in progress, 

node 4 will continue to sense the channel as busy, and it 
will not receive the packet from node 3. As a result, node 
4 will not return an ACK to node 3. Node 3 may then 
time out and double the contention window size for 
retransmission later.  



Meanwhile, node 6 transmits the packet successfully 
and is not aware of the interference at node 4. When 
transmitting the next packet, node 6 will use the 
minimum contention window size. The hidden-terminal 
scenario favors node 6, and the chance of collision at 
node 4 can not be reduced even though node 3 backs off 
for a duration of time before the next retry. The hidden-
terminal problem increases the chance of multiple retries 
by node 3. 

Note that the negative effect of a hidden terminal is 
much more than that of a contending terminal within the 
carrier-sensing range. This is because the carrier-sensing 
capability in the CSMA protocol is lost whenever there is 
a hidden terminal. The lack of carrier sensing with 
respect to the hidden-terminal causes the MAC protocol 
to behave much like an Aloha protocol. 
 
3.2 Ineffectiveness of Solving Hidden-Terminal 
Problem with RTS/CTS 

The RTS/CTS mechanism in IEEE 802.11 is designed 
to solve the hidden terminal problem. However, using 
RTS/CTS in multi-hop networks does not eliminate the 
hidden terminal problem. The effectiveness of the 
RTS/CTS mechanism is based on the assumption that 
transmissions by mutually hidden terminals are to a 
common receiver, and this common receiver may 
forewarn the other terminals while the transmission of a 
hidden terminal is in progress. This assumption may not 
hold in a multi-hop network. 

Consider the scenario in Fig. 3 again. The RTS 
transmitted by node 6 will cause a CTS to be returned by 
node 7. However, this CTS cannot be received by node 3. 
Therefore, node 3 may still transmit a packet to node 4 
while the transmission of node 6 is in progress. The 
hidden-terminal effect as described in the previous 
subsection cannot be eliminated. For more details, the 
interested reader is referred to [9], in which it was argued 
that when the carrier-sensing range is larger than two 
times of the transmission range, RTS/CTS is no longer 
needed. In this paper, we assume the use of the basic 
access mode without RTS/CTS. 
 
4. Ad-hoc routing protocols 
 

Strictly speaking, in the scenario in Section 3, the link 
has not failed, although it is congested and the attempt to 
look for a new path is definitely warranted. However, 
before a new route can be discovered, one should 
continue to use the old route. That is, a “don’t-break-
before-you-can- make” strategy should be adopted.  

Numerous ad-hoc routing protocols have been 
proposed in the literature. They can be categorized into 
two approaches: 1) proactive / table-driven; or 2) reactive 
/ on-demand-driven [10]. The proactive approach 
protocols (e.g., Destination Sequenced Distance Vector 
(DSDV)), attempt to preserve consistent and up-to-date 
routing information from each node to every other node 
in the entire network. Each node maintains its own 

routing table and propagates route updates throughout the 
network to notify other nodes of changes in the network 
topology. In reactive approach protocols (e.g. Ad-hoc 
On-demand Distance Vector (AODV) and Dynamic 
Source Routing (DSR)), route discoveries are initiated 
only when desired by the source nodes. A node keeps 
using the created route until that route becomes 
inaccessible or the route is no longer needed. 

 

a)  b)  
Figure 4. UDP end-to-end throughput in a 7-node flow 

using a) DSR and b) DSDV 
 

The “re-routing instability problem” is a common 
performance problem suffered by various ad-hoc routing 
protocols. Figures 2 and 4 show that AODV, DSR 
(reactive) and DSDV (proactive) all experience 
throughput oscillations. Although the severity of the 
oscillations may vary, they are caused by the same 
reason, the triggering of the re-routing function. These 
routing protocols treat the link-failure notification as an 
indication of the loss of the link to next hop. In IEEE 
802.11, this link-failure notification can be induced by 
the hidden-terminal problem as well as the real-break 
case. Obviously, simply discarding the route after 
receiving a link-failure notification is not appropriate for 
IEEE 802.11 multi-hop networks. 
 
5. Proposed scheme 
 

A possible solution is to modify the routing algorithm 
so that the routing agent continues to use the previous 
route for transmissions before a new route can be found. 
In practice, this means computers equipped with wireless 
LAN devices only need to install slightly modified 
routing agent software. In this paper, we choose the 
AODV routing protocol for implementation of this 
strategy, mainly because details of AODV have been 
published in an IETF RFC [11]. There is no reason why 
this approach can not be applied in other ad-hoc routing 
protocols. 
 
5.1 Original AODV 

We quote the following excerpt from the IETF RCF 
3561 on AODV [11]: “Any suitable link layer 
notification, such as those provided by IEEE 802.11, can 
be used to determine connectivity, each time a packet is 
transmitted to an active next hop. For example, absence 
of a link layer ACK or failure to get a CTS after sending 
RTS, even after the maximum number of retransmission 
attempts, indicates loss of the link to this active next 
hop.” 



 

  
Figure 5. Procedures in handling link-failure in a) 

original AODV and b) our proposed scheme 
(AODV_DM) 

 

 
Figure 6. TCP end-to-end throughput in a 7-node flow 

using original AODV 
 

Figure 5a shows the procedures for handling link-
failure in the original AODV. When a node fails to 
receive the link-layer ACK from the next hop after the 
retransmission limit, its link layer reports the link failure 
to the routing agent. The AODV protocol then generates 
a list of unreachable destinations that use the unreachable 
neighbor as the next hop. It drops all packets destined to 
that hop and invalidates the corresponding routes in its 
routing table. Then the node with the broken link 
propagates the route error (RERR) message to its 
upstream neighbors until the source node is reached. 
When the source and intermediate nodes receive the 
RERR message, they also drop all packets that utilize the 
broken route for forwarding and are destined to the nodes 
in the unreachable destination list attached with the 
RERR message. The nodes then remove the 

corresponding routes form their routing tables. After that, 
a newly arrival packet targeted for these unreachable 
destinations will trigger the route discovery process, and 
the transmissions of packets to that destination will be 
resumed after the new route is generated. 
 
5.2 AODV with Proposed Scheme 

In our proposed solution as shown in Fig. 5b, the link 
layer notifies the routing agent of the “link failure” after 
the maximum retransmission attempts. The AODV 
routing agent then broadcasts a route request (RREQ) 
message immediately. Unlike the original AODV, our 
routing agent does not drop packets and invalidate the 
corresponding routes. However, it continues to propagate 
the RERR message to its upstream neighbors. When an 
intermediate node receives the RERR message, it 
broadcasts another RREQ message and forwards the 
RERR message to upstream nodes until the source node 
is reached. During this process, no packets will be 
dropped and all nodes continue to use the previous routes. 
After sending RREQ messages, the nodes wait for the 
route reply (RREP) message returned by the destination 
node or an intermediate node with an up-to-date route 
(i.e., the destination sequence number stored in the node’s 
routing table is greater than that in the RREQ message 
[11]). After a new route is created, all nodes discard the 
previous route and switch to the new one for 
transmissions. 

In the following sections, we will show simulation 
results of AODV modified with “don’t-break-before-you-
can- make” strategy (AODV_DM) in two scenarios: 1) a 
single flow in a single chain of nodes; and 2) a real-break 
case. 
 
5.2.1 A Single Flow in a Single Chain of Nodes 

Figures 2 and 6 show the existence of “re-routing 
instability” of UDP and TCP traffic in a 7-node chain 
using the original AODV. As shown in Fig. 7, the 
AODV_DM scheme eliminates these oscillations. With 
the AODV_DM scheme, no packets are dropped and 
nodes continue to use the old route, while the new route 
discovery process is ongoing. For our scenario of a 
single-chain network, when the node with the broken link 
receives the responded RREP message or the Hello 
message broadcasted periodically by the next hop, it 
notices that the next hop is still active and the routing 
agent will re-discover the same route for transmissions. 
 
5.2.2 Real-break Case 

Figure 8 shows a scenario with two alternative routes 
from node 1 to node 7. Both of them are accessible in the 
first 70 seconds. At the 70th second, node 4 is switched 
off and this breaks the upper route. Figures 9 and 10 
show the simulation results. In the first 70 seconds, both 
the original AODV and AODV_DM choose the upper 
route since this path requires fewer number of hops. After 
the 70th second, they switch to the lower route for 



transmissions. Since the number of hops in the lower 
route is more than that of the upper route, the average 
throughputs are slightly reduced. Our proposed scheme 
keeps the route discovery property of original AODV and 
switch to a new route if the existing one is broken. At the 
same time, AODV_DM eliminates the “re-routing 
instability problem” experienced by the original AODV.  
 

 
Figure 8. Two alternative routes for UDP/TCP traffic 

flow with node 1 as the source and node 7 as the 
destination in a multi-hop network 

a)  

b)  
Figure 7. a) UDP and b) TCP end-
to-end throughput in a 7-node flow 

using AODV_DM 

a)  

b)  
Figure 9. a) UDP and b) TCP end-
to-end throughput in a real-break 

case using original AODV 

a)  

b)  
Figure 10. a) UDP and b) TCP end-
to-end throughput in a real-break 

case using AODV_DM 
 

a)  

b)  
Figure 11. Normalized standard deviation of a) UDP 

and b) TCP end-to-end throughput versus the number 
of nodes in a string multi-hop network 

 
6. Improvements 
 

Simulations show that whenever re-routing occurs, 
the throughput drops severely for the duration of 1 to 3 
seconds. For real-time applications like video 

conferencing or voice over IP (VoIP), this may not be 
acceptable. Compared with the original AODV, our 
proposed solution reduces the throughput variations by 
70% for UDP and 50% for TCP as shown in Fig. 11. 
Also, from Table II, the minimum throughputs of the 
original AODV are near zero when there are more than 
five nodes in the UDP flow; and when there are more 
than three nodes in the TCP flow. Using AODV_DM, the 
minimum throughputs are only slightly less than the 
average values. As shown in Fig. 12, another 
improvement of our proposed scheme is to boost the 
average throughput up to 11% for both TCP and UDP in 
a long chain of nodes (i.e., more than 12 nodes). 

 

 
Figure 12. UDP and TCP end-to-end throughput 

versus number of nodes in a string topology 
 



Table II. a) UDP and b) TCP throughput result 
(Mbps) with various number of nodes in a string 
multi-hop network using AODV and AODV_DM  

in a 500-second simulation run 
a) 

AODV AODV_DM Num. 
of 

Nodes Mean Max Min Mean Max Min

2 6.304 6.389 6.237 6.303 6.366 6.225
3 3.120 3.165 3.084 3.118 3.154 3.084
4 2.213 2.301 2.114 2.213 2.336 2.102
5 1.646 1.775 1.565 1.646 1.764 1.553
6 1.354 1.542 0.350 1.391 1.530 1.226
8 1.211 1.448 0.245 1.276 1.448 1.110
10 1.131 1.320 0.199 1.197 1.320 1.040
15 1.074 1.261 0.070 1.170 1.332 1.016
20 1.080 1.261 0.070 1.166 1.285 0.958
30 1.049 1.238 0.093 1.171 1.296 0.993

 
b) 

AODV AODV_DM Num. 
of 

Nodes Mean Max Min Mean Max Min

2 4.231 4.659 3.746 4.341 4.560 4.117
3 1.969 2.405 1.521 2.155 2.571 1.758
4 1.359 1.946 0.194 1.403 1.994 0.999
5 1.002 1.457 0.000 1.087 1.525 0.712
6 0.867 1.101 0.000 0.933 1.151 0.652
8 0.766 1.098 0.000 0.819 1.030 0.486
10 0.742 1.029 0.000 0.799 1.012 0.578
15 0.710 0.976 0.025 0.762 0.968 0.544
20 0.671 0.952 0.000 0.742 0.931 0.539
30 0.649 0.811 0.000 0.720 0.989 0.534

 
7. Impacts of Data Transmission Rate and 
Payload Size 
 

This section shows the effects of the data transmission 
rate and payload size on the re-routing instability 
problem. We first show the condition for the occurrence 
of hidden-terminal collisions. Then we introduce a 
quantitative approach to analyze the impact of various 
data transmission rates and payload sizes. 

 
7.1 Signal Capture 

Consider Fig. 3 again, both nodes 3 and 6 have a 
packet to transmit. This may cause the aforementioned 
hidden-terminal collision. However, the signal capturing 
property may still allow a packet from node 3 to be 
received successfully, provided it transmits before node 
6. 

More specifically, suppose that node 3 transmits first 
and the signal power of the transmission received at node 
4 is 3P . Node 6 then transmits a packet with power 

6P  

received at node 4. If dCPThresholPP +> 63 , where 
CPThreshold is the capture threshold, then no collision 
occurs, and node 4 can still receive the packet from node 
3 successfully.  

On the other hand, if node 6 transmits first, node 4 
senses the signal from node 6 and declares the channel to 
be busy. In that case, a newly arriving packet from node 3 
can not be received even if dCPThresholPP +> 63 . 
Effectively, the packet from node 3 to node 4 experiences 
a collision.  

In our simulation, CPThreshold is set to be 10dB. Let 
d  be the fixed distance between nodes. In this scenario, 
node 3 and node 6 are separated by a distance larger than 
the carrier sensing range. Thus, node 3 and node 6 can 
send packets at the same time. From [12], in a two ray 
propagation model, the signal-to-noise ratio at node 4 is 
 

dCPThresholddPPSNR >==== 162)/2(/ 44
63    (1) 

 
This means that the power level of the packet 

transmitted by node 3 and received at node 4 is always 
more than CPThreshold higher than the power level of 
the received signal from node 6.  
 
7.2 Vulnerable region 

In the analysis of the effect of the hidden-terminal 
problem, the key is to identify the vulnerable region 
during which if the node transmits, it may collide with the 
transmission of a hidden node. This is illustrated in Fig. 
13. Note that a hidden-node collision only occurs if the 
transmissions of nodes 3 and 6 overlap and that the 
transmission of node 6 precedes that of node 3. Let 

iPACKET  be the time to transmit packet i. 
 

TxRatePayloadMACPHYPACKET i /)( ++=    (2) 
 

where PHY is the time to transmit the physical header, 
MAC is the size of the MAC header, Payload is the size 
of the packet payload, and TxRate is the data transmission 
rate. Let 

iT  be the time of the transmission cycle of 
packet i  at node 6. As illustrated in Fig. 16, 

iT  includes 
the back-off period, the packet transmission time, the idle 
period, 

iI ,when node 6 does not have a packet to 
transmit, and the busy periods used by other nodes within 
its carrier sensing range for their transmissions, 

iB . We 
have 
 

iiavgii BACKSIFSPACKETWDIFSIT ++++++=  (3) 
 

Let ρ  be the fraction of the time corresponding to the 
vulnerable region induced by node 6. We have  
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1

1limρ                       (4) 

where ACK is the transmission time for an 
acknowledgement, SIFS is the time duration of short 



interframe space, DIFS is the time duration of distributed 
interframe space, and 

avgW  is the average contention 
window size. Thus, ρ  varies with different data 
transmission rates and payload sizes. With lower data 
transmission rate or larger payload size, the fraction of 
the time that belongs to vulnerable region in each 
transmission cycle becomes larger. As a result, a higher 

chance of hidden-terminal collisions is expected. In other 
words, the link-failure re-routing occurs more frequently 
which further deteriorates the instability problem. As 
shown in Fig. 14 and 15, using lower data transmission 
rate or larger payload size increases the number of severe 
drops of throughputs.  

 

 
Figure 13. Collision occurs when the transmission of node 3 begins inside the vulnerable period 

 

   
Figure 14. UDP end-to-end throughput in a 7-node flow using original AODV with various data transmission rates 

 

   
Figure 15. UDP end-to-end throughput in a 7-node flow using original AODV with various payload sizes 

 
8. Performance Enhancements in Multiple 
Flows 
 

In previous sections, we have focused on the 
performance degradations induced by self interference of 
the traffic of a single-flow in a single chain of nodes. In 
this section, we consider the interferences between 
multiple flows. We show that our proposed scheme can 
sufficiently increase the average throughput of a flow 
suffering from the hidden terminal problem. 

 

 
Figure 16. Two 1-hop saturated UDP flows 

 
Figure 16 shows a scenario with five nodes and two 

1-hop saturated UDP traffic flows. As mentioned in 
Section 3.1, the transmissions of flow 1 may collide with 
the transmissions of flow 2 at node 2 due to the hidden-
terminal problem. This severely deteriorates the 

throughput of flow 1, while flow 2 continues to achieve a 
much higher throughput as demonstrated in Fig. 17a. In 
addition, the throughput of flow 1 drops to zero from 70th 
to 110th second due to the successive collisions of RREQ 
sent out by node 1 with the transmissions of flow 2. Node 
4 does not notice that node 2 is suffering from hidden-
terminal collisions and attempts to transmit at the 
maximum sustainable rate. Once the link at node 1 is 
declared as failure, node 1 sends out RREQ and waits for 
RREP. However, this RREQ message easily collides with 
the aggressive transmissions of flow 2. In this way, no 
RREP is responded by node 2, and node 1 times out and 
retransmit another RREQ. No packet can be transmitted 
for a long period of time after a number of failed RREQ 
transmissions. 

Previous work in the literature [13] also reported that 
the throughput can degrade severely in similar scenarios. 
They attribute this degradation to the binary exponential 
back-off for retransmissions caused by hidden nodes. 
However, we believe it is only part of the cause. Once a 
node fails to receive the link-layer ACK after the retry 



limit, it triggers the re-routing function of the routing 
agent. Before a new route or the previous route is 
discovered, no packets can be transmitted. This “re-
routing instability problem” and the “binary exponential 
back-off” should be treated and solved separately.  

Our proposed scheme addresses the first issue. The 
average throughput of flow 1 is doubled as show in Fig. 
17b. The “binary exponential back-off” does degrade the 
throughput, resulting in average throughput of flow 1 
slightly less than that of flow 2. However, its influence is 
much smaller than that of “re-routing instability 
problem”. To limit the scope of this paper, we refer 
interested readers to [13], in which MAC layer solutions 
were proposed to address the degradations caused binary 
exponential back-off. 

 

a)  

b)  
Figure 17. UDP throughputs of two 1-hop flows using 

a) original AODV and b) AODV_DM 
 
9. Conclusion 
 

This paper is an attempt to solve a throughput 
instability problem in IEEE 802.11 multi-hop ad-hoc 
networks. Existing ad-hoc routing protocols simply 
inherit the method for link-failure handling from the 
routing protocols used in wired networks, and treat the 
link-failure notification as an indication of the loss of the 
link to the next hop. This is not appropriate for wireless 
networks with hidden-terminal problems such as IEEE 
802.11. The triggering of the re-routing function may be 
induced by consecutive hidden-terminal collisions rather 
than real link failures. 

 
This paper has four major contributions. First, we 

have argued that the throughput instability problem 
should properly be re-defined as a “re-routing instability 
problem”, since it is caused by the triggering of the re-
routing function and is not specific to TCP traffic alone. 

 
Second, we have proposed to adopt a “don’t-break-

before-you-can-make” modification to the existing ad-
hoc routing protocols. In this strategy, the old route will 
continue to be used until a new one can be established. 
We have implemented this scheme with AODV as an 

example, and have shown that the instability problem can 
be eliminated. The modified routing agent can still switch 
to a new route successfully in a real-break case. 

 
Third, we have analyzed the hidden-terminal problem 

by considering the “vulnerable regions: the time windows 
during which transmissions may collide with transmission 
of hidden node”. We have established the impact of data 
transmission rate and payload size on the severity of 
hidden-node collisions. In particular, we have shown that 
lower data transmission rates and/or larger payload sizes 
will incur more frequent throughput oscillations. 

 
Finally, this paper has also investigated a multiple-

flow scenario. The throughput degradation induced by 
“re-routing instability” is much larger than that induced 
by “binary exponential back-off”, as has been 
demonstrated by the restoration of UDP throughput when 
our “don’t-break- before-you-can-make’ ad-hoc routing 
protocol is used. We believe that this is the first paper in 
the literature to report this phenomenon. 
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