
Abstract - TCP Vegas employs congestion avoidance, early
detection of packet loss and conservative slow-start algorithms
to improve TCP performance. With its proactive congestion
detection, it utilizes network bandwidth more efficiently and
achieves a higher throughput than TCP Reno. This paper shows
that in asymmetric networks in which the bottleneck is on the
reverse path rather than on the forward path, its performance
can be significantly lower than that of Reno, in contrast to the
37% throughput improvement claimed in [4][5]. In particular,
Vegas may erroneously converge to an operating region in which
the available bandwidth on the forward path is under-utilized by
a large margin. Even worse, when connections running Vegas
and Reno co-exist and compete on the same network, Vegas
suffers a severe penalty. We propose an approach to improve
Vegas’ throughput in asymmetric networks.

I. INTRODUCTION

TCP Reno [1][2], which makes use of slow start and

congestion avoidance algorithms, is now widely deployed in
the Internet. Its window is increased until packet loss is
experienced, at which point the window is halved and then a
linear increase algorithm takes over until further packet loss
is experienced. This additive increase and multiplicative
decrease leads to periodic oscillations in the congestion
window, round trip delay and queue length of the bottleneck
buffer in the path. Researchers [3-5] have proposed various
modified TCP algorithms to eliminate the periodic
oscillations of Reno [1].

In 1994, TCP Vegas [4][5], which employs a

fundamentally different congestion control algorithm from
that in Reno, was proposed and a claim of 37 to 71 percent
throughput improvement over Reno was made. The author in
[6] reproduced the claims made in [4][5] and showed that
Vegas indeed offered higher throughput than Reno while
reducing packet loss and the need for retransmission. Other
researchers [11][12] also demonstrated that TCP Vegas
outperformed Reno by means of analysis as well as
simulation.

Both TCP Reno and Vegas were designed under the

implicit assumption that congestion occurs on the forward
path rather than the reverse path. But, in today’s Internet, it is
common for TCP’s throughput to be limited by the
congestion on the reverse path. In asymmetric networks such
as ADSL and HFC, the capacity of the reverse path is
significantly lower than that of the forward path.

As defined in [9], we say that a TCP connection
experiences asymmetry if the ratio of the forward data rate
(data packets per second) to the reverse data rate (acks per
second) is larger than one [9]. TCP Reno depends on the
reception of acks for pacing of the forward data-sending rate.
If acks do not arrive at the sender fast enough, the data-
sending rate will be throttled even if the forward path is
congestion free, resulting in under-utilization of the available
bandwidth [8][9]. The performance of Reno’s connections on
asymmetric networks was studied in [9]. Other researchers
[7][8] also proposed several schemes to improve Reno’s
performance under asymmetry by reducing ack rate on the
reverse path.

In this paper, we study TCP Vegas’ performance in

asymmetric networks and point out that due to Vegas’
proactive congestion control mechanism, Vegas erroneously
converges to an operating region in which the available
bandwidth on the forward path is under-utilized by a large
margin. Vegas’ throughput is significantly lower than Reno’s
throughput in asymmetric networks. In contrast, while Reno
also suffers from network asymmetry, the performance
degradation is less severe. To circumvent this problem, we
modify Vegas congestion avoidance mechanism to steer the
algorithm to converge to an optimal point at which the
forward path is fully utilized, even on asymmetric networks.
We also show in this paper that Vegas’ connections
experience a large negative bias when competing with Reno
connections for bandwidth on the bottleneck link.

This paper is organized as follows. In Section II, we give

a brief review of the basic TCP Vegas algorithm. Previous
work related to Vegas is presented In Section III. In Section
IV, we analyze TCP Vegas in asymmetric networks and
identify the cause for Vegas’ performance degradation. In
addition, we study the multiple-connection scenarios in which
Vegas connections compete with Reno connections, and
demonstrate that Vegas suffers very severe penalty when it
co-exists with Reno. In Section V, a solution to the Vegas’
poor performance in asymmetric networks is proposed.
Section VI concludes this work.

II. TCP VEGAS MECHANISM

Reno’s congestion control kicks in only when packets are

lost, and this causes periodic oscillations of the congestion
window size and leads to throughput degradation of the
connection. Vegas, on the other hand, employs proactive

Performance Degradation of TCP Vegas in Asymmetric Networks
And Its Remedies

Chengpeng Fu, Ling Chi Chung, and Soung C. Liew
The Chinese University of Hong Kong,

Shatin, N.T. Hong Kong

congestion detection and avoids congestion by steering the
system away from packet loss before it occurs.

Intuitively, as the TCP window size (cwnd) increases, the

throughput of a connection should also increase. If there is no
congestion, the measured throughput should be close to the
expected throughput; otherwise, the measured throughput will
be smaller than the expected throughput. Vegas attempts to
predict the onset of congestion by monitoring the difference
between the measured throughput and the expected
throughput, namely,

DIFF = (Expected-Actual)

In the above, Expected = cwnd/BaseRTT, where BaseRTT

is the minimum of all measured RTT (round trip times). It is
usually the RTT of the first segment sent by a connection;
Actual is the measured throughput at the sender given by
cwnd/RTT, where RTT is the actual round-trip time of a
tagged packet. Strictly speaking, Expected as defined is the
best possible throughput, since BaseRTT is the minimum of
all measured RTT. But we shall adhere to the use of this term
since previous papers on Vegas have all used it.

The essence of Vegas is to increment cwnd when

DIFF*BaseRTT is smaller than a preset value, and decrement
it when DIFF *BaseRTT is larger than another preset value,
as detailed below:

if (DIFF*BaseRTT < α)

cwnd = cwmd + 1
/* increase congestion window size by one */

else if (DIFF*BaseRTT > β)
cwnd = cwnd – 1
/*decrease congestion window size by one */

else cwnd = cwnd
 /* congestion window remains unchanged */

where α and β are constant values in packet unit that can be
set by experimentation.

Vegas employs a new retransmission strategy [4] for

detecting packet loss earlier than Reno and decreases cwnd
multiplicatively using a factor of ¾ rather than Reno’s ½ .
Vegas also modifies Reno’s slow-start: it halves the slow-
start growth rate of Reno and doubles congestion window
every other RTT, as opposed to Reno’s every RTT.

III. PREVIOUS WORK ON TCP VEGAS

Since Brakmo [4][5] proposed TCP Vegas in 1994,

claiming to achieve larger throughput and one-fifth to one-
half the losses of TCP Reno, several papers [6][11-13] have
been published on the study of Vegas performance using fluid

analysis and simulation approach. In this Section, we will
give a short overview of previous work on TCP Vegas.

Ahn [6] reproduced claims in [4][5] with varying

background traffic and concluded that Vegas indeed offers
improved throughput of at least 3-8% over Reno while
reducing packet losses and subsequent retransmitted segments
by a factor of 2 to 5. Ahn also pointed out that Vegas’
congestion avoidance is the main source of Vegas’ improved
throughput, efficiency and delay statistics. Its early packet
loss detection technique contributes only second-order effects
on TCP performance.

Hasegawa [11] studied fairness and stability of Vegas

analytically and found that Vegas can offer higher
performance and stable operation, but sometimes fail to be
fair due to the uncertainty of the convergence point among
different RTT connections. Nevertheless, TCP Vegas indeed
improves fairness to some extent when compared to TCP
Reno.

J. La [13] observed TCP Vegas experienced two

problems, which could have serious impact on its
performance. One is rerouting problem. Packets routing a
different path may result in the changes of variables BaseRTT
and RTT, and therefore bring about inaccurate estimation of
DIFF and thus erroneously increase or decrease Vegas’ cwnd;
another is stability problem which is still from the estimation
of BaseRTT. If the connections overestimate BaseRTT due to
a persistent congestion, system may be driven to a
persistently congested state. Paper [13] has investigated these
issues in detail.

Mo [12] used a fluid model and simulations to show that

Vegas does not suffer bias from different propagation delay
as TCP Reno does, and achieve better performance than
Reno. At same time, he also demonstrated that TCP Vegas
does not compete well when it co-exists with TCP Reno.

Positive impacts of Vegas’ throughput and fairness have

been fully investigated in previous work [4-6][11]. Negative
impacts such as incompatibility with Reno and lack of
robustness have also been pointed out in [6][12-13]. In this
paper, we show that in asymmetric networks, both Vegas’
throughput and compatibility with Reno can degrade by a
large margin. This is fundamentally due to Vegas’ proactive
congestion control mechanism [4][5]. Comparatively, Reno
shows less degradation over asymmetric networks. In
addition, one modified congestion avoidance mechanism is
proposed to improve Vegas’ throughout in asymmetric
networks

IV. ANALYSIS AND SIMULATION RESULTS

We introduce one simulation model in Section IV.A. In

Section IV.B and IV.C, we argue that the proactive

congestion control employed by Vegas will give rise to the
poor throughput performance in asymmetric networks and
back up our contention with simulation results. In Section
IV.D, we investigate the relative performance of TCP Vegas
and Reno connections when they co-exist in asymmetric
networks.

A. Network Model

We consider the network model depicted in Fig. 1. The

network consists of six hosts, two intermediate routers, and
links interconnecting the hosts and routers. The links are
labeled with their capacities and propagation delays. The
forward link between the two routers has a capacity of µf data
packets per second and a propagation delay of τf seconds,
together with a FIFO buffer of size Bf packets. The reverse
link can transmit µr acks per second with propagation delay τr
seconds and a FIFO buffer that can hold Br acks.

Assuming the source has infinite data to send, when the

receiver receives a data packet, it generates an ack that
contains the sequence number of the next expected packet.
Typical data packet size is 1kbyes and typical ack size is 40
bytes. The normalized asymmetric factor [9] is defined as k =
µf /µr . An asymmetric network is one in which k > 1. For
example, if the forward link has a bandwidth of 2.4Mbps and
the reverse link has a bandwidth of 32kbps, and the size of
the data packets and acks are respectively 1kbytes and acks of
40 bytes. Then, µf = 300 packets/s, µr = 100 acks/s, and k =3.

Fig. 1. Asymmetric Network Model

In Sections IV and V, we make use of the network

simulator (ns) developed at Lawrence Berkeley Lab to
investigate TCP Vegas in asymmetric networks based on the
model in Figure 1.

B. Analysis on Vegas in Asymmetric Environment

Suppose that the traffic on all the links is generated by the

single connection between the source and destination. With
reference to Fig. 1, the maximum forward path throughput (in
unit of packets per second) is the forward link capacity µf
[packets/s]. The maximum reverse path throughput (in unit of

acks per second), which is equal to the reverse link capacity
µr [acks/s].

Fig. 2. Window control of TCP Vegas

Let us consider a non-asymmetric network with k ≤1 (i.e.,

µf < µr). In Figure 2, we show conceptually the throughput
versus cwnd curve of the TCP connection. The actual
throughput cwnd/RTT keeps up with the expected throughput
cwnd/BaseRTT when cwnd is small because every updated
RTT is nearly equal to BaseRTT, which is the RTT of first
segment sent by the connection. As cwnd increases, the actual
throughput increases proportionally until it reaches the
forward link capacity µf, after which the increase stops.
Beyond this threshold, a queue starts to build up at the
bottleneck router buffer and RTT starts to move up in value. If
the queue is allowed to overflow, packet loss will be incurred.
Vegas’ main idea is to try to maintain the extra data (queue
size) in the bottleneck router buffer to be between the lower
threshold (α) and upper threshold (β) in order to reach high
throughput and avoid packet overflow.

To see how Vegas attempts to maintain the queue size at

the bottleneck link at the range between α and β, consider the
following. When the queue size is zero, the RTT is BaseRTT.
BaseRTT is basically the sum of the transmission delays and
propagation delays throughout the forward and reverse paths
(with queuing delay equal to zero). Let the backlog at the
queue be denoted by N. Then, given the forward link between
the routers is the bottleneck link with capacity µf, we have

RTT = BaseRTT + N/µf . (1)

Now, µf is estimated by cwnd/RTT in Vegas. Thus, N can

be approximated by

N = cwnd *(1- BaseRTT/RTT) = DIFF*BaseRTT. (2)

When the estimated N > β, Vegas decrements cwnd to

make N smaller; when the estimated N < α, Vegas increases

cwnd to make N larger; otherwise, leave cwnd unchanged.
Thus, we see that Vegas attempts to keep N between α and β.

We can rewrite (1) as

µf *RTT = µf * BaseRTT + N (3)

In Fig. 2, we define w = µf*BaseRTT, which is the cwnd

just before backlog starts to build up at the bottleneck link.
Substituting µf = cwnd/RTT on the left side of (3), we have

cwnd = w + N (4)

We see that the Vegas attempts to keep cwnd to between w+α
and w+β, as seen in Fig. 2.

In the case of an asymmetric network with k >1, the

bottleneck link is the reverse link but not the forward link.
Then, we have RTT = RTTBase + N/µr , where N is now the
ack backlog at the queue of the reverse link. Again, µr can be
estimated by cwnd/RTT. Now, Vegas’ algorithm will zoom in
to an equilibrium state where by N ack fluctuates between α
and β, and the data flow rate will be µr packets per second.
Meanwhile, there is some extra capacity, (µf - µr), at the
forward link that is left unused. This under-utilization of the
forward link is caused by bandwidth limitation at the reverse
link and in principle the sender should be able to send more
data in the forward direction. Vegas does not distinguish
between bottlenecks in the forward link and reverse link and
zooms into a sub-optimal solution in this case. Its proactive
congestion control algorithm is actually attempting to prevent
ack loss rather than packet loss.

Reno, unlike Vegas, is not a proactive congestion control

scheme. It will attempt to send more packets until packet loss
is detected. When the bottleneck is at the reverse link, acks
will be lost rather than the data packets in the forward
direction. However, intermittent ack loss will not cause Reno
to throttle its data-sending rate in the forward direction
significantly because of the cumulative property of acks. For
instance, if ack for packet 2 and packet 3 are dropped at the
bottleneck, but ack for packet 4 is received, the sender will
correctly take this to mean that packets 2 and 3 have also
been received. Thus, it will continue to increase its cwnd.

C. TCP Vegas Simulation in Asymmetric Networks

In this section, we use simulation to demonstrate the

performance degradation of TCP Vegas in asymmetric
networks and show how the reverse buffer size affects TCP
Vegas. We point out the main reason for Vegas degradation is
its proactive congestion detection mechanism. These
simulation results back up our analysis above.

1) TCP Vegas cwnd evolution and its throughput in
asymmetric networks: Fig. 3(a) plots Reno and Vegas’
congestion window evolution with τr=τf =50ms for k ≤ 1 (i.e.,
when the forward path is the bottleneck). It shows that Vegas’
congestion window remains rather constant while Reno’s
congestion window fluctuates. Although during the initial
slow-start phase, Vegas performs better than Reno, the
averages of the window size, however, are comparable in
equilibrium. Table I shows TCP Vegas and Reno throughput
and forward link utilization under the network model in
Figure 1.

(a)

(b)

Fig. 3. Reno’s and Vegas’ congestion window evolution
(a) for k=0.5 (b) k=3

Figure 3(b) plots single Reno and single Vegas’

congestion window evolution with τr=τf =50ms for k = 3
(now the reverse path is the bottleneck of a TCP connection).
After a slow start period, Vegas’ congestion window still
converges to an equilibrium point within [w+ α, w+ β],
where w = µr * BaseRTT. It has been shown analytically in [9]
that Reno’s congestion window oscillates over a wide range

[1, wrenomax]. The low bound of the range is due to multiple
packet losses, which cause a succession of window cutback.
The upper bound wrenomax= µf * RTT + kBr + Bf , where µf *
RTT is packets in flight of the connection, Bf is the forward
buffer size and Br is the reverse buffer size.

By contrast, in the asymmetric network (k>1) ack packets

accumulate on the reverse buffer because of its slow link
speed. As soon as Vegas detects the onset of the connection
congestion, its window will converge to this sub-optimal
equilibrium region without distinguishing whether actual
congestion occurs on the data packet path or not. Therefore,
ack packets accumulates in the reverse buffer and while the
forward buffer is empty. Unlike Vegas, Reno’s cwnd keeps
increasing until data packet loss actually occurs on the
forward path. The cumulative property of acks and aggressive
window increase of Reno compensates somewhat for
limitations of asymmetric network and provide Reno with
much flexibility and adaptability in this environment.
Meanwhile, TCP Vegas is constrained by its proactive
congestion detection.

We see from the simulation results in Table I that

although Reno’s window experiences fluctuations as
illustrated in Fig. 3 (b), its average is still higher than the
window in Vegas. Table I shows changes of Reno’s and
Vegas’ throughput and utilization with the different
asymmetric degree. We see that in non-asymmetric network,
TCP Vegas indeed outperforms Reno and its forward
utilization is higher than Reno [4-6]. In the asymmetric
environment, however, it is quite different. Vegas’ throughput
deteriorates more seriously than Reno’s and its forward link
utilization is lower than Reno.

TABLE I

THROUGHPUT AND UTILIZATION OF TCP VEGAS AND RENO
GIVEN µf=1.6Mbps, Bf=15 packets Br= 10 acks τf =τr =50ms

VEGAS/RENO
Non-

asymmetry Asymmetry

k=0.5 k=3 k=5 k=7
Throughput
(packet/s) 195.9/185 65.8/138.3 43.8/109.4 26.8/71.5

Throughput
ratio 1.0/1.0 0.34/0.75 0.22/0.59 0.14/0.38

Forward link
utilization 0.98/0.93 0.31/0.69 0.19/0.54 0.14/0.36

In order to better understand the trend of asymmetry

effect, Fig. 4 shows Vegas’ and Reno’s throughputs as a
function of µf for a fixed reverse link speed µr = 50acks/s.
The system model considered is that in Fig. 1 with link delay
τr=τf =50ms. Vegas throughput is min{µf, µr}. When µf is
much larger than µr, the forward-link capacity is heavily
under-utilized. The simulation shows that for Reno, the
throughput is nearly µf when µf < µr, but it can be larger than
µr when µf > µr.

Fig. 4. TCP throughput versus degree of asymmetric
network, given µr=50 acks/s

We note from Fig. 4 that both Reno and Vegas do not

make full use of the capacity in the forward path. The higher
the degree of asymmetry, the more severe the throughput
penalty. However, Reno shows better adaptability over
asymmetric networks than Vegas and thus suffers less.

In summary, TCP Vegas adjusts its transmission rate to

match the forward-path capacity proactively to avoid data
packets loss. However, in asymmetric networks, its
congestion avoidance mechanism actually matches its
transmission rate to the reverse-path capacity,
underestimating bandwidth; in contrast, TCP Reno passively
detects congestion by aggressively increasing its congestion
window until data packet loss actually occurs, and the
cumulative effect of acks lessens the impact of lost acks.

2) The reverse buffer size effects on TCP Vegas in

asymmetric networks: In asymmetric networks, Vegas tries to
maintain at least α but no more than β acks on the reverse
buffer. Table II contains our simulation results that clearly
show that TCP throughput varies with the reverse buffer size.

TABLE II

THROUGHPUT AND UTILIZATION OF TCP VEGAS AND RENO~~
REVERSE BUFFER SIZE, GIVEN µf= 200packets/s µr=50acks/s k=5

Bf=10 τf =τr=50ms
RENO/VEGAS Br (acks) Throughput (packets/s) Forward link Utilization

2 134.5/101.3 0.670/0.505
6 128.2/39.4 0.641/0.197

10 109.1/39.6 0.545/0.197
20 66.8/39.5 0.334/0.197
40 46.2/39.5 0.231/0.197

100 46.6/39.4 0.232/0.197

TCP Vegas and Reno performance gets worse for larger

reverse buffer size when Br > β. The intuition is as follows.
For Vegas, small reverse buffer such as Br=2 can increase the
drop rate of acks (α is set to 1 and β to 3 in our simulation).

These missing acks have the effect of increasing reverse link
speed. It is as if the receiver actually skipped the sending of
some acks. However, when the reverse buffer size is β
(usually set to 3) or more, with reference to Table II, Vegas
algorithm will prevent ack drop by throttling the transmission
of data packets at the sender.

In absolute term, buffer size of β is really small and one

would expect most network equipment to have much larger
buffer size than this. Thus, we can expect Vegas performance
to be very poor in practice unless something else is done.

For comparison, we have also simulated Reno and the

results are also shown in Table II. Note that Reno’s
throughput is also affected by the reverse buffer size. The
dropping of acks will slow down the window increase of TCP
Reno because Reno’s window increase is based on the
number of acks received rather than the amount of acks
received [8-9]. However, being different from Vegas
conservative window-adjusting policy, the aggressive
window-increasing policy of Reno can alleviate the
asymmetry effect to some extent. Therefore, Reno shows
better results than Vegas. From table II, we find that Vegas’
utilization of forward link is significantly lower than Reno’s,
especially when the reverse buffer size is relatively small.

D. Multiple Connections in Asymmetric Networks

Reference [12] argues that Vegas’ throughput does not

depend on its propagation delay, and unlike Reno, there is no
bias in favor of connections with long delays. Paper [11]
concludes that Vegas provides fair services among
connections independent of different propagation delay. In
asymmetric networks, Vegas keeps this fairness property
although its total throughput is limited by min{µf, µr}.

Fig. 5. Three Vegas connections with different RTT
given µf=200packets/s, k=5 Bf=10 Br= 10 τf =τr =20ms

With reference to Figure 5, three connections in the

network model in Fig. 1 are started up in sequential order,
one from H1 to H4, one from H2 to H5 (with propagation
delay y=1ms, one from H3 to H6 with propagation delay

x=5ms. It can be seen that the differences of the three
connections are smaller in Vegas.

However, Reno TCP has been widely deployed in the

current Internet, to better evaluate Vegas evolution in
practical environments, we need to study the compatibility
between Reno connections and Vegas connections in addition
to above compatibility among Vegas connections. Ahn [6]
has observed that Vegas does not receive a fair share of
bandwidth due to its conservative congestion control
mechanism when competing with Reno connections. Mo [12]
explained TCP Reno leaves little buffer for other connections
because of its aggressive nature while TCP Vegas is
conservative and tries to occupy little buffer space.

In asymmetric networks, however, when one Vegas

connection is competing with Reno connection. Vegas is so
much biased by Reno that it is nearly not able to transmit data
packets, as seen in Fig. 6(a), which shows the vast throughput
difference between a Reno and a Vegas connection when they
co-exist in the same network.

(a)

(b)

Fig. 6. (a) packet sequence number (b) window evolution
for co-existing one Reno and one Vegas, given

µf=200packets/s, k=3 Bf=10 Br= 10 τf =τr =20ms

Vegas uses its proactive congestion control mechanism to
prevent self-induced packet losses. This kind of loss
prevention is completely negative in asymmetric
environments because Vegas conservatively maintains a
smaller ack queue size on the reverse path other than data
packets queue on the forward path, seeing to Fig. 6 (b). When
one Reno connection joins in, its aggressive window growth
will lead to many Reno acks being accumulated on the revere
buffer regardless of ack losses. This behavior is more
aggressive than when competition is on the forward path (i.e.,
in non-asymmetric networks), in which the window is
increased until overflow occurs on the forward path, at which
point Reno’s window is cut into halves. Intermittent ack loss
in asymmetric networks will not cause Reno to throttle its
data-sending rate in the forward direction because of the
cumulative property of acks. It will continue to increase its
cwnd. Of course, loss of acks of Vegas connection also
improves the Vegas throughput to some extent. However,
accumulating acks at the buffer cause the observed RTT to
increase continuously and thus lead Vegas’ to decrease its
window quickly. With reference to Fig. 6 (b). TCP Reno
connection almost uses up all of the reverse buffer space in
the bottleneck node and does not signal a congestion until
actual forward buffer overflow occurs or timeouts are induced
by ack loss. TCP Vegas falsely regards accumulation of acks
on the reverse path as a signal for the onset of congestion and
adapts its window over conservatively.

In summary, from the above investigation, Reno shows

more flexibility and adaptability than Vegas in asymmetric
networks. This asymmetry significantly degrades Vegas
throughput and causes incompatibility between TCP Vegas
and Reno. Without modification of the proactive congestion
control mechanism, Vegas would face large challenges if it
were deployed on the Internet, which currently is quite
heterogeneous.

V. SOLUTIONS

From Fig. 4, we note both Reno and Vegas do not make

full use of the capacity in the forward path. The techniques
(e.g. ACC, AF, SA and AF) for improving Reno’s
performance under asymmetry have previously been studied
in [8]. In this section, we argue that these techniques are not
effective for handling the Vegas’ asymmetry problems.
Afterwards, one new technique is proposed to improve the
performance of TCP Vegas.

ACC (Ack Congestion Control), which uses gateways on

the reverse link to aid congestion control, was proposed in
[8]. It tries to detect the impending congestion by tracking the
average queue size over a time window in the recent past and
then informs the receiver to dynamically vary the delayed-ack
factor to decrease the frequency of acks on the constrained
reverse link. However, when a single connection of TCP
Vegas is run over asymmetric networks, the ack queue size

fluctuates only within the narrow range of α and β on the
reverse path. Hence, ACC is not effective for Vegas because
the gateway on the reverse path will not detect large
accumulation of acks.

Similarly, AF (Ack Filtering) [8] is a router-based

technique to remove some fraction (possibly all) of
accumulated acks in the reverse buffer. Vegas’ queue size on
the reverse link shows little changes, unlike that seen in Reno.
Therefore, AF technique is also not applicable for Vegas.

ACC and AF have reduced the asymmetric effects to

some extent on TCP Reno, but they also bring about
slowdown of window growth because Reno’s window
increase is based on the number of acks not the amount of
acks. To prevent the reduced ack frequency from adversely
affecting the performance of TCP Reno, SA (Sender
Adaptation) and AR (Ack Reconstruction) [8] are proposed.
But, such ack losses do not cause any adverse effects on TCP
Vegas because its window change is based on the difference
of the expected rate and measured actual rate during each
round-trip time rather than the number of acks received.

We propose a non-gateway-based solution. We use the

TCP option presented in RFC1323 that adds a timestamp to
the TCP header. From the timestamps, we can easily compute
actual flow rate (Actualf) on the forward path at the sender
and accurately identify the onset of congestion path on the
data path. This allows us to distinguish between forward and
backward path congestions. Our modified Vegas’ congestion
avoidance mechanism is as follows:

if (DIFFf *BaseRTT < α)

/* where DIFFf = (Expected- Actualf) */
cwnd = cwmd + 1
/* increase congestion window size by one */

if (DIFFf *BaseRTT < β)
 cwnd = cwnd-1
else cwnd = cwnd

/* congestion window remains unchanged */

where DIFFf = Expected - Actualf . By using DIFFf instead
of DIFF, in asymmetric networks, Vegas’ cwnd is able to
converge to the optimal point in which the available
bandwidth on the forward path is fully utilized. Table III
shows modified Vegas obtains greatly improved results over
Vegas. Comparing to Reno's throughput in Table I, Vegas
also outperforms Reno in asymmetric networks by employing
such a simple modified mechanism.

TABLE III
THROUGHPUT AND UTILIZATION OF TCP VEGAS AND MODIFIED

VEGAS (µf=1.6Mbps, Bf=15 packets Br= 10 acks τf =τr =50ms)

VEGAS/ MODIFIED VEGAS
Non-

asymmetry Asymmetry

k=0.5 k=3 k=5 k=7
Throughput
(packet/s) 195.9/194 65.8/190.4 43.8/192.8 26.8/189.2

Throughput
ratio 1.0/1.0 0.336/0.98 0.224/0.99 0.137/0.97

Forward link
utilization 0.98/0.97 0.312/0.95 0.198/0.96 0.144/0.95

VI. CONCLUSIONS

The Internet is characterized by heterogeneity with all

sorts of network equipment and links. Network asymmetry is
common with technologies such as ADSL, HFC. TCP Vegas
does not deal with network asymmetry well.

Previous studies have shown that TCP Vegas outperforms

TCP Reno. We show in this paper that Vegas throughput
performance is significantly worse than that of Reno when
the bottleneck is on the reverse path. In such a situation, the
Vegas algorithm converges to the wrong operating point and
fails to make full use of the available bandwidth on the
forward path. Vegas congestion detection mechanism is the
fundamental reason why it suffers in the asymmetric
environment. In addition, Vegas also suffers a severe bias
when Vegas and Reno connections compete with each other
in asymmetric networks, making it difficult to deploy Vegas
in practice because of the large installed base of Reno stack in
the current Internet.

Techniques used to address asymmetry that are effective

for Reno are not effective for Vegas. We propose a solution
which makes use of the timestamp option in RFC1323 to
distinguish between congestions caused by forward and
reverse paths. With this method, Vegas’ congestion window
is able to converge to the optimal point in which the available
bandwidth on the forward path is fully utilized even when the
backward path is congested.

REFERENCE

[1] Van Jacobson. “Congestion avoidance and control “ ACM
SIGCOMM 88, pages 273-288, 1988
[2] Van Jacobson. “Modified TCP congestion avoidance
algorithm”, mailing list, end2end interest, 30 Apr 1990.
[3] R. Jain, "A delayed-Based approach for congestion
avoidance in interconnected heterogeneous computer
networks" ACM Computer Communication Review, 19(5):56-
71, Oct. 1989
[4] Lawence S. Brakmo, Sean W.O’Malley, and Larry L.
Peterson, “TCP Vegas: New techniques for congestion
detection and avoidance,” Proceedings of ACM
SIGCOMM’94, no.4 pp.24-35, October 1994
[5] Lawence S. Brakmo and Larry L. Peterson, “TCP Vegas:
End to End congestion avoidance on a global internet,” IEEE

Journal an Selected Areas in Communications, vol.13, no. 8,
pp.1465-1480, October 1995
[6] Jong Suk Ahn, Peter B.Danzig, Zhen Liu, and Limin Yan,
“Evaluation with TCP Vegas: Emulation and experiment ,”
ACM SIGCOMM Computer Communications Review, vol.25,
no. 4, pp.185-195, August 1995.
[7] Hossam Afifi, Omar Elloumi, Gerardo Rubino, “A
Dynamic Delayed Acknowledgement to Improve TCP
Performance for Asymmetric Links” Computers and
Communications, ISCC '98. Proceedings. Third IEEE
Symposium on , 1998
[8] H. Balakrishnan, V.N. Padmanabhan and R.H. Katz,
“ The effects of TCP/IP performance,” Proceedings of
INFOCOM'97
[9] T.V. Lakshman “Window-based error recovery and flow
control with a slow acknowledgement channel: a study of
TCP/IP performance.” INFOCOM '97.
[10] Henderson, T.R.; Sahouria, E.; McCarme, S.; Katz, “On
Improving the Fairness of TCP Congestion Avoidance”
GLOBECOM'98. Volume: 1 , 1998 , Page(s): 539 -544
[11] Go Hasegawa, Masayuki Murata, and Hideo Miyahar,
“ Fairness and Stability of Congestion Control Mechanism of
TCP” INFOCOM '99. Volume: 3 , 1999 , Page(s): 1329 -
1336 vol.3
[12] Mo, J.; La, R.J.; Anantharam, V.; Walrand, J., “Analysis
and Comparison of TCP Reno and Vegas” INFOCOM '99
Page(s): 1556 -1563 vol.3
[13] R. J. La, J. Walrand, and V. Anantharam, "Issues in TCP
Vegas" Available at http://www.path.berkeley.edu/~hyongla,
July 1998

