
Abstract - TCP Vegas employs congestion avoidance, early 
detection of packet loss and conservative slow-start algorithms 
to improve TCP performance. With its proactive congestion 
detection, it utilizes network bandwidth more efficiently and 
achieves a higher throughput than TCP Reno. This paper shows 
that in asymmetric networks in which the bottleneck is on the 
reverse path rather than on the forward path, its performance 
can be significantly lower than that of Reno, in contrast to the 
37% throughput improvement claimed in [4][5]. In particular, 
Vegas may erroneously converge to an operating region in which 
the available bandwidth on the forward path is under-utilized by 
a large margin. Even worse, when connections running Vegas 
and Reno co-exist and compete on the same network, Vegas 
suffers a severe penalty. We propose an approach to improve 
Vegas’ throughput in asymmetric networks.  

 
I. INTRODUCTION 

 
TCP Reno [1][2], which makes use of slow start and 

congestion avoidance algorithms, is now widely deployed in 
the Internet.  Its window is increased until packet loss is 
experienced, at which point the window is halved and then a 
linear increase algorithm takes over until further packet loss 
is experienced. This additive increase and multiplicative 
decrease leads to periodic oscillations in the congestion 
window, round trip delay and queue length of the bottleneck 
buffer in the path. Researchers [3-5] have proposed various 
modified TCP algorithms to eliminate the periodic 
oscillations of Reno [1]. 

 
In 1994, TCP Vegas [4][5], which employs a 

fundamentally different congestion control algorithm from 
that in Reno, was proposed and a claim of 37 to 71 percent 
throughput improvement over Reno was made. The author in 
[6] reproduced the claims made in [4][5] and showed that 
Vegas indeed offered higher throughput than Reno while 
reducing packet loss and the need for retransmission. Other 
researchers [11][12] also demonstrated that TCP Vegas 
outperformed Reno by means of analysis as well as  
simulation. 

 
Both TCP Reno and Vegas were designed under the 

implicit assumption that congestion occurs on the forward 
path rather than the reverse path. But, in today’s Internet, it is 
common for TCP’s throughput to be limited by the 
congestion on the reverse path. In asymmetric networks such 
as ADSL and HFC, the capacity of the reverse path is 
significantly lower than that of the forward path.  

 

As defined in [9], we say that a TCP connection 
experiences asymmetry if the ratio of the forward data rate 
(data packets per second) to the reverse data rate (acks per 
second) is larger than one [9]. TCP Reno depends on the 
reception of acks for pacing of the forward data-sending rate. 
If acks do not arrive at the sender fast enough, the data-
sending rate will be throttled even if the forward path is 
congestion free, resulting in under-utilization of the available 
bandwidth [8][9]. The performance of Reno’s connections on 
asymmetric networks was studied in [9]. Other researchers 
[7][8] also proposed several schemes to improve Reno’s 
performance under asymmetry by reducing ack rate on the 
reverse path. 

 
In this paper, we study TCP Vegas’ performance in 

asymmetric networks and point out that due to Vegas’ 
proactive congestion control mechanism, Vegas erroneously 
converges to an operating region in which the available 
bandwidth on the forward path is under-utilized by a large 
margin. Vegas’ throughput is significantly lower than Reno’s 
throughput in asymmetric networks. In contrast, while Reno 
also suffers from network asymmetry, the performance 
degradation is less severe. To circumvent this problem, we 
modify Vegas congestion avoidance mechanism to steer the 
algorithm to converge to an optimal point at which the 
forward path is fully utilized, even on asymmetric networks. 
We also show in this paper that Vegas’ connections 
experience a large negative bias when competing with Reno 
connections for bandwidth on the bottleneck link. 

 
This paper is organized as follows. In Section II, we give 

a brief review of the basic TCP Vegas algorithm. Previous 
work related to Vegas is presented In Section III. In Section 
IV, we analyze TCP Vegas in asymmetric networks and 
identify the cause for Vegas’ performance degradation. In 
addition, we study the multiple-connection scenarios in which 
Vegas connections compete with Reno connections, and 
demonstrate that Vegas suffers very severe penalty when it 
co-exists with Reno. In Section V, a solution to the Vegas’ 
poor performance in asymmetric networks is proposed.  
Section VI concludes this work. 

 
II. TCP VEGAS MECHANISM 

 
Reno’s congestion control kicks in only when packets are 

lost, and this causes periodic oscillations of the congestion 
window size and leads to throughput degradation of the 
connection. Vegas, on the other hand, employs proactive 
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congestion detection and avoids congestion by steering the 
system away from packet loss before it occurs. 

 
Intuitively, as the TCP window size (cwnd) increases, the 

throughput of a connection should also increase. If there is no 
congestion, the measured throughput should be close to the 
expected throughput; otherwise, the measured throughput will 
be smaller than the expected throughput. Vegas attempts to 
predict the onset of congestion by monitoring the difference 
between the measured throughput and the expected 
throughput, namely, 

 
DIFF = (Expected-Actual) 
 
In the above, Expected = cwnd/BaseRTT, where BaseRTT 

is the minimum of all measured RTT (round trip times). It is 
usually the RTT of the first segment sent by a connection; 
Actual is the measured throughput at the sender given by 
cwnd/RTT, where RTT is the actual round-trip time of a 
tagged packet. Strictly speaking, Expected as defined is the 
best possible throughput, since BaseRTT is the minimum of 
all measured RTT. But we shall adhere to the use of this term 
since previous papers on Vegas have all used it.   

 
The essence of Vegas is to increment cwnd when 

DIFF*BaseRTT is smaller than a preset value, and decrement 
it when DIFF *BaseRTT is larger than another preset value, 
as detailed below: 

 
if   ( DIFF*BaseRTT < α )  

cwnd = cwmd + 1   
/* increase congestion window size by one */ 

else   if   ( DIFF*BaseRTT > β ) 
cwnd = cwnd – 1    
/*decrease congestion window size by one */ 

else  cwnd =  cwnd 
 /* congestion window remains unchanged */ 

 
where α and β are constant values in packet unit that can be 
set  by experimentation.  

 
Vegas employs a new retransmission strategy [4] for 

detecting packet loss earlier than Reno and decreases cwnd 
multiplicatively using a factor of ¾ rather than Reno’s ½ . 
Vegas also modifies Reno’s slow-start: it halves the slow-
start growth rate of Reno and doubles congestion window 
every other RTT, as opposed to Reno’s every RTT.  

 
III. PREVIOUS WORK ON TCP VEGAS 

 
Since Brakmo [4][5] proposed TCP Vegas in 1994, 

claiming to achieve larger throughput and one-fifth to one-
half the losses of TCP Reno, several papers [6][11-13] have 
been published on the study of Vegas performance using fluid 

analysis and simulation approach. In this Section, we will 
give a short overview of previous work on TCP Vegas.  

 
Ahn [6] reproduced claims in [4][5] with varying 

background traffic and concluded that Vegas indeed offers 
improved throughput of at least 3-8% over Reno while 
reducing packet losses and subsequent retransmitted segments 
by a factor of 2 to 5. Ahn also pointed out that Vegas’ 
congestion avoidance is the main source of Vegas’ improved 
throughput, efficiency and delay statistics. Its early packet 
loss detection technique contributes only second-order effects 
on TCP performance. 

 
Hasegawa [11] studied fairness and stability of Vegas 

analytically and found that Vegas can offer higher 
performance and stable operation, but sometimes fail to be 
fair due to the uncertainty of the convergence point among 
different RTT connections. Nevertheless, TCP Vegas indeed 
improves fairness to some extent when compared to TCP 
Reno. 

 
J. La [13] observed TCP Vegas experienced two 

problems, which could have serious impact on its 
performance. One is rerouting problem. Packets routing a 
different path may result in the changes of variables BaseRTT 
and RTT, and therefore bring about inaccurate estimation of 
DIFF and thus erroneously increase or decrease Vegas’ cwnd; 
another is stability problem which is still from the estimation 
of BaseRTT.  If the connections overestimate BaseRTT due to 
a persistent congestion, system may be driven to a 
persistently congested state. Paper [13] has investigated these 
issues in detail.  

 
Mo [12] used a fluid model and simulations to show that 

Vegas does not suffer bias from different propagation delay 
as TCP Reno does, and achieve better performance than 
Reno. At same time, he also demonstrated that TCP Vegas 
does not compete well when it co-exists with TCP Reno. 

 
Positive impacts of Vegas’ throughput and fairness have 

been fully investigated in previous work [4-6][11]. Negative 
impacts such as incompatibility with Reno and lack of 
robustness have also been pointed out in [6][12-13]. In this 
paper, we show that in asymmetric networks, both Vegas’ 
throughput and compatibility with Reno can degrade by a 
large margin. This is fundamentally due to Vegas’ proactive 
congestion control mechanism [4][5]. Comparatively, Reno 
shows less degradation over asymmetric networks. In 
addition, one modified congestion avoidance mechanism is 
proposed to improve Vegas’ throughout in asymmetric 
networks 

 
IV. ANALYSIS AND SIMULATION RESULTS 
 
We introduce one simulation model in Section IV.A. In 

Section IV.B and IV.C, we argue that the proactive 



 

congestion control employed by Vegas will give rise to the 
poor throughput performance in asymmetric networks and 
back up our contention with simulation results. In Section 
IV.D, we investigate the relative performance of TCP Vegas 
and Reno connections when they co-exist in asymmetric 
networks. 

 
A. Network Model 

 
We consider the network model depicted in Fig. 1. The 

network consists of six hosts, two intermediate routers, and 
links interconnecting the hosts and routers. The links are 
labeled with their capacities and propagation delays. The 
forward link between the two routers has a capacity of µf data 
packets per second and a propagation delay of τf seconds, 
together with a FIFO buffer of size Bf packets. The reverse 
link can transmit µr acks per second with propagation delay τr 
seconds and a FIFO buffer that can hold Br acks.  

 
Assuming the source has infinite data to send, when the 

receiver receives a data packet, it generates an ack that 
contains the sequence number of the next expected packet. 
Typical data packet size is 1kbyes and typical ack size is 40 
bytes. The normalized asymmetric factor [9] is defined as k = 
µf /µr . An asymmetric network is one in which k > 1. For 
example, if the forward link has a bandwidth of 2.4Mbps and 
the reverse link has a bandwidth of 32kbps, and the size of 
the data packets and acks are respectively 1kbytes and acks of 
40 bytes. Then, µf = 300 packets/s, µr = 100 acks/s, and k =3. 

  

 
Fig. 1. Asymmetric Network Model 

 
In Sections IV and V, we make use of the network 

simulator (ns) developed at Lawrence Berkeley Lab to 
investigate TCP Vegas in asymmetric networks based on the 
model in Figure 1.  

 
B. Analysis on Vegas in Asymmetric Environment 

 
Suppose that the traffic on all the links is generated by the 

single connection between the source and destination.  With 
reference to Fig. 1, the maximum forward path throughput (in 
unit of packets per second) is the forward link capacity µf 
[packets/s]. The maximum reverse path throughput (in unit of 

acks per second), which is equal to the reverse link capacity 
µr [acks/s].  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2.  Window control of TCP Vegas 
 
Let us consider a non-asymmetric network with k ≤1 (i.e., 

µf < µr). In Figure 2, we show conceptually the throughput 
versus cwnd curve of the TCP connection. The actual 
throughput cwnd/RTT keeps up with the expected throughput 
cwnd/BaseRTT when cwnd is small because every updated 
RTT is nearly equal to BaseRTT, which is the RTT of first 
segment sent by the connection. As cwnd increases, the actual 
throughput increases proportionally until it reaches the 
forward link capacity µf, after which the increase stops. 
Beyond this threshold, a queue starts to build up at the 
bottleneck router buffer and RTT starts to move up in value. If 
the queue is allowed to overflow, packet loss will be incurred.  
Vegas’ main idea is to try to maintain the extra data (queue 
size) in the bottleneck router buffer to be between the lower 
threshold (α) and upper threshold (β) in order to reach high 
throughput and avoid packet overflow.  

 
To see how Vegas attempts to maintain the queue size at 

the bottleneck link at the range between α and β, consider the 
following. When the queue size is zero, the RTT is BaseRTT. 
BaseRTT is basically the sum of the transmission delays and 
propagation delays throughout the forward and reverse paths 
(with queuing delay equal to zero). Let the backlog at the 
queue be denoted by N. Then, given the forward link between 
the routers is the bottleneck link with capacity µf, we have 

 
RTT = BaseRTT + N/µf .    (1) 
 
Now, µf is estimated by cwnd/RTT in Vegas. Thus, N can 

be approximated by  
 
N = cwnd *( 1- BaseRTT/RTT) = DIFF*BaseRTT. (2) 
 
When the estimated N > β, Vegas decrements cwnd to 

make N smaller; when the estimated N < α, Vegas increases 



 

cwnd to make N larger; otherwise, leave cwnd unchanged. 
Thus, we see that Vegas attempts to keep N between α and β. 

 
We can rewrite (1) as 
 
µf *RTT = µf * BaseRTT + N   (3) 
 
In Fig. 2, we define w = µf*BaseRTT, which is the cwnd 

just before backlog starts to build up at the bottleneck link. 
Substituting µf = cwnd/RTT  on the left side of (3), we have 

 
cwnd = w + N       (4) 
 

We see that the Vegas attempts to keep cwnd to between w+α 
and w+β, as seen in Fig. 2.  

 
In the case of an asymmetric network with k >1, the 

bottleneck link is the reverse link but not the forward link. 
Then, we have RTT = RTTBase + N/µr , where N is now the 
ack backlog at the queue of the reverse link. Again, µr can be 
estimated by cwnd/RTT. Now, Vegas’ algorithm will zoom in 
to an equilibrium state where by N ack fluctuates between α 
and β, and the data flow rate will be µr packets per second. 
Meanwhile, there is some extra capacity, (µf  - µr), at the 
forward link that is left unused. This under-utilization of the 
forward link is caused by bandwidth limitation at the reverse 
link and in principle the sender should be able to send more 
data in the forward direction. Vegas does not distinguish 
between bottlenecks in the forward link and reverse link and 
zooms into a sub-optimal solution in this case. Its proactive 
congestion control algorithm is actually attempting to prevent 
ack loss rather than packet loss. 

 
Reno, unlike Vegas, is not a proactive congestion control 

scheme. It will attempt to send more packets until packet loss 
is detected. When the bottleneck is at the reverse link, acks 
will be lost rather than the data packets in the forward 
direction. However, intermittent ack loss will not cause Reno 
to throttle its data-sending rate in the forward direction 
significantly because of the cumulative property of acks. For 
instance, if ack for packet 2 and packet 3 are dropped at the 
bottleneck, but ack for packet 4 is received, the sender will 
correctly take this to mean that packets 2 and 3 have also 
been received. Thus, it will continue to increase its cwnd. 

  
C. TCP Vegas Simulation in Asymmetric Networks  

 
In this section, we use simulation to demonstrate the 

performance degradation of TCP Vegas in asymmetric 
networks and show how the reverse buffer size affects TCP 
Vegas. We point out the main reason for Vegas degradation is 
its proactive congestion detection mechanism. These 
simulation results back up our analysis above. 

 

1) TCP Vegas cwnd evolution and its throughput in 
asymmetric networks: Fig. 3(a) plots Reno and Vegas’ 
congestion window evolution with τr=τf =50ms for k ≤ 1 (i.e., 
when the forward path is the bottleneck). It shows that Vegas’ 
congestion window remains rather constant while Reno’s 
congestion window fluctuates. Although during the initial 
slow-start phase, Vegas performs better than Reno, the 
averages of the window size, however, are comparable in 
equilibrium. Table I shows TCP Vegas and Reno throughput 
and forward link utilization under the network model in 
Figure 1.  

(a) 

 
(b) 

Fig. 3. Reno’s and Vegas’ congestion window evolution  
(a) for k=0.5 (b) k=3 

 
Figure 3(b) plots single Reno and single Vegas’ 

congestion window evolution with τr=τf =50ms for k = 3 
(now the reverse path is the bottleneck of a TCP connection). 
After a slow start period, Vegas’ congestion window still 
converges to an equilibrium point within [ w+ α,  w+ β ], 
where w = µr * BaseRTT.  It has been shown analytically in [9] 
that Reno’s congestion window oscillates over a wide range 



 

[1, wrenomax]. The low bound of the range is due to multiple 
packet losses, which cause a succession of window cutback. 
The upper bound wrenomax= µf *  RTT + kBr + Bf ,  where µf * 
RTT is packets in flight of the connection, Bf is the forward 
buffer size and Br is the reverse buffer size. 

 
By contrast, in the asymmetric network (k>1) ack packets 

accumulate on the reverse buffer because of its slow link 
speed. As soon as Vegas detects the onset of the connection 
congestion, its window will converge to this sub-optimal 
equilibrium region without distinguishing whether actual 
congestion occurs on the data packet path or not. Therefore, 
ack packets accumulates in the reverse buffer and while the 
forward buffer is empty. Unlike Vegas, Reno’s cwnd keeps 
increasing until data packet loss actually occurs on the 
forward path. The cumulative property of acks and aggressive 
window increase of Reno compensates somewhat for 
limitations of asymmetric network and provide Reno with 
much flexibility and adaptability in this environment. 
Meanwhile, TCP Vegas is constrained by its proactive 
congestion detection. 

 
We see from the simulation results in Table I that 

although Reno’s window experiences fluctuations as 
illustrated in Fig. 3 (b), its average is still higher than the 
window in Vegas. Table I shows changes of Reno’s and 
Vegas’ throughput and utilization with the different 
asymmetric degree. We see that in non-asymmetric network, 
TCP Vegas indeed outperforms Reno and its forward 
utilization is higher than Reno [4-6]. In the asymmetric 
environment, however, it is quite different. Vegas’ throughput 
deteriorates more seriously than Reno’s and its forward link 
utilization is lower than Reno. 

 
TABLE I 

THROUGHPUT AND UTILIZATION OF TCP VEGAS AND RENO 
GIVEN µf=1.6Mbps, Bf=15 packets Br= 10 acks  τf =τr =50ms 

VEGAS/RENO 
Non-

asymmetry Asymmetry  

k=0.5 k=3 k=5 k=7 
Throughput 
(packet/s) 195.9/185 65.8/138.3 43.8/109.4 26.8/71.5 

Throughput 
ratio 1.0/1.0 0.34/0.75 0.22/0.59 0.14/0.38 

Forward link 
utilization 0.98/0.93 0.31/0.69 0.19/0.54 0.14/0.36 

 
In order to better understand the trend of asymmetry 

effect, Fig. 4 shows Vegas’ and Reno’s throughputs as a 
function of µf for a fixed reverse link speed µr = 50acks/s. 
The system model considered is that in Fig. 1 with link delay 
τr=τf =50ms. Vegas throughput is min{µf, µr}. When µf is 
much larger than µr, the forward-link capacity is heavily 
under-utilized. The simulation shows that for Reno, the 
throughput is nearly µf when µf < µr, but it can be larger than 
µr when µf > µr. 

Fig. 4. TCP throughput versus degree of asymmetric 
network, given µr=50 acks/s 

 
We note from Fig. 4 that both Reno and Vegas do not 

make full use of the capacity in the forward path. The higher 
the degree of asymmetry, the more severe the throughput 
penalty.  However, Reno shows better adaptability over 
asymmetric networks than Vegas and thus suffers less.  

 
In summary, TCP Vegas adjusts its transmission rate to 

match the forward-path capacity proactively to avoid data 
packets loss. However, in asymmetric networks, its 
congestion avoidance mechanism actually matches its 
transmission rate to the reverse-path capacity, 
underestimating bandwidth; in contrast, TCP Reno passively 
detects congestion by aggressively increasing its congestion 
window until data packet loss actually occurs, and the 
cumulative effect of acks lessens the impact of lost acks. 

 
2) The reverse buffer size effects on TCP Vegas in 

asymmetric networks: In asymmetric networks, Vegas tries to 
maintain at least α but no more than β acks on the reverse 
buffer. Table II contains our simulation results that clearly 
show that TCP throughput varies with the reverse buffer size.  

 
TABLE II 

THROUGHPUT AND UTILIZATION OF TCP VEGAS AND RENO~~ 
REVERSE BUFFER SIZE, GIVEN µf= 200packets/s µr=50acks/s  k=5   

Bf=10  τf =τr=50ms 
RENO/VEGAS Br (acks) Throughput (packets/s) Forward link Utilization 

2 134.5/101.3 0.670/0.505 
6 128.2/39.4 0.641/0.197 

10 109.1/39.6 0.545/0.197 
20 66.8/39.5 0.334/0.197 
40 46.2/39.5 0.231/0.197 

100 46.6/39.4 0.232/0.197 
 
TCP Vegas and Reno performance gets worse for larger 

reverse buffer size when Br > β. The intuition is as follows. 
For Vegas, small reverse buffer such as Br=2 can increase the 
drop rate of acks (α is set to 1 and β to 3 in our simulation). 



 

These missing acks have the effect of increasing reverse link 
speed. It is as if the receiver actually skipped the sending of 
some acks. However, when the reverse buffer size is β 
(usually set to 3) or more, with reference to Table II, Vegas 
algorithm will prevent ack drop by throttling the transmission 
of data packets at the sender.  

 
In absolute term, buffer size of β is really small and one 

would expect most network equipment to have much larger 
buffer size than this. Thus, we can expect Vegas performance 
to be very poor in practice unless something else is done.  

 
For comparison, we have also simulated Reno and the 

results are also shown in Table II. Note that Reno’s 
throughput is also affected by the reverse buffer size. The 
dropping of acks will slow down the window increase of TCP 
Reno because Reno’s window increase is based on the 
number of acks received rather than the amount of acks 
received [8-9]. However, being different from Vegas 
conservative window-adjusting policy, the aggressive 
window-increasing policy of Reno can alleviate the 
asymmetry effect to some extent. Therefore, Reno shows 
better results than Vegas. From table II, we find that Vegas’ 
utilization of forward link is significantly lower than Reno’s, 
especially when the reverse buffer size is relatively small. 

  
D. Multiple Connections in Asymmetric Networks  

 
Reference [12] argues that Vegas’ throughput does not 

depend on its propagation delay, and unlike Reno, there is no 
bias in favor of connections with long delays.  Paper [11] 
concludes that Vegas provides fair services among 
connections independent of different propagation delay. In 
asymmetric networks, Vegas keeps this fairness property 
although its total throughput is limited by min{µf, µr}.  

Fig. 5. Three Vegas connections with different RTT 
given µf=200packets/s, k=5 Bf=10  Br= 10   τf =τr =20ms 
 
With reference to Figure 5, three connections in the 

network model in Fig. 1 are started up in sequential order, 
one from H1 to H4, one from H2 to H5 (with propagation 
delay y=1ms, one from H3 to H6 with propagation delay 

x=5ms. It can be seen that the differences of the three 
connections are smaller in Vegas. 

 
However, Reno TCP has been widely deployed in the 

current Internet, to better evaluate Vegas evolution in 
practical environments, we need to study the compatibility 
between Reno connections and Vegas connections in addition 
to above compatibility among Vegas connections. Ahn [6] 
has observed that Vegas does not receive a fair share of 
bandwidth due to its conservative congestion control 
mechanism when competing with Reno connections. Mo [12] 
explained TCP Reno leaves little buffer for other connections 
because of its aggressive nature while TCP Vegas is 
conservative and tries to occupy little buffer space.  

 
In asymmetric networks, however, when one Vegas 

connection is competing with Reno connection. Vegas is so 
much biased by Reno that it is nearly not able to transmit data 
packets, as seen in Fig. 6(a), which shows the vast throughput 
difference between a Reno and a Vegas connection when they 
co-exist in the same network.  

(a) 

 
(b) 

Fig. 6. (a) packet sequence number (b) window evolution  
for co-existing one Reno and one Vegas, given 

µf=200packets/s, k=3  Bf=10 Br= 10 τf =τr =20ms 
 

 



 

Vegas uses its proactive congestion control mechanism to 
prevent self-induced packet losses. This kind of loss 
prevention is completely negative in asymmetric 
environments because Vegas conservatively maintains a 
smaller ack queue size on the reverse path other than data 
packets queue on the forward path, seeing to Fig. 6 (b). When 
one Reno connection joins in, its aggressive window growth 
will lead to many Reno acks being accumulated on the revere 
buffer regardless of ack losses. This behavior is more 
aggressive than when competition is on the forward path (i.e., 
in non-asymmetric networks), in which the window is 
increased until overflow occurs on the forward path, at which 
point Reno’s window is cut into halves. Intermittent ack loss 
in asymmetric networks will not cause Reno to throttle its 
data-sending rate in the forward direction because of the 
cumulative property of acks. It will continue to increase its 
cwnd. Of course, loss of acks of Vegas connection also 
improves the Vegas throughput to some extent. However, 
accumulating acks  at the buffer cause the observed RTT to 
increase continuously and thus lead Vegas’ to decrease its 
window quickly.  With reference to Fig. 6 (b). TCP Reno 
connection almost uses up all of the reverse buffer space in 
the bottleneck node and does not signal a congestion until 
actual forward buffer overflow occurs or timeouts are induced 
by ack loss. TCP Vegas falsely regards accumulation of acks 
on the reverse path as a signal for the onset of congestion and 
adapts its window over conservatively.  

 
In summary, from the above investigation, Reno shows 

more flexibility and adaptability than Vegas in asymmetric 
networks. This asymmetry significantly degrades Vegas 
throughput and causes incompatibility between TCP Vegas 
and Reno. Without modification of the proactive congestion 
control mechanism, Vegas would face large challenges if it 
were deployed on the Internet, which currently is quite 
heterogeneous. 

 
V. SOLUTIONS 

 
From Fig. 4, we note both Reno and Vegas do not make 

full use of the capacity in the forward path. The techniques 
(e.g. ACC, AF, SA and AF) for improving Reno’s 
performance under asymmetry have previously been studied 
in [8]. In this section, we argue that these techniques are not 
effective for handling the Vegas’ asymmetry problems. 
Afterwards, one new technique is proposed to improve the 
performance of TCP Vegas.  

 
ACC (Ack Congestion Control), which uses gateways on 

the reverse link to aid congestion control, was proposed in 
[8]. It tries to detect the impending congestion by tracking the 
average queue size over a time window in the recent past and 
then informs the receiver to dynamically vary the delayed-ack 
factor to decrease the frequency of acks on the constrained 
reverse link. However, when a single connection of TCP 
Vegas is run over asymmetric networks, the ack queue size 

fluctuates only within the narrow range of α and β on the 
reverse path. Hence, ACC is not effective for Vegas because 
the gateway on the reverse path will not detect large 
accumulation of acks.  

 
Similarly, AF (Ack Filtering) [8] is a router-based 

technique to remove some fraction (possibly all) of 
accumulated acks in the reverse buffer. Vegas’ queue size on 
the reverse link shows little changes, unlike that seen in Reno. 
Therefore, AF technique is also not applicable for Vegas. 

 
ACC and AF have reduced the asymmetric effects to 

some extent on TCP Reno, but they also bring about 
slowdown of window growth because Reno’s window 
increase is based on the number of acks not the amount of 
acks. To prevent the reduced ack frequency from adversely 
affecting the performance of TCP Reno, SA (Sender 
Adaptation) and AR (Ack Reconstruction) [8] are proposed. 
But, such ack losses do not cause any adverse effects on TCP 
Vegas because its window change is based on the difference 
of the expected rate and measured actual rate during each 
round-trip time rather than the number of acks received. 

 
We propose a non-gateway-based solution. We use the 

TCP option presented in RFC1323 that adds a timestamp to 
the TCP header. From the timestamps, we can easily compute 
actual flow rate (Actualf) on the forward path at the sender 
and accurately identify the onset of congestion path on the 
data path. This allows us to distinguish between forward and 
backward path congestions. Our modified Vegas’ congestion 
avoidance mechanism is as follows: 

 
if   ( DIFFf *BaseRTT < α ) 

/* where DIFFf = (Expected- Actualf ) */ 
cwnd = cwmd + 1   
/* increase congestion window size by one */ 

if  (DIFFf *BaseRTT < β ) 
 cwnd = cwnd-1 
else  cwnd = cwnd 

/* congestion window remains unchanged */ 
 

where DIFFf  = Expected -  Actualf .  By using DIFFf  instead 
of DIFF, in asymmetric networks, Vegas’ cwnd is able to 
converge to the optimal point in which the available 
bandwidth on the forward path is fully utilized. Table III 
shows modified Vegas obtains greatly improved results over 
Vegas. Comparing to Reno's throughput in Table I, Vegas 
also outperforms Reno in asymmetric networks by employing 
such a simple modified mechanism. 
 
 
 
 

TABLE III 
THROUGHPUT AND UTILIZATION OF TCP VEGAS AND MODIFIED 

VEGAS (µf=1.6Mbps, Bf=15 packets Br= 10 acks  τf =τr =50ms) 



 

VEGAS/ MODIFIED VEGAS 
Non-

asymmetry Asymmetry  

k=0.5 k=3 k=5 k=7 
Throughput 
(packet/s) 195.9/194 65.8/190.4 43.8/192.8 26.8/189.2 

Throughput 
ratio 1.0/1.0 0.336/0.98 0.224/0.99 0.137/0.97 

Forward link 
utilization 0.98/0.97 0.312/0.95 0.198/0.96 0.144/0.95 

 
VI. CONCLUSIONS 

 
The Internet is characterized by heterogeneity with all 

sorts of network equipment and links. Network asymmetry is 
common with technologies such as ADSL, HFC. TCP Vegas 
does not deal with network asymmetry well. 

 
Previous studies have shown that TCP Vegas outperforms 

TCP Reno. We show in this paper that Vegas throughput 
performance is significantly worse than that of Reno when 
the bottleneck is on the reverse path. In such a situation, the 
Vegas algorithm converges to the wrong operating point and 
fails to make full use of the available bandwidth on the 
forward path. Vegas congestion detection mechanism is the 
fundamental reason why it suffers in the asymmetric 
environment. In addition, Vegas also suffers a severe bias 
when Vegas and Reno connections compete with each other 
in asymmetric networks, making it difficult to deploy Vegas 
in practice because of the large installed base of Reno stack in 
the current Internet. 

 
Techniques used to address asymmetry that are effective 

for Reno are not effective for Vegas. We propose a solution 
which makes use of the timestamp option in RFC1323 to 
distinguish between congestions caused by forward and 
reverse paths.  With this method, Vegas’ congestion window 
is able to converge to the optimal point in which the available 
bandwidth on the forward path is fully utilized even when the 
backward path is congested.   
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