
UDP-Liter: An Improved UDP Protocol for Real-
Time Multimedia Applications over Wireless Links

Patrick Pak-kit Lam
Department of Information Engineering

Chinese University of Hong Kong
Shatin, Hong Kong

lampk3@ie.cuhk.edu.hk

Soung C. Liew, Senior Member, IEEE
Department of Information Engineering

Chinese University of Hong Kong
Shatin, Hong Kong

soung@ie.cuhk.edu.hk

Abstract— For wireless real-time multimedia applications, the
excessive packet loss rate suffered at the receiver, especially when
the packets are transported on UDP, is a major issue to resolve.
The previously proposed UDP-Lite project was designed to
replace traditional UDP, so that erroneous UDP payloads could
be passed up to the application layer instead of being discarded.
The main argument of UDP-Lite is that many real-time
multimedia applications actually prefer damaged packets over
lost ones because of their error resilience capabilities. The
major drawback of UDP-Lite is the backward incompatibility
against traditional UDP stacks in numerous UDP devices. In
addition, applications have no choice but to accept UDP-Lite
packets as normal ones. This paper introduces another
approach, UDP-Liter, which makes use of the concept of UDP-
Lite, and yet maintains 100% backward compatibility. Better
yet, UDP-Liter will give applications the flexibility to handle
normal packets and corrupted packets differently.

Keywords-UDP-Lite; UDP; Multimedia Applications; Wireless;

I. INTRODUCTION
Many people in the wireless industries, including WLAN

and cellular, believe that real-time multimedia applications
(RTMAs), such as voice and video, will be the next “killer
applications” for the wireless IP networks. Unfortunately,
excessive packet loss in UDP (real-time applications usually
use UDP as their transport layer) is one of the most mentioned
challenges yet to be overcome. Investigations show that many
of these “lost” packets have actually made through the network
to the destination, but are discarded by the UDP protocol stack
[1]. The major reason is that they fail the checksum and are
considered useless by the UDP protocol stack. Let us consider
a bit-error rate of 10-3 normally assumed in wireless
environments (the BER in wireless channel normally ranges
from 10-5 to 10-3 [2]), the packet removal rate at UDP could
exceed 30% (voice UDP packets in wireless environments are
usually 40 to 44 bytes long, excluding IP headers [3]). Among
these discarded packets, most of them consist of only single-bit
errors. Since many popular RTMAs encodes/decodes (e.g. by
using H.263 and MPEG-4) the data with error detection and
recovery capability [4], most of the discarded packets are

This work is sponsored by the Areas of Excellence scheme established
under the University Grant Committee of the Hong Kong Special
Administrative Region, China (Project Number AoE/E-01/99).

actually useful packets to the RTMAs. In fact, it is found that
up to roughly 85% of the packets discarded by the receiving
transport layer due to checksum errors could have been
tolerated by the RTMAs [2]. Therefore, most of these
applications will perform better if the “damaged” packets are
delivered to them rather than dropped at the transport layer.
One may think that, since checksum operation is optional in
UDP, it could be advantageous for the UDP protocol stack to
simply disable the checksum all together. However, this
argument has been proved to be impractical [5][6].

A novel version of UDP, UDP-Lite [1][7], has been
introduced to reduce the packet loss for UDP. The concept of
UDP-Lite has been shown to be able to improve overall
performance, including packet delay, inter-arrival time, packet
loss, as well as perceived video/image quality, in RTMAs [4].

However, there are 2 major drawbacks for UDP-Lite –
backward incompatibility and lack of flexibility to handle
corrupted packets at the application layer.

This paper proposes a new protocol that makes use of the
concept introduced by UDP-Lite, and yet is 100% compatible
with all the legacy UDP applications. Better yet, it gives the
application layer flexibility to selectively process normal and
corrupted packets in different ways. We call this new protocol
stack UDP-Liter.

It is noteworthy that the handling of IPv4 in UDP-Liter is
different to IPv6 (the reasoning will be provided in section
VIII). This paper focuses on IPv4 discussion only. We will
discuss the impact of IPv6 of UDP-Liter in our future work.

II. UDP-LITE
UDP-Lite uses the same header format as traditional UDP.

The only difference between them is that the “UDP Length”
field in traditional UDP is replaced by the “Coverage” field in
UDP-Lite. The “Coverage” field in UDP-Lite specifies the
number of bytes in the packet that is sensitive to errors and
therefore must be verified.

The basic concept of UDP-Lite is to selectively verify the
error-sensitive portion (given by the coverage field) of the UDP
datagram. All the errors occurring in the insensitive portion of
the datagram (usually the payload) will be ignored and the
associated payload will be passed to the application as if they
are normal packets. As a result, the applications (e.g.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 5, 2009 at 03:11 from IEEE Xplore. Restrictions apply.

video/audio decoders) will be given a chance to fix the errors in
the payload. If the errors are single-bit only, most codec
applications can fix them and the data will be presented
flawlessly. Even though a packet has unfixable errors, it will
only cause a glitch in the perceived media. However, a lost
packet will cause annoying pauses or noticeable disturbances
[1]. Hence, passing an erroneous packet to the application
layer will be more preferable to RTMAs than discarding them.
This is exactly what UDP-Lite intends to do.

III. ISSUES ASSOCIATED WITH UDP-LITE

A. Backward Incompatibility with Traditional UDP
UDP-Lite has been proven to improve the performance and

quality of many UDP based real-time applications over
wireless links [2][4]. However, it is not difficult to spot the
backward incompatibility problem it introduces to real life
deployments. As UDP-Lite requires incompatible
modifications to be made on the traditional UDP protocol, it
can only inter-work with UDP-Lite capable applications.
Particularly, changing the “UDP Length” field to the
“Coverage” field causes the traditional UDP applications to
incorrectly interpret the UDP-Lite header. In addition, this
backward incompatibility issue also means that all the
traditional UDP applications (e.g. the RTP stacks) will become
useless when UDP-Lite is installed on the operating system.

This incompatibility problem is recognized by Larson et al.
[7], and they have proposed three solutions. First, UDP-Lite
can use a different protocol identifier than traditional UDP, so
that the receiver can correctly handle them in different ways.
We found this solution impractical because every UDP-Lite
equipped device must then be incorporated with 2 UDP stacks.
In addition, this solution still requires explicit support of UDP-
Lite on both sides, and therefore it is not solving the
fundamental backward incompatibility problem.

The second proposed solution is to have the sender use
explicit application in-band signaling to learn the UDP-Lite
awareness on the receiver side. This solution will require
certain amount of UDP overhead to establish the in-band
signaling hand-shaking. For example, the in-band signaling
must know when to setup and tear down an UDP-Lite session,
and must handle packet loss during the in-band signaling. The
possible delay caused by the signaling itself may already cancel
out the performance gain.

The third solution is to employ out-of-band signaling such
as H.323 and SIP to convey the acceptance of UDP-Lite at the
receiver. We also find this solution to be impractical because
UDP-Lite must gain its popularity before the major standards
will be modified to accommodate it. However, this solution
relies on the application signaling to enable deployment of
UDP-Lite. As a result, this reliance on application layer
signaling really creates a “chicken and egg” problem.

B. Lack of Flexibility for the Application Layer to Handle
Corrupted Packets
There is another drawback that has yet to be mentioned in

related literature -- UDP-Lite does not provide flexibility to the
application layer on how corrupted packets are handled. That

is, when UDP-Lite passes a corrupted packet up to the
application layer, the application layer must accept it as normal
packet. This may raise application stability concern if a
particular application is incapable of handling erroneous
packets. For example, communication signaling protocols
(e.g. Session Initiation Protocol [8]) mostly use UDP as their
transport protocol. Corruption in these packets at the receiver
can be disastrous as wrong signaling information will be
relayed to the parties involved in a call.

IV. UDP-LITER
In this paper, we propose two minor changes to the

traditional UDP protocol stack, so that it will take advantage of
the concept of UDP-Lite, and also address the backward
incompatibility and lack of packet handling flexibility issues.
We call this new UDP protocol UDP-Liter. We choose this
name to partly give credit to the inventors of UDP-Lite, and
partly indicate that it is a “lighter” (i.e. less restrictive)
implementation than the traditional UDP as well as UDP-Lite.

UDP-Liter employs the concept of UDP-Lite, but it does
not modify the UDP header specification at all. That is, “UDP
Length” still means “UDP Length” and “UDP Checksum” still
means “UDP Checksum” in traditional ways. This is very
important because a traditional UDP receiver may simply
process the packet the way it always does without any loss of
information. Specifically, UDP-Liter proposes the following 2
changes to the traditional UDP implementations:

• The UDP protocol stack continues to perform the
checksum calculation, but it now has a run-time option
not to discard packets when the checksum fails. When
this option is enabled, it should pass the payload to the
upper layer (e.g. RTP) regardless of the checksum
result, and notify the upper layer if corruption occurs.

• The BSD socket API [9] needs to be slightly modified
to reflect the changes made in the bullet point above.
Therefore, the caller of this API may obtain the
corruption notification (CN) and then determine
whether it should accept the packet, or whether it
should handle the packet with a different algorithm.

The following subsections describe these two modifications
in detail. All other aspects that are not covered in this
discussion (e.g. the pseudo header given by the IP layer) are
regarded to be identically specified as in traditional UDP [10].

A. The Checksum Operation in UDP-Liter
UDP-Liter maintains the exact header format and specification
of the traditional UDP. It also maintains the same checksum
operation in a way that is identical to traditional UDP. The
only difference is that the application is now given an option,
through the call to socket(), to ask UDP-Liter to either retain
the traditional UDP behavior, or perform the services provided
by UDP-Liter. In the former case, UDP-Liter simply discards
the packets that fail the checksum. In the latter, UDP-Liter will
pass to the application all packets received together with the
CN for each packet. The CN is carried by the parameter
pCorrupted (to be defined later in this section). If the packet
passes the checksum, the *pCorrupted parameter should be set

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 5, 2009 at 03:11 from IEEE Xplore. Restrictions apply.

to zero (FALSE); otherwise, it should be set to one (TRUE).
Thus, the application now has the knowledge of whether the
receiving packet is normal or not, and therefore can handle it
accordingly.

B. The BSD Socket API in UDP-Liter
In order to let applications enable UDP-Liter at their will,

the BSD socket API will need to be slightly modified.
Furthermore, these modifications should keep the disturbance
to the traditional UDP to minimum, so that real-life
deployments will be easy and practical. In this paper, we
propose to modify the call to the socket() function, and add a
new version of the recvfrom(), named recvfrom_liter(),
function to the BSD socket API. The following is the detailed
description of these changes.

1) The socket() call
The signature of the BSD socket() function is [9]:

int socket(int family, int type, int protocol);

Since only the type parameter is concerned in this
discussion, we will not discuss the other 2 parameters in detail.

In UDP-Liter, there will be a new socket type constant –
SOCK_DGRAM_LITER. This new socket type specifies that
the socket being created by this socket() call intends to use
services provided by UDP-Liter. As a result, the transport
layer (i.e. UDP-Liter) will forward all received packets to the
application layer regardless of their checksum results, together
with the CN to the caller of recvfrom_liter().

It is important to note that a call to socket() with the socket
type constant set to SOCK_DGRAM indicates that traditional
UDP behavior should be retained. That is, packets that fail the
checksum will be discarded. This allows all the existing legacy
applications to continue to function normally on top of UDP-
Liter without any code change.

2) The recvfrom_liter() call
In order to enable the CN functionality, we propose to add a

new function call to the API, instead of modifying the original
one. Thus, legacy applications will continue to run normally.

The proposed additional function call is:

ssize_t recvfrom_liter(int sockfd, void *buff, size_t nbytes,
int flags, struct sockaddr *from, socket_t *addrlen, int
*pCorrupted).

The function recvfrom_liter() is a counterpart to the
recvfrom() function in the traditional socket API. The only
difference between them is the extra pCorrupted parameter in
recvfrom_liter(). This additional parameter is a pointer to
integer which, when the function returns, contains the boolean
value of *pCorrupted (i.e. TRUE/FALSE, or 1/0 in C)
generated by the checksum to indicate the corruption
occurrence. The default value of *pCorrupted is zero
(FALSE), meaning that there is no corruption in the packet.

With the information provided by *pCorrupted, the
applications can differentiate corrupted packets from normal
ones, and may handle them differently or with different
algorithms at run-time.

Please note that the link layer modification suggested by
[1] (e.g. disabling the checksum or CRC in the link layer
protocols) will also need to be taken place in UDP-Liter. This
will prevent the link layer protocols from discarding the
damaged packets before they reach the transport layer.

V. BENEFITS OFFERED BY UDP-LITER

A. 100% Backward Compatibility with Traditional UDP
We have emphasized repeatedly that UDP-Liter is 100%

backward compatible with traditional UDP. In this section we
will illustrate that this claim holds for all scenarios.

1) The sender uses traditional UDP, and the receiver uses
UDP-Liter.

In this case, all the incoming packets at the UDP-Liter
receiver are delivered to the applications regardless of the
checksum results. If the packet passes the checksum,
recvfrom_liter() will be returned to the application with
*pCorrupted set to 0 (FALSE). Otherwise, recvfrom_liter()
will be returned to the application with *pCorrupted changed
to 1 (TRUE). In either case, the sender does not even notice
that the receiver is not a traditional UDP server.

2) The sender uses UDP-Liter, and the receiver uses
traditional UDP.

As a sender, UDP-Liter operates identically to traditional
UDP. Since the UDP-Liter packet is also identical to a
traditional UDP packet, the traditional UDP receiver will
process it normally. Of course, when this packet fails the
checksum at the UDP receiver, it will be dropped.

3) A legacy UDP application is installed on an operating
system with UDP-Liter installed.

With UDP-Liter, the legacy applications simply run
normally as with traditional UDP. Since all the traditional
socket API are still in place, including the traditional
*recvfrom() function, all the socket calls will function just
normally. Also, legacy applications will have setup the socket
with socket type SOCK_DGRAM, therefore the UDP-Liter
will just run as traditional UDP.

B. Application Flexibility Enhanced by Corruption
Notification (CN)
In UDP-Lite, applications are “forced” to accept all packets

delivered from the transport layer as normal packets, regardless
the checksum results. This may cause various problems
mentioned in section III.B.

With UDP-Liter, if applications intend to use its services,
they must be coded particularly to make use of the UDP-Liter
enabled socket API. Consequently, each packet delivered from
the UDP-Liter will be associated with a CN through the
parameter *pCorrupted. With this CN, applications can then
decide what to do with the corrupted packets.

For example, suppose a video codec can decode corrupted
packets with a time consuming error-correction algorithm.
With UDP-Liter, this algorithm only has to be used when a
corrupted packet is received. This should improve the image
rendering performance because majority of the packets (normal

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 5, 2009 at 03:11 from IEEE Xplore. Restrictions apply.

packets) can be presented to the user using a faster algorithm,
while the corrupted packets can fill the gap as soon as the
slower algorithm finishes processing.

Last but not least, the CN feature allows an application to
determine “how bad” the corruption situation is in real-time.
Thus, the application can ask the sender to slow down, or use
another channel, when a particular channel receives excessive
number of corrupted packets.

VI. SHORTFALL OF UDP-LITER
A potential drawback of UDP-Liter is the incapability to

determine precisely, when a packet is corrupted, where the bit
error occurs in the packet. Before we proceed further to
analyze the impact, recall that the checksum operation in
traditional UDP, as well as UDP-Liter, not only validates the
UDP header, it also validates the “pseudo-header”, which
includes a 20-byte information provided by the IP header [5]. If
the bit error so happens to occur in the pseudo- and UDP
headers (referred as header hereinafter) instead of the payload,
UDP-Liter still forwards this packet to the application layer just
as any other corrupted packets.

These header errors, however, do not affect traditional UDP
applications running on UDP-Liter at all (because the
traditional UDP checksum will be enabled for these
applications). Therefore we will only focus on its impact
toward UDP-Liter applications in the following analysis. In
addition, we should point out that errors in some header fields
are not harmful in any way. For example, if the Protocol field
is in error, the packet is not even in the UDP format, and UDP-
Liter will simply ignore it. Errors in the UDP Length and
Checksum fields do not prevent UDP-Liter applications from
processing normally. Finally, errors in the Source and
Destination Address fields should have been caught by the
IPv4 checksum and therefore already dropped at the IP layer.

Although errors in the Source port field could mislead the
receiver about the sender’s identity, this field is rarely used by
RTMAs. Its impact is therefore considered harmless here.

 Therefore, the Destination port field is the only header
field that could cause glitches. That is, if the destination port is
in error, the IP packet could be directed to an incorrect
application which has bound to the port that happens to be
identical to the erroneous destination port number. In other
words, the application could have received a packet it is not
supposed to receive.

Figure 1. Packets mis-routed due to destination port error

This problem is illustrated in Figure 1. We assume the
following notation in this paper.

eP = probability of bit error = BER for the channel

dportP = probability of an error in the destination port field

jiP , = probability for a packet from application i to be mis-
routed to the receiver of application j due to destination port
error

iS = packet rate of application i

iR = aggregated rate for receiver of application j to receive
mis-routed packets from other UDP-Liter applications.

We would like to ensure that the ratio ii SR is small
enough for RTMAs to ignore. Assuming bit errors are random
and identical for all applications, we have (for 16-bit
destination port field)

 16)1(1 edport PP −−= . (1)

There is a total of 216 destination port numbers in UDP.
The probability for a particular UDP-Liter application to
receive a packet with the aforementioned port-number error is
therefore 2-16. Thus, the probability for application j to receive
a packet targeted to application i (i.e. mis-routed) is

 16
, 2dportji PP = . (2)

Suppose there are k (k>0) UDP-Liter RTMAs running
simultaneously. A particular application could be receiving
packets with corrupted destination port number from the other
(k – 1) sources. Although there may be misrouted packets from
sources of other traditional UDP applications running on the
same device, their packet rates are likely to be much lower than
those of UDP-Liter enabled RTMAs. Therefore, from the
view point of the ratio ii SR , they can be ignored.
Considering the potential misrouted packets from all other
UDP-Liter applications, we have

 () () ∑∑
≠≠

==
k

ji
idport

k

ji
jiij SPPSR *2* 16

, (3)

On a wireless device, k is usually no more than 2 (e.g. one
for voice and one for video in a video-conferencing session).
Assuming eP = 10-3, jiP , is approximately 2-22. Therefore,
assuming iS is 50 for voice [11], and 67 for video (this reflects
the worst case scenario for a video conferencing application
described in [12]), ii SR for voice is (117/50)* 2-22 = 5.58*10-

7, while ii SR for video is (117/67)* 2-22 = 4.16*10-7.
Therefore, there is about 1 mis-routed packet in each channel
(voice and video) for every 10 hrs of video conferencing
session. It is also noteworthy that, when k = 1, ii SR = 0.
This indicates the situation when there is only one UDP-Liter

Packets w/
Port Error

UDP/UDP-Liter Senders UDP-Liter Receivers

i

j j

i

Normal Packets

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 5, 2009 at 03:11 from IEEE Xplore. Restrictions apply.

application running on a wireless device (e.g. voice call), there
will be no noticeable mis-routing issue.

At the other extreme, let us consider how UDP-Liter
performs in an enterprise scale and fully occupied voice
gateway for wireless VoIP deployment (assuming 32
channels). In this case, eP is still 10-3, k is 32 and iS is 50.
Then, ii SR is 31*2-22. This corresponds to about 1 mis-routed
packet in about 45 minutes of operation in each voice channel.
To further reduce the impact of mis-routing, the RTMAs can
easily detect mis-routed packets by ensuring the sequence
numbers in the RTP headers [11] between consecutive packets
do not differ by an excessive margin.

According to [13], 1 to 3% of media degradation is
acceptable in RTMAs. Hence, we are reasonably convinced
that the impact of header errors in UDP-Liter is insignificant.

VII. PERFORMANCE OF UDP-LITER

A. Packet Loss Rate
 Since UDP-Liter does not discard packets at all, the packet

loss rate is much less then traditional UDP. On the other hand,
the only difference between UDP-Liter and UDP-Lite is that
UDP-Lite requires to verify the headers. According to our
analysis in section VI, the header errors are actually
insignificant to RTMAs. Consequently, UDP-Liter is
delivering more useful packets to the application layer than
UDP-Lite. Therefore, we are convinced that the performance
of UDP-Liter is a little better than UDP-Lite for RTMAs.

B. Computational Complexity
In terms of computational complexity, UDP-Liter is

identical to traditional UDP because both of them need to
compute the checksum for the entire packet. On the other
hand, due to the smaller average checksum computation, UDP-
Lite does have a lower computational complexity (O(1)).
However, we notice that the checksum operation is basically
the one’s complement sum of 16-bit integers within the packet
[14], which has a computational complexity of O(N).
Nonetheless, we think that the extra complexity is worthwhile
given the advantages of UDP-Liter described in Section V.

VIII. FUTURE WORK
Our analysis so far is based on an IPv4. With IPv6, the

analysis cannot rely on the IP checksum for source and
destination addresses anymore because the checksum is
removed from IPv6 [15]. In our future work, we will
investigate whether we can make use of the IPv6 options to
further improve UDP-Liter.

Moreover, the link layer driver modification is also an area
worth for future studies. For example, the impact of this
modification (in favor of UDP traffic) toward TCP traffic may
be negative, because the corrupted TCP packets must now be
processed at the TCP layer (recalling that the link layer will not
verify the payload). This may worsen TCP’s performance.

IX. CONCLUSIONS
This paper has introduced an improved UDP protocol --

UDP-Liter. The proposal is based on the novel concept
introduced by UDP-Lite -- damaged packets are preferred over
no packet for RTMAs. We have identified a few major
fundamental problems in UDP-Lite, namely backward
incompatibility to traditional UDP protocol, and lack of
flexibility for applications on handling corrupted packets. In
this paper we have proposed minor modifications to the
traditional UDP and BSD socket API, so that we can apply the
concept proposed by UDP-Lite, yet maintain 100% backward
compatibility and allow applications to handle corrupted
packets flexibly at run time. Furthermore, we investigated the
impact of performance in terms of packet loss rate and
computational complexity introduced by UDP-Liter. We
concluded that the improvement in performance and other
benefits stated above should justify the higher computational
complexity (by O(N)) of UDP-Liter over UDP-Lite. Finally,
we have also identified the drawback for UDP-Liter, which is
the inability of UDP-Liter to differentiate header errors from
payload errors. We have carefully analyzed the impact of this
drawback, and have concluded that the errors in the header are
still tolerable by the RTMAs. We have also suggested other
future research areas for further improvement to be achieved
on RTMAs.

REFERENCES
[1] L. Larzon, M. Degermark, and S. Pink, "UDP Lite for Real Time

Multimedia Applications," HP Labs, Bristol, United Kingdom, Tech.
Rep. HPL-IRI-1999-001, Apr. 1999.

[2] L. Larzon, M. Degermark, S. Pink, "Efficient Use of Wireless
Bandwidth for Multimedia Applications", in Proceedings of
International Workshop on Mobile Multimedia Communications, 1999.

[3] R. Lloyd-Evans, “QoS in Integrated 3G Networks,” Artech House, 2002.
[4] A. Singh, A. Konrad, and A. D. Joseph, “Performance Evaluation of

UDP Lite for Cellular Video,” Workshop on Network and Operating
Systems Support for Digital Audio and Video (NOSSDAV), June 2001.

[5] W. R. Stevens, TCP/IP Illustrated, Volume 1, Addison-Wesley, 1994.
[6] J. Stone and C. Partridge, “When The CRC and TCP Checksum

Disagree,” .ACM SIGCOMM, September 2000
[7] L. Larzon, M. Degermark, and S. Pink, “The UDP Lite Protocol,”

Internet-Draft (work in progress) draftlarzon -udplite-02.txt, Lule
University of Technology, July 2000.

[8] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson, R.
Sparks, M. Handley, and E. Schooler, "SIP: session initiation protocol,"
RFC 3261, IETF, June 2002.

[9] W. R. Stevens. “UNIX Network Programming,” Prentice Hall vol. 1,
2rid edition, 1998.

[10] J. Postel, “User Datagram Protocol,” RFC 768, Internet Engineering
Task Force, August 1980.

[11] H. Schulzrinne, S. Casner, R. Frederick, V. Jacobson, "RTP: A
Transport Protocol for Real-Time Applications," RFC 1889, IETF,
January 1996.

[12] J.C Bolot, “Characterizing End-to-End Packet Delay and Loss Behavior
in the Internet.,” In Proc. ACM SIGCOMM, Sept 1993.

[13] Toni Janevski, “Traffic Analysis and Design of Wireless IP Networks,”
Artech House, 2003.

[14] B. Braden, D. Borman, and C. Partridge, "Computing the Internet
Checksum,” RFC 1071, IETF, September 1988.

[15] S. Hagen, IPv6 Essentials, O'Reilly & Associates, Inc., 2002

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 5, 2009 at 03:11 from IEEE Xplore. Restrictions apply.

