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Abstract— A wireless relay with multiple antennas is called
a multiple-input-multiple-output (MIMO) switch if it forms a
one-to-one mapping from the inputs (uplinks) to the outputs
(downlinks). This paper studies the case with N source stations
and N destination stations (which may be the same set), so that
the mapping is any permutation of the N inputs. Moreover, the
switching is achieved by “precode-and-forward”, i.e., the relay
precodes the received vector signal by a zero-forcing matrix and
transmits it, so that each destination station receives only its
desired signal with enhanced noise but no interference. Assuming
full channel state information is available at the switch, the design
of the zero-forcing precoder for maximizing some performance
metric based on the received signal-to-noise ratios is investigated.
The problem with two stations is completely solved in closed form
in certain cases. In other cases, heuristic algorithms are proposed
to optimize the precoder. These algorithms are shown to be near-
optimal.

Index Terms—Beamforming, fairness, maxmin, MIMO switch-
ing, relay, zero-forcing.

I. INTRODUCTION

Relays in wireless networks can extend coverage as well
as improve energy efficiency [1]. In this paper, we study
a set-up in which multiple stations communicate with each
other via a multi-antenna relay. We let transmitters transmit
simultaneously to the relay, then the relay precodes its received
signal by a zero-forcing matrix before broadcasting to the
receivers (which can be the same set as the transmitters). The
precoder is such that a desired one-to-one mapping from the
sources to the destinations is formed. Hence the relay is called
a multiple-input multiple-output (MIMO) switch.

Prior work that investigated N stations exchanging data via
a relay includes [1]–[5]. References [2]–[4] investigated the
case of “full data exchange,” in which all stations want to
broadcast their data to all other stations. A slotted system is
considered in [2] to optimize throughput, and the maximum
throughput region is evaluated. However, it does not allow
multiple packet reception at the relay. Data transmissions in
[3], [4] can be summarized as follows: in the first slot, all
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stations transmit to the relay simultaneously; subsequent slots
are devoted to downlink transmissions; in each downlink slot,
the relay multiplies the signal received in the first time slot
by a different precoder, such that at the end of all downlink
slots, all stations receive the broadcast data from all other
stations. By contrast, the framework investigated in this paper
focuses on the pure unicast case, in which station i transmits
to another station j only1. As indicated in our earlier paper [6],
this unicast framework is more general in that it can realize
any general transmission pattern (unicast, multicast, broadcast,
or a mixture of them) among the stations by scheduling a set
of different unicast transmissions.

Reference [1] studied both full data exchange and “pairwise
data exchange,” in which stations form pairs, and two stations
in a pair exchange data with each other only. It is a special case
of the unicast switching. In [1], a single-antenna relay with
different forwarding strategies was considered in Gaussian
channel. Reference [5] also studied pairwise data exchange,
but the relay adopts the decode-and-forward strategy only.
The diversity-multiplexing tradeoffs under reciprocal and non-
reciprocal channels were analyzed. Both [1] and [5] studied the
case of pairwise transmission. In this paper, we consider both
pairwise and non-pairwise data exchanges among the stations,
in which a multi-antenna relay works in precode-and-forward
manner in Rayleigh fading channel.

Using our framework, we study switching traffic among
the stations using a zero-forcing MIMO relay, where each
destination receives the desired signal with enhanced noise.
For fairness, we first restrict the precoder to yield identical
received signal-to-noise ratio (SNR) by all stations and study
how to design the precoder to maximize the throughput. We
then lift the constraint and study how to design the precoder
to maximize the minimum received SNR among all stations.
The former problem is completely solved in the special case of
two stations, assuming reciprocity between the uplink and the
downlink channels. We also derive the conditions under which
the two problems are equivalent. By evaluating the throughput
performances of the two problems, we show the throughput
gap between the two problems are trivial especially in the high

1Note that for general unicast transmission even if station i transmits to
station j, station j does not necessarily transmits to station i in the same
transmission.
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Fig. 1. Wireless MIMO switching.

signal-to-noise ratio (SNR) regime. Lastly, we claim that we
can use the former problem to approximate the latter problem:
the latter being an NP-hard problem.

The remainder of the paper is organized as follows: Section
II describes the framework of wireless MIMO switching and
introduces the zero-forcing relaying method for establishing
permutation among stations. An optimization problem requir-
ing each station with equal post-processing SNR is studied
in Section III. In Section IV, the problem of maximizing the
minimum SNR of all users is investigated. Section V presents
the simulation results. The paper is concluded by Section VI.

II. SYSTEM DESCRIPTION

Consider N stations, numbered 1, . . . , N , each with one an-
tenna, as shown in Fig. 1. The stations communicate via a relay
with N antennas and there is no direct link between any two
stations. Each transmission comprises of one uplink symbol
interval and one downlink symbol interval. The two symbol
intervals could be two slots in a time-division system, or they
could overlap in time when carried by different frequencies
in a frequency-division system. The uplink symbol interval
is for uplink transmissions from the stations to the relay;
the downlink symbol interval is for downlink transmissions
from the relay to the stations. We assume the two intervals
are of equal duration. Each transmission realizes a switching
permutation, as described below.

Consider one transmission. Let x = [x1, · · · , xN ]T be the
vector representing the signals transmitted by the stations.
Let y = [y1, · · · , yN ]T be the received signals at the relay,
and u = [u1, · · · , uN ]T be the noise vector with indepen-
dent identically distributed (i.i.d.) noise samples following
circularly-symmetric complex Gaussian (CSCG) distribution,

i.e., un ∼ Nc(0, γ2). Then

y = Hx + u, (1)

where H is the uplink channel gain matrix. The relay multi-
plies y by a precoding matrix G before relaying the signals.
In this paper, we assume that the uplink channel and downlink
channel are reciprocal, i.e., the downlink channel is HT . Thus,
the received signals at the stations in vector form are

r = HTGy + w

= HTGHx + HTGu + w,
(2)

where w is the noise vector at the receiver, with the i.i.d. noise
samples following CSCG distribution, i.e., wn ∼ Nc(0, σ2).

We refer to an N × N matrix P that has one and only
one nonzero element on each row and each column equal to
1 as a permutation matrix. Evidently, Px is a column vector
consisting of the same elements as x but permuted in a certain
order depending on P . For example, if

P =

0 0 1
1 0 0
0 1 0

 ,
then

Px = [x3, x1, x2]T .

In the case where all diagonal elements of P are zero it is
also called a derangement.

Suppose that the purpose of G is to realize a particular
permutation represented by the permutation matrix P , and to
amplify the signals coming from the stations. That is,

HTGH = AP , (3)

where A = diag{a1, · · · , aN} is an “amplification” diagonal
matrix. Each diagonal element is regarded as the gain of a
link. Accordingly, the precoder can be calculated by

G = H−TAPH−1. (4)

Let the receivers compensate for the amplification to yield
received signal:

r̂ = A−1r

= Px + v,
(5)

where the post-processing noise is expressed as

v = PH−1u + A−1w. (6)

Let us define

Ψ = I + γ2PH−1H−HP T . (7)

The covariance of the post-processing noise v is written as

E{vvH} = γ2PH−1H−HP T + σ2A−1A−H

= Ψ− I + σ2A−1A−H .
(8)

Suppose all uplink transmissions use unit power, i.e.,

E{x2i } = 1, ∀i. (9)



It is also fair to assume that the transmissions are independent,
i.e., E{xix∗j} = 0, ∀ i 6= j. The problem is to design the
precoder G to minimize the variance of the post-processing
noise subject to a power constraint on the signals transmitted
by the relay:

E{yHGHGy} ≤ q. (10)

For notational convenience, let us define an N ×N matrix
S, whose entries are

sij = ψji[(H
∗)−1H−T ]ij . (11)

The transmit power of the switch can be evaluated as

E[xHHHGHGHx + uHGHGu]

= Tr[GHHHGH ] + γ2Tr[GGH ]

= Tr[H−TA(I + γ2PH−1H−HP T )AH(H∗)−1]

= Tr[AΨAH(H∗)−1H−T ]

= aHSa.

(12)

where a = [a1, · · · , aN ]T is the gain vector with the diagonal
elements of A. The power constraint on the relay is thus
expressed as

aHSa ≤ q. (13)

We have thus established a framework for MIMO switching.
Specifically, the permutation P is a switch matrix, which
establishes a unicast pattern of transmission. We remark that
the framework can be generalized to the case where the
switch matrix does not realize a permutation, but a general
transmission pattern. For example, if there are two nonzero
elements in a column of P , then a multicast connection is
being realized within one switch matrix. We further remark
that the permutation switch matrix framework nevertheless is
rich enough to realize different traffic demands between the
users. In particular, by scheduling a set of switch matrices,
each realizing a permutation, we could satisfy general traffic
flows among the users.

We provide a simple example to illustrate an application
scenario of MIMO switching based on permutation switch
matrices. Consider a network with three stations, 1, 2, and
3. The traffic flows among them are shown in Fig. 2: station
1 wants to transmit “a” to both stations 2 and 3; station 2
wants to transmit “b” and “c” to stations 1 and 3, respectively;
station 3 wants to transmit “d” and “e” to stations 1 and 2,
respectively. Pairwise data exchange as in [1] and [5] is not
effective in this case because when the number of stations is
odd, one station will always be left out when forming pairs.
That is, when the number of stations is odd, the connectivity
pattern realized by a switch/permutation matrix does not
correspond to pairwise communication. Full data exchange is
not appropriate either, since in our example, station 2 (as well
as station 3) transmits different data to the other two stations.
Under our framework, the traffic flows among stations can be
met as shown in Fig. 3. In the first transmission, station 1
transmits “a” to station 3; station 2 transmits “b” to station 1;
station 3 transmits “e” to station 2. In the second transmission,
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Fig. 2. Traffic demand of a three stations example.
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Fig. 3. A MIMO switching established by two transmissions realizes the
traffic demand in Fig. 2.

station 1 transmits “a” to station 2; station 2 transmits “c” to
station 3; station 3 transmits “d” to station 1.

In this paper, we will present the details on how to de-
sign precoders to maximize the throughput under a fairness
requirement. To limit the scope, this paper focuses on the use
of zero forcing relaying to establish the permutation among
stations. In general, the MIMO switching system can realize
any general transmission pattern (unicast, multicast, broadcast,
or a mixture of them) among the stations by scheduling a set
of permutation switch matrices [6].

III. THE EQUAL-SNR PROBLEM

In this section, we focus on the problem of guaranteeing the
maximum equal received SNR at all stations, called the equal-
SNR problem, which was originally proposed in [6]. According
to (8), the post-processing noise power of each station is ε =
ψi− 1 + σ2

|ai|2 . Thus, the received SNR is 1
ε . Since the system

is half-duplex with uplink and downlink of equal duration, the
throughput achieved by Gaussian signaling is

ci =
1

2
log2(1 +

1

ε
), (14)

where the unit of ci is bits per symbol period.

A. Problem Formulation

Let a = [a1, · · · , aN ]T be the link gains, i.e., the diagonal
of the amplification matrix A. An optimization problem is
formulated as follows:

min
a

ε (15a)

subject to |ai|2 =
σ2

ε+ 1− ψi
, 1 ≤ i ≤ N, (15b)

aHSa ≤ q, (15c)
ε ≥ 0, (15d)



where ψi , Ψii. In [6], we only provided suboptimal so-
lutions. In this paper, we will investigate optimal solutions
and propose analytical and numerical suboptimal solutions for
MIMO switching.

Lemma 1: Every optimal solution for the optimization
problem (15) must satisfy the relay power constraint (15c)
with equality.

Proof: Let â = [â1, · · · , âN ]T be the optimal solution
for the problem (15) with the optimal objective ε̂. Suppose
âSâ < q. So there exists a positive number τ , for all |ai|2 ∈
(|âi|2 − τ, |âi|2 + τ), 1 ≤ i ≤ N ,

aHSa < q. (16)

Choose any number ξ satisfying

0 < ξ ≤ min
i
ε̂+ 1− ψi −

1
τ

2σ2 + 1
ε̂+1−ψi

, (17)

such that

max
i

σ2

ε̂+ 1− ξ − ψi
− σ2

ε̂+ 1− ψi
≤ τ

2
. (18)

Let

|â′i|2 =
σ2

σ2

|âi|2 − ξ
, 1 ≤ i ≤ N. (19)

Then

max
i
|â′i|2 − |âi|2 ≤

τ

2
, 1 ≤ i ≤ N. (20)

Thus, the power constraint holds with â′ = [â′1, · · · , â′N ]T . In
addition, it can be easily proved that the equal noise power
constraint holds with â′ by plugging (19) into this constraint,
i.e., all the noise powers are the same,

ψi − 1 +
σ2

|âi|2
− ξ = ε̂− ξ, 1 ≤ i ≤ N. (21)

However the noise power is ε̂ − ξ with â′, smaller than the
optimal objective ε̂, which proves that â is not the optimal
solution. This contradicts the assumption.

Lemma 1 is a key property to solve the optimization
problems. With the property, we could eliminate part of the
feasible solutions, i.e., the solutions with which the relay
consumes less power than q.

Proposition 1: The equal-SNR problem is feasible, i.e., its
feasible solutions always exist.

The proof can be found in [6]. In the following, we explore
the optimal or suboptimal solution of (15).

B. Optimal Solution in the Case of N = 2

We consider the case of two stations. The power constraint
of the relay in (15) can be expanded as

aHSa = s11|a1|2 + s22|a2|2 + s21a1a
∗
2 + s12a

∗
1a2, (22)

where sij is element (i, j) of S; s11 ≥ 0, s22 ≥ 0, and
s12 = s∗21. By reciprocity of the uplink and downlink channels,
s12 = s21 ∈ R+. The formula (22) can be written as

aHSa =

∣∣∣∣√s11a1 +
s12√
s11

a2

∣∣∣∣2 +

(
s22 −

s212
s11

)
|a2|2. (23)

Since the term aHSa is quadratic, the trace of the matrix is
always positive, then we have s11s22 ≥ s212.

In order to minimize the post-processing noise power ε, we
should try to maximize |a1| and |a2|. Given a value of ε, the
amplitudes |a1| and |a2| can be calculated by the equal noise
power constraint. Then we should explores the optimal phases
to minimize the relay power consumption. We see that only∣∣∣√s11a1 + s12√

s11
a2

∣∣∣2 is related to the phases of variables a1
and a2 in (23). It is easy to see the global minimum is achieved
by real-valued a1 and a2 with opposite signs. Without loss of
optimality, assume a1 ∈ R+ and a2 ∈ R−. Then the power
consumption constraint can be simplified by(√

s11a1 +
s12√
s11

a2

)2

+

(
s22 −

s212
s11

)
a22

= s11a
2
1 + 2s12a1a2 + s22a

2
2 = q.

(24)

According to the equal noise power constraint, we have

a2 = − σ√
ψ1 − ψ2 + σ2

a21

. (25)

Plugging (25) into the power constraint, we have (26).

s211ψ
2
δa

8
1 + 2ψδ[s

2
11σ

2 + s11s22σ
2−

s11qψδ − 2s212σ
2]a61 + [σ4(s11 + s22)2+

q2ψ2
δ − 2qσ2ψδ(2s11 + s22)− 4s212σ

4]a41+

[2q2σ2ψδ − 2qσ4(s11 + s22) a21 + q2σ4 = 0,

(26)

where ψδ = ψ1−ψ2. Since the equal-SNR problem is feasible
according to Proposition 1, thus, there exists solutions for (26).
In order to maximize a1 and a2, the largest real root of the
corresponding equation of (26) is the optimal solution of a1.
Since this equation is biquartic, it has an analytical solution,
which can be found in [7]. With the analytical solution we can
solve for a1, and then a2 is calculated by (25).

Alternatively, after we deduce that a1 and a2 have opposite
phases, a numerical method can be used to solve the problem
as well, which will be introduced in the following subsection.
Thus, we have solved the equal-SNR problem of (15) in the
case of N = 2.

It is not difficult to see that making the two user signals hav-
ing opposite phases minimizes the relay power consumption.
As we shall see, in case of more than two users with users
forming pairs, assigning each pair of users opposite phases is
an effective solution. Thus, in general the counter-phase setting
is effective for pairwise transmission in any problem which
needs to minimize the relay power consumption, including
the maxmin problem introduced in the following section.

We have solved the equal-SNR problem when N = 2, but
do not have any effective method to find the optimal solutions
for larger N at this moment. For practical implementation with
quick computation time, we propose suboptimal schemes as
follows.



C. Suboptimal Solution with Real Positive Gains in the Case
of N > 2

We consider a general case of either pairwise or non-
pairwise transmission for any N . First, we restrict the elements
of a to be non-negative real numbers. A numerical method is
provided to find the real-valued solution. The phases will be
optimized in the next subsection.

Recall that the equal noise power constraint in (15b), then
we have

aj =
σ√

ε+ 1− ψi
, ∀ j. (27)

According to Lemma 1, we use “=” instead of “≤” in the
power consumption constraint in (15c), i.e.,

aHSa = q, (28)

We now consider the problem of finding the real-valued
solution to (15).

Problem Definition: Given H, q, σ2, γ2 , and a desired
permutation P , solve for G and ε.

There are N equations in (27) and one equation in (28).
These equations can be used to solve aj ∀j and ε. After that
(4) can be used to find G from a. An effective numerical
method is proposed as follows.

Numerical Method Π: We can solve for ε by one-dimensional
search, which starts from max

j
ψj − 1, i.e., when the power

consumption of the relay approaches infinity. In each step of
the search, ε is increased by a small number δ. Given an ε,
we can calculate all aj’s according to the equal noise power
constraint. After that, we check if the the power constraint
holds with the temporary solution. Note that when the step size
δ is small enough, the first feasible solution when we increase
ε from max

j
ψj is the optimal solution with the minimum ε,

then we do not need to continue searching for other feasible
solutions.

D. Suboptimal Solution with Complex-valued Gains in the
Case of N > 2

We now consider the general case of complex-valued a.
With numerical method Π, the optimization of aj’s amplitudes
and phases can be decoupled. According to Proposition 1,
there exists an ε such that aHSa = q. Denote such an ε
by ε(θ1, · · · , θN ) since in each step we regard the amplitudes
as constant values, where θj = ∠aj . The problem consists of
finding

ε∗ = arg min
θ1,··· ,θN

ε(θ1, · · · , θN ). (29)

In the following we investigate how to solve the problem
(15).

Random-phase Algorithm: In (29), we note that ε is a compli-
cated nonlinear function of θj . A time-consuming exhaustive
search can be used to find the solution to (29). Instead, we
use a random-phase algorithm to reduce the complexity. We
divide the interval of [0, 2π) equally into M bins with the
values of 0, 2πM , · · · , 2(M−1)πM respectively, and we randomly

pick among them to set the the value of θj for each and
every j = 1, · · · , N . After that, we compute the corresponding
ε(θ1, · · · , θN ) by solving (15b) and (28). We perform L
trials of these random phase assignments to obtain L feasible
solutions. We choose the one using the least energy as our
estimate for ε∗. Substituting the estimated ε∗ into (27) yields
|aj | for all j; hence G. This best-out-of-L feasible solution is
in general larger than the actual optimal ε∗. In Section VI, we
will show that large gains can be achieved with only small M
and L. Moreover, increasing M and L further yields very little
improvement, suggesting that the estimated ε∗ with small M
and L is perhaps near optimal.

Counter-phase Algorithm: Recall that in case of N = 2 the
solution has a1 and a2 with opposite signs, or in general the
minimum is achieved with a1 and a2 being complex numbers
with opposite phases, i.e., θ1 = θ2 +π. For large even number
of N , consider the situation in which the transmissions are
pairwise. The stations form pairs, and two stations in a pair
exchange data with each other only. We could set a pair
of two stations with counter phases. Our simulation results
indicate that when the relative phase is π within a pair, we
can get roughly the same throughput performance by varying
the phases of different pairs. Thus, to simplify the problem
we use real numbers for the elements of a. The amplitudes
are calculated in the same way as that of the random-phase
algorithm. The only difference between the two algorithms is
how to set the phases.

IV. MAXMIN PROBLEM

In this section, we formulate another optimization problem,
i.e., the maxmin problem, in which the minimum received SNR
among all the stations is maximized. Since the requirement
of the received SNR is relaxed, the throughput performance
should be better than the equal-SNR problem.

The problem is formulated as

min
a

ε (30a)

subject to |ai|2 ≥
σ2

ε+ 1− ψi
, 1 ≤ i ≤ N, (30b)

aHSa ≤ q, (30c)
ε ≥ 0. (30d)

The only difference between the formulations of the maxmin
problem and the equal-SNR problem is (30b), i.e., we use
“inequality” instead of “equality”. First we prove a lemma of
the maxmin problem (30)2, similar to Lemma 1.

Lemma 2: Every optimal solution for the optimization
problem (30) must satisfy the relay power constraint (30c)
with equality.

Proof: We assume ã = [ã1, · · · , ãN ]T is the optimal
solution for the problem (30) with the optimal objective ε̃.

2Essentially, it is a minmax problem with respect to (w.r.t.) the post-
processing noise power. In this paper, we call it the maxmin problem w.r.t.
the received SNR to keep it consistent with the following equal-SNR problem
proposed in Section IV.



Suppose ãSã < q. So there exists a positive number τ , for
all |ai| ∈ (|ãi| − τ, |ãi|+ τ), 1 ≤ i ≤ N ,

aHSa < q. (31)

Let

|ã′i| = |ãi|+
τ

2
, 1 ≤ i ≤ N, (32)

and let

Ξi(ai) , ψi +
σ2

|ai|2
. (33)

Then

Ξi(ã
′
i) < Ξi(ãi), 1 ≤ i ≤ N. (34)

Since each Ξi(ã
′
i) is smaller than Ξi(ãi) for all i, the minmax

objective becomes smaller with the solution ã′ = [a′1, a
′
2]T .

Thus, ã is not the optimal solution, which contradicts the
assumption.

Similarly, we could eliminate the feasible solutions with
which the relay consumes less power than q based on Lemma
2. Note that the optimal solution of the maxmin problem when
N = 2 also has the opposite-sign property.

Another property is that the optimal objective of the equal-
SNR problem (15) is the upper bound of the optimal objective
of the maxmin problem (30). The solution of the equal-
SNR problem is feasible for the maxmin problem, since the
constraint of the maxmin problem is one of the constraint in
the equal-SNR problem. Thus, the optimal objective of (15)
can not be smaller than that of (30), otherwise the optimal
solution to (15) is a better solution to (30) than its original
optimal solution.

However, the maxmin problem is NP-hard, which is indi-
cated by the following proposition.

Proposition 2: The maxmin problem (30) is NP-hard in the
size of N when γ 6= 0.

Proof: First we will find an equivalent problem of (30).
Then we prove the equivalent problem is NP-hard.

Let ã be an optimal solution of (30), and the associated
optimal objective is ε̃. Note that ε̃ is the maximum noise power
for all i. Then we formulate another optimization problem as
below:

min
a

aHSa (35a)

subject to |ai|2 ≥
σ2

ε̃+ 1− ψi
, 1 ≤ i ≤ N, (35b)

ε̃ ≥ 0. (35c)

The solution ã satisfies the constraints of (35), where the
largest noise power among all i is equal to ε̃. Hence, ã is
a feasible solution of (35). According to Lemma 2, the power
consumption of the relay is ãHSã = q. Let â be an optimal
solution of (35). The power consumption of the relay can not
be larger than q, otherwise â is even worse than ã for (35). If
the power consumption of the relay âHSâ is strictly smaller
than q, then â is a feasible solution of (30), which is at least
as good as ã since the maximum noise power is not larger

TABLE I
THROUGHPUTS OF THE EQUAL-SNR PROBLEM (COUNTER-PHASE

ALGORITHM) AND THE MAXMIN PROBLEM (EXHAUSTIVE SEARCH) WHEN
N = 2; ∆ DENOTES THE VARIATIONAL RATIO WITH RESPECT TO (W.R.T.)

THE EQUAL-SNR SOLUTION OF THE COUNTER-PHASE ALGORITHM.

SNR(dB) Equal-SNR Maxmin(wst.)/∆(%) Maxmin(avg.)/∆(%)
0 0.1270 0.1271 / 0.08 0.1271 / 0.08

10 0.7990 0.7993 / 0.04 0.7994 / 0.05
20 2.1249 2.1254 / 0.02 2.1256 / 0.03
30 3.7075 3.7081 / 0.016 3.7083 / 0.02

than ε̃. That is, â is an optimal solution of (30). However, the
power consumption âHSâ < q contradicts Lemma 2. Thus,
âHSâ = q. Furthermore, there is at least one constraint in
(35) in which equality holds for â, otherwise â is a better
solution for (30). We have proved the optimal solution of (30)
is also the optimal solution of (35), vice versa. Therefore, the
two problems are equivalent.

The problem (35) is equivalent to the problem (2) in [8],
which has been proved NP-hard in general. We do not repeat
the steps in [8].

Proposition 3: If no additional noise is introduced at the
switch, then the optimal solution of (30) is such that each
station has exactly the same post-processing noise power. That
is, in this case, the two optimization problems (30) and (15)
are equivalent.

Proof: As proved in Proposition 2, the optimization
problem (35) is equivalent to (30). When γ = 0 in (35),
ψi = 1 ∀i. The objective can be rewritten as

∑
i

sii|ai|2. The

optimal solution of a is obvious, and it satisfies |ai|2 = σ2

ε̃ , ∀i.
That is, for the optimal solution of (30), each station has equal
post-processing noise power ε̃.

Note that the maxmin problem can also guarantee fairness,
but not perfect fairness. The post-processing noise powers may
vary among all the stations. Regarding the fairness issue, the
performance is mostly bottlenecked by the worst station. In
Section VI, we will evaluate both the equal-SNR problem and
the maxmin problem to show there is only a small performance
gap between one station in the equal-SNR problem and the
worst station in the maxmin problem. In addition, with the
equal-SNR setting, MIMO switching can be easily extended to
multiple transmissions, by which general transmission pattern
can be realized [6]. However, if multiple transmissions with
the maxmin setting are scheduled together, the performance of
each station may vary even more widely, which goes against
the fairness requirement. Moreover, the maxmin problem is
NP-hard, whereas requires exhaustive search, while the equal-
SNR problem is practical for implementation. For the above
reasons, we believe the equal-SNR setting is perhaps more
amenable to practical deployment.

V. NUMERICAL RESULTS

In this section, we evaluate the throughputs of different
schemes. We assume the maximum transmit power of the
relay is the same as that of the stations, i.e., q = 1, and the
noise powers at the relay and the stations are the same. Our
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Fig. 4. Throughput comparison of different equal-SNR precoding schemes
in the case of N = 2.

simulation indicates that the system throughputs are roughly
the same with different symmetric permutations. The same
result can be concluded for asymmetric permutations. Thus,
we just pick one permutation for each of them (P s and P a

as above) when presenting our results here.

P s =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 , P a =


0 0 1 0
1 0 0 0
0 0 0 1
0 1 0 0

 .
We sum up our observations under three general results, as

stated below.

General Result 1: The average throughput of the maxmin
problem is larger than that of the equal-SNR problem. How-
ever, the throughput performance of the maxmin problem
is mostly limited by the worst station. The throughput gap
between one station in the equal-SNR problem and the worst
station in the maxmin problem is small over a wide range of
SNR.

We evaluate the throughput performances when N = 2.
An interesting question is how large is the throughput gap
between (30) and (15) corresponding to their optimal noise
powers. In Table I, the gap is evaluated over a wide range of
SNR. Note that the optimal solutions of the maxmin problem
are found by exhaustive search. The simulation results indicate
that the throughputs of the maxmin problem is always larger
than that of the equal-SNR problem, but the gap decreases as
SNR becomes higher. In addition, the gap is less than 0.1%
even for SNR as low as 0 dB. Therefore, the maxmin problem
can be well approximated by the equal-SNR problem.

Although the average throughput gap is larger, it is still less
than 0.1% even for the SNR of 0 dB, as indicated in Table
I. Since we focus on the fairness issue, the former gap is the
one of interest.

We note that the trend as indicated by the simulations results
in Table I is consistent with the analytical result of Proposition
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Fig. 5. Throughput comparison of different equal-SNR precoding schemes
for pairwise switching pattern in the case of N = 4.

3. In the high SNR regime, the noise becomes negligible, and
the gap between equal-SNR and maxmin approaches to zero.

General Result 2: The optimal setting for N = 2 has the
property that the two elements of a have opposite signs. In
general, the counter-phase algorithm is an effective scheme for
pairwise transmission in the case of large even N .

As shown in Fig. 4, the scheme in [9]3 has roughly the same
average throughput as our MIMO switching scheme with real-
valued a. Henceforth we regard the MIMO switching scheme
with real-valued a as a benchmark and call it “the basic
scheme”. Despite having roughly the same average throughput
performance, the basic scheme has an advantage over the
scalar scheme in [9] in that the basic scheme guarantees fair-
ness. That is, in our basic scheme, each station has exactly the
same throughput, while the stations in the scheme in [9] may
have different throughputs. Note that all the schemes proposed
in this paper to solve the equal-SNR problem guarantee perfect
fairness as the basic scheme does.

Compared with the basic scheme, the optimal setting of
N = 2, i.e., the counter-phase algorithm proposed in Section
III.D, achieves more than 0.6 dB gain in low SNR regime.
The gain becomes smaller as the SNR increases, e.g., around
0.4 dB gain at the SNR of 10 dB. We explain why the gain
becomes trivial for high SNR as follows. When the relay noise
power is zero, |a1| = |a2|. In this case, s12 becomes 0 in
(23). Then the throughput performance does not depend on
the phase difference of a1 and a2. The opposite-sign setting
is equivalent to the identical-gain setting, i.e., the scheme in
[9]. Thus, the gain over the basic scheme becomes trivial in
the high-SNR regime.

In Fig. 5 when N = 4, the four stations form two pairs
for pairwise transmission. Our simulation results indicate that

3A similar framework as ours is investigated in [9], which focuses on
optimizing the sum rate of all stations. Therein, a suboptimal beamforming
scheme is proposed, which simply uses a positive scalar weight to control the
relay power consumption instead of our diagonal A.
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Fig. 6. Throughput comparison of different equal-SNR precoding schemes
for non-pairwise switching pattern in the case of N = 4.

the throughputs are roughly the same when we vary the phase
differences of different pairs while keeping the relative phase
difference within one pair to be π. These results are not shown
in Fig. 5 to avoid cluttering. With this result, we could set the
elements of a such that one element in each pair is positive
and the other element is negative. The counter-phase scheme
achieves 0.8 dB gain in the low SNR regime and 0.45 dB gain
in the high SNR regime.

General Result 3: For the random-phase algorithms, simula-
tion results indicate that large gains can be achieved with only
small M and L. It helps not only for the pairwise switching
pattern but also for the non-pairwise pattern.

In Fig. 4 and Fig. 5, when M = 8 and L = 10, the
random-phase scheme can achieve near optimal throughput
performance. Consider the non-pairwise transmission in Fig. 6.
Note that the counter-phase scheme can not be applied to
non-pairwise transmissions. The throughputs of the scalar
scheme [9] and the real-valued a scheme are roughly the same.
However, the random-phase scheme can still outperform the
basic scheme. For M = 8, when L = 10 the random-phase
scheme could achieve around 0.4 dB and 0.2 dB gains in the
low- and high-SNR regime, respectively; when L = 100 the
random-phase scheme could achieve around 0.6 dB and 0.3
dB gains in the low- and high-SNR regimes, respectively.

The overall implications of our analytical and simulations
results are as follows. The equal-SNR scheme, with the target
of achieving perfect fairness among the links, is also a good
approximation to the maxmin problem when the relay noise is
small. Given a symmetric switch matrix that realizes pairwise
transmissions, we could use the counter-phase algorithm or the
random-phase algorithm to identify a suitable gain vector. The
gap between the two algorithms is small, but the counter-phase
algorithm has faster execution time. Given an asymmetric
switch matrix that realizes non-pairwise transmissions, we
could use the random-phase algorithm to identify a suitable
gain vector.

VI. CONCLUSION

We have proposed a framework for wireless MIMO switch-
ing to facilitate communications among multiple wireless
stations. We focused on designing the precoders of our MIMO
switching system. Our general conclusion is that we can use
the solution of the equal-SNR problem to approximate that
of the maxmin problem, which is NP-hard. In addition, we
discover an interesting result for pairwise switch matrices i.e.,
the switch matrices are even-dimensional and symmetric. The
computation cost of finding the optimal precoders could be
high in general. However, when the switch matrix is even-
dimensional and symmetric, the computation of the precoder
can be much simplified with a “counter-phase” approach. This
approach, however, can not be applied in the case of the non-
pairwise transmissions.

We propose a random-phase algorithm that are suitable for
both pairwise and non-pairwise transmissions. This algorithm
has good performance for both cases, with a modest increase
in complexity.

There are many future directions going forward. For ex-
ample, the precoders used in our simulation studies could
be further optimized. Physical-layer network coding could
be considered to improve throughput performance [10]. In
addition, this paper has only considered switch matrices that
realize permutations in which each station transmits to one
and only one other station and receives from one and only one
other station; it will be interesting to explore switch matrices
that realize connectivities among stations that are not strictly
permutations. Finally, future work could also explore the case
where the number of antenna at the relay is not exactly N .
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