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Abstract— For wireless real-time multimedia applications, the 
excessive packet loss rate suffered at the receiver, especially when 
the packets are transported on UDP, is a major issue to resolve.  
The previously proposed UDP-Lite project was designed to 
replace traditional UDP, so that erroneous UDP payloads could 
be passed up to the application layer instead of being discarded.  
The main argument of UDP-Lite is that many real-time 
multimedia applications actually prefer damaged packets over 
lost ones because of their error resilience capabilities.    The 
major drawback of UDP-Lite is the backward incompatibility 
against traditional UDP stacks in numerous UDP devices.  In 
addition, applications have no choice but to accept UDP-Lite 
packets as normal ones.  This paper introduces another 
approach, UDP-Liter, which makes use of the concept of UDP-
Lite, and yet maintains 100% backward compatibility.  Better 
yet, UDP-Liter will give applications the flexibility to handle 
normal packets and corrupted packets differently.  
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I.  INTRODUCTION 
Many people in the wireless industries, including WLAN 

and cellular, believe that real-time multimedia applications 
(RTMAs), such as voice and video, will be the next “killer 
applications” for the wireless IP networks.  Unfortunately, 
excessive packet loss in UDP (real-time applications usually 
use UDP as their transport layer) is one of the most mentioned 
challenges yet to be overcome.  Investigations show that many 
of these “lost” packets have actually made through the network 
to the destination, but are discarded by the UDP protocol stack 
[1].   The major reason is that they fail the checksum and are 
considered useless by the UDP protocol stack.  Let us consider 
a bit-error rate of 10-3 normally assumed in wireless 
environments (the BER in wireless channel normally ranges 
from 10-5 to 10-3 [2]), the packet removal rate at UDP could 
exceed 30% (voice UDP packets in wireless environments are 
usually 40 to 44 bytes long, excluding IP headers [3]).  Among 
these discarded packets, most of them consist of only single-bit 
errors.  Since many popular RTMAs encodes/decodes (e.g. by 
using H.263 and MPEG-4) the data with error detection and 
recovery capability [4], most of the discarded packets are 
                                                           

This work is sponsored by the Areas of Excellence scheme established 
under the University Grant Committee of the Hong Kong Special 
Administrative Region, China (Project Number AoE/E-01/99). 
   

actually useful packets to the RTMAs.  In fact, it is found that 
up to roughly 85% of the packets discarded by the receiving 
transport layer due to checksum errors could have been 
tolerated by the RTMAs [2]. Therefore, most of these 
applications will perform better if the “damaged” packets are 
delivered to them rather than dropped at the transport layer.  
One may think that, since checksum operation is optional in 
UDP, it could be advantageous for the UDP protocol stack to 
simply disable the checksum all together.  However, this 
argument has been proved to be impractical [5][6]. 

A novel version of UDP, UDP-Lite [1][7], has been 
introduced to reduce the packet loss for UDP. The concept of 
UDP-Lite has been shown to be able to improve overall 
performance, including packet delay, inter-arrival time, packet 
loss, as well as perceived video/image quality, in RTMAs [4]. 

However, there are 2 major drawbacks for UDP-Lite – 
backward incompatibility and lack of flexibility to handle 
corrupted packets at the application layer. 

This paper proposes a new protocol that makes use of the 
concept introduced by UDP-Lite, and yet is 100% compatible 
with all the legacy UDP applications.  Better yet, it gives the 
application layer flexibility to selectively process normal and 
corrupted packets in different ways.  We call this new protocol 
stack UDP-Liter. 

It is noteworthy that the handling of IPv4 in UDP-Liter is 
different to IPv6 (the reasoning will be provided in section 
VIII).  This paper focuses on IPv4 discussion only.  We will 
discuss the impact of IPv6 of UDP-Liter in our future work. 

II. UDP-LITE 
UDP-Lite uses the same header format as traditional UDP.  

The only difference between them is that the “UDP Length” 
field in traditional UDP is replaced by the “Coverage” field in 
UDP-Lite.   The “Coverage” field in UDP-Lite specifies the 
number of bytes in the packet that is sensitive to errors and 
therefore must be verified.   

The basic concept of UDP-Lite is to selectively verify the 
error-sensitive portion (given by the coverage field) of the UDP 
datagram.  All the errors occurring in the insensitive portion of 
the datagram (usually the payload) will be ignored and the 
associated payload will be passed to the application as if they 
are normal packets. As a result, the applications (e.g. 
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video/audio decoders) will be given a chance to fix the errors in 
the payload.  If the errors are single-bit only, most codec 
applications can fix them and the data will be presented 
flawlessly.  Even though a packet has unfixable errors, it will 
only cause a glitch in the perceived media.  However, a lost 
packet will cause annoying pauses or noticeable disturbances 
[1].  Hence, passing an erroneous packet to the application 
layer will be more preferable to RTMAs than discarding them.  
This is exactly what UDP-Lite intends to do. 

III. ISSUES ASSOCIATED WITH UDP-LITE 

A. Backward Incompatibility with Traditional UDP 
UDP-Lite has been proven to improve the performance and 

quality of many UDP based real-time applications over 
wireless links [2][4].  However, it is not difficult to spot the 
backward incompatibility problem it introduces to real life 
deployments.  As UDP-Lite requires incompatible 
modifications to be made on the traditional UDP protocol, it 
can only inter-work with UDP-Lite capable applications.  
Particularly, changing the “UDP Length” field to the 
“Coverage” field causes the traditional UDP applications to 
incorrectly interpret the UDP-Lite header.  In addition, this 
backward incompatibility issue also means that all the 
traditional UDP applications (e.g. the RTP stacks) will become 
useless when UDP-Lite is installed on the operating system. 

This incompatibility problem is recognized by Larson et al. 
[7], and they have proposed three solutions.  First, UDP-Lite 
can use a different protocol identifier than traditional UDP, so 
that the receiver can correctly handle them in different ways.  
We found this solution impractical because every UDP-Lite 
equipped device must then be incorporated with 2 UDP stacks.  
In addition, this solution still requires explicit support of UDP-
Lite on both sides, and therefore it is not solving the 
fundamental backward incompatibility problem.   

The second proposed solution is to have the sender use 
explicit application in-band signaling to learn the UDP-Lite 
awareness on the receiver side.  This solution will require 
certain amount of UDP overhead to establish the in-band 
signaling hand-shaking.  For example, the in-band signaling 
must know when to setup and tear down an UDP-Lite session, 
and must handle packet loss during the in-band signaling.  The 
possible delay caused by the signaling itself may already cancel 
out the performance gain.   

The third solution is to employ out-of-band signaling such 
as H.323 and SIP to convey the acceptance of UDP-Lite at the 
receiver.  We also find this solution to be impractical because 
UDP-Lite must gain its popularity before the major standards 
will be modified to accommodate it.  However, this solution 
relies on the application signaling to enable deployment of 
UDP-Lite.  As a result, this reliance on application layer 
signaling really creates a “chicken and egg” problem.  

B. Lack of Flexibility for the Application Layer to Handle 
Corrupted Packets 
There is another drawback that has yet to be mentioned in 

related literature -- UDP-Lite does not provide flexibility to the 
application layer on how corrupted packets are handled.  That 

is, when UDP-Lite passes a corrupted packet up to the 
application layer, the application layer must accept it as normal 
packet.  This may raise application stability concern if a 
particular application is incapable of handling erroneous 
packets.   For example, communication signaling protocols 
(e.g. Session Initiation Protocol [8]) mostly use UDP as their 
transport protocol.  Corruption in these packets at the receiver 
can be disastrous as wrong signaling information will be 
relayed to the parties involved in a call.   

IV. UDP-LITER 
In this paper, we propose two minor changes to the 

traditional UDP protocol stack, so that it will take advantage of 
the concept of UDP-Lite, and also address the backward 
incompatibility and lack of packet handling flexibility issues.  
We call this new UDP protocol UDP-Liter.  We choose this 
name to partly give credit to the inventors of UDP-Lite, and 
partly indicate that it is a “lighter” (i.e. less restrictive) 
implementation than the traditional UDP as well as UDP-Lite.   

UDP-Liter employs the concept of UDP-Lite, but it does 
not modify the UDP header specification at all.  That is, “UDP 
Length” still means “UDP Length” and “UDP Checksum” still 
means “UDP Checksum” in traditional ways. This is very 
important because a traditional UDP receiver may simply 
process the packet the way it always does without any loss of 
information.  Specifically, UDP-Liter proposes the following 2 
changes to the traditional UDP implementations: 

• The UDP protocol stack continues to perform the 
checksum calculation, but it now has a run-time option 
not to discard packets when the checksum fails.  When 
this option is enabled, it should pass the payload to the 
upper layer (e.g. RTP) regardless of the checksum 
result, and notify the upper layer if corruption occurs. 

• The BSD socket API [9] needs to be slightly modified 
to reflect the changes made in the bullet point above.  
Therefore, the caller of this API may obtain the 
corruption notification (CN) and then determine 
whether it should accept the packet, or whether it 
should handle the packet with a different algorithm. 

The following subsections describe these two modifications 
in detail.  All other aspects that are not covered in this 
discussion (e.g. the pseudo header given by the IP layer) are 
regarded to be identically specified as in traditional UDP [10]. 

A. The Checksum Operation in UDP-Liter 
UDP-Liter maintains the exact header format and specification 
of the traditional UDP.  It also maintains the same checksum 
operation in a way that is identical to traditional UDP.  The 
only difference is that the application is now given an option, 
through the call to socket(), to ask UDP-Liter to either retain 
the traditional UDP behavior, or perform the services provided 
by UDP-Liter.  In the former case, UDP-Liter simply discards 
the packets that fail the checksum.  In the latter, UDP-Liter will 
pass to the application all packets received together with the 
CN for each packet.  The CN is carried by the parameter 
pCorrupted (to be defined later in this section).  If the packet 
passes the checksum, the *pCorrupted parameter should be set 
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to zero (FALSE); otherwise, it should be set to one (TRUE).  
Thus, the application now has the knowledge of whether the 
receiving packet is normal or not, and therefore can handle it 
accordingly. 

B. The BSD Socket API in UDP-Liter 
In order to let applications enable UDP-Liter at their will, 

the BSD socket API will need to be slightly modified.  
Furthermore, these modifications should keep the disturbance 
to the traditional UDP to minimum, so that real-life 
deployments will be easy and practical.  In this paper, we 
propose to modify the call to the socket() function, and add a 
new version of the recvfrom(), named recvfrom_liter(), 
function to the BSD socket API.  The following is the detailed 
description of these changes. 

1) The socket() call 
The signature of the BSD socket() function is [9]: 

int socket(int family, int type, int protocol); 

Since only the type parameter is concerned in this 
discussion, we will not discuss the other 2 parameters in detail. 

In UDP-Liter, there will be a new socket type constant –  
SOCK_DGRAM_LITER.  This new socket type specifies that 
the socket being created by this socket() call intends to use 
services provided by UDP-Liter.  As a result, the transport 
layer (i.e. UDP-Liter) will forward all received packets to the 
application layer regardless of their checksum results, together 
with the CN to the caller of recvfrom_liter().   

It is important to note that a call to socket() with the socket 
type constant set to SOCK_DGRAM indicates that traditional 
UDP behavior should be retained.  That is, packets that fail the 
checksum will be discarded.  This allows all the existing legacy 
applications to continue to function normally on top of UDP-
Liter without any code change.  

2) The recvfrom_liter() call 
In order to enable the CN functionality, we propose to add a 

new function call to the API, instead of modifying the original 
one.  Thus, legacy applications will continue to run normally. 

The proposed additional function call is: 

ssize_t recvfrom_liter(int sockfd, void *buff, size_t nbytes, 
int flags, struct sockaddr *from, socket_t *addrlen, int 
*pCorrupted). 

The function recvfrom_liter() is a counterpart to the 
recvfrom() function in the traditional socket API.  The only 
difference between them is the extra pCorrupted parameter in 
recvfrom_liter().  This additional parameter is a pointer to 
integer which, when the function returns, contains the boolean 
value of *pCorrupted (i.e. TRUE/FALSE, or 1/0 in C) 
generated by the checksum to indicate the corruption 
occurrence.  The default value of *pCorrupted is zero 
(FALSE), meaning that there is no corruption in the packet.   

With the information provided by *pCorrupted, the 
applications can differentiate corrupted packets from normal 
ones, and may handle them differently or with different 
algorithms at run-time. 

Please note  that the link layer modification suggested by 
[1] (e.g. disabling the checksum or CRC in the link layer 
protocols) will also need to be taken place in UDP-Liter.  This 
will prevent the link layer protocols from discarding the 
damaged packets before they reach the transport layer. 

V. BENEFITS OFFERED BY UDP-LITER 

A. 100% Backward Compatibility with Traditional UDP 
We have emphasized repeatedly that UDP-Liter is 100% 

backward compatible with traditional UDP.  In this section we 
will illustrate that this claim holds for all scenarios.   

1) The sender uses traditional UDP, and the receiver uses 
UDP-Liter.   

In this case, all the incoming packets at the UDP-Liter 
receiver are delivered to the applications regardless of the 
checksum results.  If the packet passes the checksum, 
recvfrom_liter() will be returned to the application with 
*pCorrupted set to 0 (FALSE).  Otherwise, recvfrom_liter() 
will be returned to the application with *pCorrupted changed 
to 1 (TRUE).  In either case, the sender does not even notice 
that the receiver is not a traditional UDP server. 

2) The sender uses UDP-Liter, and the receiver uses 
traditional UDP. 

As a sender, UDP-Liter operates identically to traditional 
UDP.  Since the UDP-Liter packet is also identical to a 
traditional UDP packet, the traditional UDP receiver will 
process it normally.  Of course, when this packet fails the 
checksum at the UDP receiver, it will be dropped. 

3) A legacy UDP application is installed on an operating 
system with UDP-Liter installed. 

With UDP-Liter, the legacy applications simply run 
normally as with traditional UDP.  Since all the traditional 
socket API are still in place, including the traditional 
*recvfrom() function, all the socket calls will function just 
normally.  Also, legacy applications will have setup the socket 
with socket type SOCK_DGRAM, therefore the UDP-Liter 
will just run as traditional UDP. 

B. Application Flexibility Enhanced by Corruption 
Notification (CN) 
In UDP-Lite, applications are “forced” to accept all packets 

delivered from the transport layer as normal packets, regardless 
the checksum results.  This may cause various problems 
mentioned in section III.B.   

With UDP-Liter, if applications intend to use its services, 
they must be coded particularly to make use of the UDP-Liter 
enabled socket API.  Consequently, each packet delivered from 
the UDP-Liter will be associated with a CN through the 
parameter *pCorrupted.  With this CN, applications can then 
decide what to do with the corrupted packets.   

For example, suppose a video codec can decode corrupted 
packets with a time consuming error-correction algorithm. 
With UDP-Liter, this algorithm only has to be used when a 
corrupted packet is received.  This should improve the image 
rendering performance because majority of the packets (normal 
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packets) can be presented to the user using a faster algorithm, 
while the corrupted packets can fill the gap as soon as the 
slower algorithm finishes processing. 

Last but not least, the CN feature allows an application to 
determine “how bad” the corruption situation is in real-time.  
Thus, the application can ask the sender to slow down, or use 
another channel, when a particular channel receives excessive 
number of corrupted packets. 

VI. SHORTFALL OF UDP-LITER 
A potential drawback of UDP-Liter is the incapability to 

determine precisely, when a packet is corrupted, where the bit 
error occurs in the packet.  Before we proceed further to 
analyze the impact, recall that the checksum operation in 
traditional UDP, as well as UDP-Liter, not only validates the 
UDP header, it also validates the “pseudo-header”, which 
includes a 20-byte information provided by the IP header [5]. If 
the bit error so happens to occur in the pseudo- and UDP 
headers (referred as header hereinafter) instead of the payload, 
UDP-Liter still forwards this packet to the application layer just 
as any other corrupted packets. 

These header errors, however, do not affect traditional UDP 
applications running on UDP-Liter at all (because the 
traditional UDP checksum will be enabled for these 
applications).  Therefore we will only focus on its impact 
toward UDP-Liter applications in the following analysis.  In 
addition, we should point out that errors in some header fields 
are not harmful in any way.  For example, if the Protocol field 
is in error, the packet is not even in the UDP format, and UDP-
Liter will simply ignore it.  Errors in the UDP Length and 
Checksum fields do not prevent UDP-Liter applications from 
processing normally.  Finally, errors in the Source and 
Destination Address fields should have been caught by the 
IPv4 checksum and therefore already dropped at the IP layer.   

Although errors in the Source port field could mislead the 
receiver about the sender’s identity, this field is rarely used by 
RTMAs.  Its impact is therefore considered harmless here. 

 Therefore, the Destination port field is the only header 
field that could cause glitches.  That is, if the destination port is 
in error, the IP packet could be directed to an incorrect 
application which has bound to the port that happens to be 
identical to the erroneous destination port number.  In other 
words, the application could have received a packet it is not 
supposed to receive.     

 

Figure 1.  Packets mis-routed due to destination port error 

This problem is illustrated in Figure 1.  We assume the 
following notation in this paper.    

eP = probability of bit error = BER for the channel 

dportP = probability of an error in the destination port field 

jiP , = probability for a packet from application i to be mis-
routed to the receiver of application  j due to destination port 
error 

iS = packet rate of application i 

iR = aggregated rate for receiver of application j to receive 
mis-routed packets from other UDP-Liter applications. 

We would like to ensure that the ratio ii SR   is small 
enough for RTMAs to ignore. Assuming bit errors are random 
and identical for all applications, we have (for 16-bit 
destination port field) 

 16)1(1 edport PP −−= . (1) 

There is a total of 216 destination port numbers in UDP.  
The probability for a particular UDP-Liter application to 
receive a packet with the aforementioned port-number error is 
therefore 2-16.  Thus, the probability for application j to receive 
a packet targeted to application i (i.e. mis-routed) is 

 16
, 2dportji PP = . (2) 

Suppose there are k (k>0) UDP-Liter RTMAs running 
simultaneously. A particular application could be receiving 
packets with corrupted destination port number from the other 
(k – 1) sources.  Although there may be misrouted packets from 
sources of other traditional UDP applications running on the 
same device, their packet rates are likely to be much lower than 
those of  UDP-Liter enabled RTMAs.  Therefore, from the 
view point of the ratio  ii SR  , they can be ignored.  
Considering the potential misrouted packets from all other 
UDP-Liter applications, we have 

 ( ) ( ) ∑∑
≠≠

==
k

ji
idport

k

ji
jiij SPPSR *2* 16

,  (3) 

On a wireless device, k is usually no more than 2 (e.g. one 
for voice and one for video in a video-conferencing session). 
Assuming eP = 10-3, jiP , is approximately 2-22.  Therefore, 
assuming iS is 50 for voice [11], and 67 for video (this reflects 
the worst case scenario for a video conferencing application 
described in [12]), ii SR for voice is (117/50)* 2-22 = 5.58*10-

7, while ii SR for video is (117/67)* 2-22 = 4.16*10-7.  
Therefore, there is about 1 mis-routed packet in each channel 
(voice and video) for every 10 hrs of video conferencing 
session.  It is also noteworthy that, when k = 1, ii SR = 0.  
This indicates the situation when there is only one UDP-Liter 
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application running on a wireless device (e.g. voice call), there 
will be no noticeable mis-routing issue. 

At the other extreme, let us consider how UDP-Liter 
performs in an enterprise scale and fully occupied voice 
gateway for wireless VoIP deployment (assuming 32 
channels).  In this case, eP  is still 10-3, k is 32 and iS is 50. 
Then, ii SR is 31*2-22.  This corresponds to about 1 mis-routed 
packet in about 45 minutes of operation in each voice channel. 
To further reduce the impact of mis-routing, the RTMAs can 
easily detect mis-routed packets by ensuring the sequence 
numbers in the RTP headers [11] between consecutive packets 
do not differ by an excessive margin.   

According to [13], 1 to 3% of media degradation is 
acceptable in RTMAs.  Hence, we are reasonably convinced 
that the impact of header errors in UDP-Liter is insignificant.   

VII. PERFORMANCE OF UDP-LITER  

A. Packet Loss Rate 
 Since UDP-Liter does not discard packets at all, the packet 

loss rate is much less then traditional UDP.  On the other hand, 
the only difference between UDP-Liter and UDP-Lite is that 
UDP-Lite requires to verify the headers.  According to our 
analysis in section VI, the header errors are actually 
insignificant to RTMAs.  Consequently, UDP-Liter is 
delivering more useful packets to the application layer than 
UDP-Lite.  Therefore, we are convinced that the performance 
of UDP-Liter is a little better than UDP-Lite for RTMAs. 

B. Computational Complexity 
In terms of computational complexity, UDP-Liter is 

identical to traditional UDP because both of them need to 
compute the checksum for the entire packet.  On the other 
hand, due to the smaller average checksum computation, UDP-
Lite does have a lower computational complexity (O(1)).  
However, we notice that the checksum operation is basically 
the one’s complement sum of 16-bit integers within the packet 
[14], which has a computational complexity of O(N).  
Nonetheless, we think that the extra complexity is worthwhile 
given the advantages of UDP-Liter described in Section V. 

VIII. FUTURE WORK 
Our analysis so far is based on an IPv4.  With IPv6, the 

analysis cannot rely on the IP checksum for source and 
destination addresses anymore because the checksum is 
removed from IPv6 [15].  In our future work, we will 
investigate whether we can make use of the IPv6 options to 
further improve UDP-Liter. 

Moreover, the link layer driver modification is also an area 
worth for future studies.  For example, the impact of this 
modification (in favor of UDP traffic) toward TCP traffic may 
be negative, because the corrupted TCP packets must now be 
processed at the TCP layer (recalling that the link layer will not 
verify  the payload).  This may worsen TCP’s performance.   

IX. CONCLUSIONS 
This paper has introduced an improved UDP protocol -- 

UDP-Liter.  The proposal is based on the novel concept 
introduced by UDP-Lite -- damaged packets are preferred over 
no packet for RTMAs.  We have identified a few major 
fundamental problems in UDP-Lite, namely backward 
incompatibility to traditional UDP protocol, and lack of 
flexibility for applications on handling corrupted packets.  In 
this paper we have proposed minor modifications to the 
traditional UDP and BSD socket API, so that we can apply the 
concept proposed by UDP-Lite, yet maintain 100% backward 
compatibility and allow applications to handle corrupted 
packets flexibly at run time.  Furthermore, we investigated the 
impact of performance in terms of packet loss rate and 
computational complexity introduced by UDP-Liter.  We 
concluded that the improvement in performance and other 
benefits stated above should justify the higher computational 
complexity (by O(N)) of UDP-Liter over UDP-Lite.  Finally, 
we have also identified the drawback for UDP-Liter, which is 
the inability of UDP-Liter to differentiate header errors from 
payload errors.  We have carefully analyzed the impact of this 
drawback, and have concluded that the errors in the header are 
still tolerable by the RTMAs.  We have also suggested other 
future research areas for further improvement to be achieved 
on RTMAs. 
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