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Abstract—This paper concerns the problem of finding the
minimum-length TDMA frame of a power-controlled wire-
less network subject to traffic demands and SINR (signal-
to-interference-plus-noise ratio) constraints. We formulate the
general joint link scheduling and power control problem as an in-
teger linear programming (ILP) problem. The linear relaxation of
the ILP problem has been claimed to be NP-hard in the literature.
We present a computationally efficient heuristic algorithm, called
the Increasing Demand Greedy Scheduling (IDGS) algorithm, to
solve the general ILP problem. In addition, we propose using a
column generation (CG) method as an augmentation to IDGS to
further improve its performance. Simulation results show that
integration of IDGS and CG can achieve superior performance
in terms of both algorithm run time and solution optimality.

Index Terms—scheduling, power control, SINR constraints.

I. INTRODUCTION

Due to their unconfined nature, signals transmitted over
wireless links can mutually interfere with each other. To avoid
detrimental interference, the transmissions on wireless links in
the proximity of each other need to be properly scheduled. In
an effort to boost network capacity, much research attention
in recent years has been paid to wireless link scheduling
with power control in TDMA (Time-Division Multiple Access)
wireless networks (e.g., [1]–[6]).

This paper considers the following joint scheduling and
power control problem. Given a wireless network with fixed
topology and the traffic demands of the corresponding wireless
links, how to find the minimum-length TDMA frame, the
corresponding link transmission schedule, and the transmission
powers of the links to deliver all the traffic such that all
the transmissions are successful under the physical inter-
ference model? Minimizing frame length has the effect of
maximizing network throughput in the network. Under the
physical interference model, the signal-to-interference-plus-
noise ratio (SINR) requirements of all receivers of concurrent
transmissions must be satisfied. Through power control, we
can mitigate the interference so that more wireless links can
be scheduled to transmit simultaneously, hence decreasing the
TDMA frame length.

This work was partially supported by the Competitive Earmarked Research
Grant (Project Number 414507) established under the University Grant
Committee of the Hong Kong Special Administrative Region, China.

Our work is closely related to the previous work in [2]–
[4]. In [2], the authors examined the complexity of a similar
problem. They proved that the linear relaxation of the problem
is at least as hard as the MAX-SIR-MATCHING problem
which they claimed is a hard problem. The strict proof of
the NP-hardness of the problem is still not known. In [4],
Jian et al. formulated the joint link scheduling and power
control problem with fairness considerations. They also pro-
posed a serial linear programming rounding (SLPR) heuristic
to solve the problem. In [3], the authors formulated the
power controlled minimum frame length scheduling problem
as an mixed integer linear programming (MILP) problem.
Unfortunately, this formulation requires exponential run time
and is therefore computationally intractable. The authors also
suggested a heuristic algorithm; however, they did not present
any analysis or simulation-based evaluation of the proposed
heuristic algorithm.

In this paper, we formulate the joint link scheduling and
power control problem as an integer linear programming (ILP)
problem, and use the Perron-Frobenius eigenvalue condition (
[7], [8]) as a bridge to tie link scheduling and power control
together in an integrated manner. Such an integration can
streamline and expedite the optimization algorithm. The linear
relaxation was previously formulated as a linear programming
(LP) problem in [2]; however, no solution has been provided
to solve the general LP problem. The main difficulty in solving
both the LP and the ILP problem is that the number of
decision variables increases exponentially with the number of
links in the network. In this paper, we are able to propose
solutions to solve the general ILP problem. We first present a
simple and computational efficient heuristic algorithm, called
Increasing Demand Greedy Scheduling (IDGS) algorithm. We
also propose an algorithm based on the column generation
(CG) method to further improve the performance of IDGS
algorithm. The column generation method is a well known
technique for solving LP problem with a huge number of
variables [9], [10]. For the problem considered here, we found
that the selection of the initial basis for CG is crucial to both
solution optimality and run time efficiency. Interestingly, the
solution of IDGS constitutes a good initial basis for CG. Such
an integrated CG-IDGS algorithm can achieve superiority
in terms of both algorithm run time and optimality of the
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solution.
The rest of the paper is organized as follows. In section II,

we describe the wireless network model. The minimum frame
length scheduling problem with power control is formulated
in section III. We introduce the IDGS algorithm in section IV,
and propose the column generation method as an augmentation
to the IDGS algorithm in section V. The simulation results are
shown in section VI. Section VII concludes this paper.

II. THE NETWORK MODEL

We consider a network with several transmission links
which constitute a matching, defined as follows:

Definition 1: A matching M in a network is a set of links
such that no two links in M share the same node.

Let I denote the index set of the links in matching M .
Let {Ti : i ∈ I} and {Ri : i ∈ I} denote the set of
transmitting nodes and the set of receiving nodes of the
links in the matching M , respectively. Given a matching
M = {(T1, R1), (T2, R2), · · · , (T|M |, R|M |)}, let G(Ti, Rj)
denote the path gain from transmitting node Ti to receiving
node Rj . The average noise power at the receiving node Ri

is denoted as Ni.
Definition 2: A sub-matching of a matching M is M with

zero or more links removed.
Let S = {(Te1, Re1), (Te2, Re2), · · · , (Te|S|, Re|S|)} denote

a sub-matching of matching M , where ei ∈ I with 1 ≤ i ≤ |S|
denote the indices of the links in the sub-matching S. A sub-
matching S is said to be feasible if the SINR requirements at
each receiving node in S are satisfied.

Definition 3: A sub-matching S = {(Te1, Re1), (Te2, Re2),
· · · , (Te|S|, Re|S|)} is a feasible sub-matching if we can find a
positive power vector p = (pe1, p2, · · · , pe|S|)T such that the
SINR constraints at each receiving node in the set {Rei, 1 ≤
i ≤ |S|} are satisfied:

peiG(Tei, Rei)

Nei +
|S|∑

j=1,j �=i

pejG(Tej , Rei)

≥ γ0 (1)

where the threshold value γ0 is assumed common throughout
the network.

By Perron-Frobenius Theorem [11], the problem of deciding
whether a sub-matching is feasible or not becomes the Perron-
Frobenius eigenvalue condition of a nonnegative matrix. The
following theorem is a compilation of the theorems shown in
[7] [12].

Theorem 1: Consider the sub-matching S = {(Te1, Re1),
(Te2, Re2), · · · , (Te|S|, Re|S|)}. Define the relative-path-gain
matrix as the following |S| × |S| nonnegative matrix

B =




0 G(Te2,Re1)
G(Te1,Re1)

· · · G(Te|S|,Re1)

G(Te1,Re1)
G(Te1,Re2)
G(Te2,Re2)

0 · · · G(Te|S|,Re2)

G(Te2,Re2)

...
...

...
G(Te1,Re|S|)

G(Te|S|,Re|S|)
G(Te2,Re|S|)

G(Te|S|,Re|S|)
· · · 0


 .

(2)

Let ρ(B) denote the largest real eigenvalue of B (which is
also called Perron-Frobenius eigenvalue or spectral radius).

1) If noise can be neglected, the largest signal-to-
interference ratio (SIR) which can be achieved simulta-
neously by all the receiving nodes in the sub-matching
is given by

γ∗ =
1

ρ(B)
. (3)

The power vector p that achieves γ∗ is the Perron
eigenvector corresponding to ρ(B).

2) If noise can not be ignored, then the γ∗ of the noiseless
case is the supremum of SINR achievable at all receiving
nodes. Let N = (Ne1, · · · , Ne|S|) denote the average
noise power at the receivers. Given the required SINR
threshold γ0 < γ∗, the power vector pN which achieves
an SINR of at least γ0 at all receivers in the nonzero
noise case is given by

pN = c · p, (4)

where p = (pe1, · · · , pe|S|) is any Perron eigenvector
of matrix B, and multiplier c satisfies the following
inequality:

c ≥ max
i∈{1,...,|S|}

{
Nei

pei · G(Tei, Rei) · (γ−1
0 − γ∗−1)

}
(5)

We assume that the transmit power is unlimited and can
be any positive real number. Theorem 1 not only provides an
easy condition to check the feasibility of a sub-matching, but
also provides a solution to the transmit powers of transmitting
nodes. This can streamline and expedite the optimization
algorithm if used properly. In particular, given a sub-matching,
if the required SINR γ0 is less than or equal to 1

ρ(B) , the
transmit power vector can be set according to (4) and (5) in
the algorithm; otherwise, no matter how we tune the transmit
powers, the links in the sub-matching can not be active
simultaneously.

Definition 4: A feasible sub-matching is said to be maximal
if it is not properly contained in any other feasible sub-
matching.

III. PROBLEM FORMULATION

Consider a matching M = {(T1, R1), (T2, R2), · · · , (T|M |,
R|M |)}. We assume that there is only one single channel in the
network. The channel is divided into frames, and each frame
consists a number of time slots of the same fixed duration.
Let fi denote the traffic demand on link (Ti, Ri), 1 ≤ i ≤
|M |, which is the number of time slots to be assigned to it in
each frame. Our objective is to find a minimum-length TDMA
frame (the smallest number of time slots) such that the links
which are scheduled to transmit simultaneously form a feasible
sub-matching, and the traffic demand on each link is satisfied
(i.e., link (Ti, Ri) is scheduled for at least fi time slots in the
frame).
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We introduce the percentage cost penalty to describe the
penalty of different algorithms compared to the optimal so-
lution. Let L denote the frame length, where L is the total
number of time slots in a frame. Let Lopt denote the optimal
value of the frame length. The percentage cost penalty is
defined as

P =
L − Lopt

Lopt
× 100%. (6)

Let E = {Ej : 1 ≤ j ≤ |E|} be the set of all the feasible
sub-matchings of matching {(T1, R1), (T2, R2), · · · , (T|M |,
R|M |)}. The number of time slots allocated to each feasible
sub-matching Ej , 1 ≤ j ≤ |E|, is denoted as a non-negative
integer variable uj . We introduce an |M | × |E| incidence
matrix Q with elements qij such that

qij =

{
1, if link i is in the feasible sub-matching Ej ,

0, otherwise.

Each column in Q indicates a feasible sub-matching which
must satisfy the SINR constraints. Each column in Q corre-
sponds to a relative-path-gain matrix defined in Theorem 1.
Let Qj , 1 ≤ j ≤ |E|, denote the jth column in matrix Q
and BQj

denote the relative-path-gain matrix corresponding to
the column Qj , respectively. Based on Theorem 1, the SINR
constraints become the Perron-Frobenius eigenvalue condition.
For each column in Q, the following inequality must be
satisfied:

1
ρ

(
BQj

) ≥ γ0, 1 ≤ j ≤ |E| . (7)

The minimum-frame-length scheduling problem with power
control which satisfies the traffic demands and SINR con-
straints can be formulated as an integer linear programming
(ILP) problem, as follows:

min eT u (8)

s.t. Qu ≥ f

1
ρ

(
BQj

) ≥ γ0, 1 ≤ j ≤ |E|

u ≥ 0
int. u

where e represents a vector whose components are all equal
to 1 and u = (u1, u2, · · · , u|E|)T , f = (f1, f2, · · · , f|M |)T .

The difficulty of the above problem is twofold. First, given
a matching, there is no known polynomial-time algorithm for
finding all the feasible sub-matchings or finding all the max-
imal feasible sub-matchings. Second, even if all the feasible
sub-matchings could be found, their number |E| can be huge
and in general increases exponentially with the number of
links in the network [2]. This means that even if we ignored
the integer constraint so that the problem becomes a linear
programming (LP) problem, the dimension of the LP could be
exponentially large. This motivates us to propose the heuristic
algorithm introduced in the next section.

IV. HEURISTIC SCHEDULING ALGORITHM

In this section, we present our computationally efficient
heuristic algorithm, called the Increasing Demand Greedy
Scheduling (IDGS) algorithm, to solve the ILP problem de-
scribed in section III. The input of the IDGS algorithm is the
relative-path-gain matrix B and the traffic demand vector f of
the matching M . The output of the IDGS algorithm is the set
of feasible sub-matchings E, the set of non-negative integers
u, and the set of transmission power vectors pN .

Algorithm 1 IDGS Algorithm
Require: matrix B, demand vector f

1: Sort the links in increasing order based on the traffic
demands {f1, f2, · · · , f|M |}.

2: Initialize F1 :=all the links in the matching
3: while Fi �= ∅ do
4: j := |Fi|
5: while j ≥ 1 do
6: Set Ei := {li1}
7: Ei := Ei ∪ {lij}
8: if 1

ρ(BEi)
< γ0 then

9: Ei := Ei \ {lij}
10: end if
11: j := j − 1
12: end while
13: ui := fi1

14: pN i := c · pi

15: Fi+1 := Fi

16: for each link lij ∈ Fi do
17: if lij ∈ Ei then
18: fi+1,j := fij − ui

19: if fi+1,j ≤ 0 then
20: Fi+1 := Fi+1 \ {lij}
21: end if
22: end if
23: end for
24: i := i + 1
25: end while

In the first step, the links to be scheduled are sorted
according to the traffic demands in increasing order. The task
of the ith iteration of the outer while-loop (from line 3 to line
25) is to compute one feasible sub-matching (Ei), the number
of time slots allocated to the feasible sub-matching (ui), and
the corresponding transmission power vector (pNi). Let Fi be
the set of remaining links to be scheduled in the ith iteration
of the outer while-loop. Initially, the set F1 contains all links.
Let fi denote the demand vector of set Fi.

The task of the inner while-loop (from line 5 to line 12) is
to compose the ith feasible sub-matching Ei. The main idea
of forming the feasible sub-matching Ei is that we want to
allocate the minimum number of time slots to Ei, and Ei

should contain the links with larger traffic demands. Let lij
and fij denote the jth link in set Fi and the remaining traffic
demand of link lij , respectively. We first put link li1 that has

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2008 proceedings.

3068

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on August 26, 2009 at 22:57 from IEEE Xplore.  Restrictions apply. 



the minimum traffic demand among the set Fi into Ei. Then
we start from the last link which has the largest traffic demand
within the set Fi and add one link to the set Ei at a time. The
link added to the set Ei must satisfy the condition that the
link and all the links already in the Ei form a feasible sub-
matching. If adding a link will cause the Perron-Frobenius
condition to be violated, we move on to the next link without
adding it.

After the set Ei is formed, we allocate ui = fi1 time slots
to set Ei. The transmission power vector of the links in set
Ei equals c ·pi, where pi is any Perron eigenvector of matrix
BEi

and c satisfies the inequality (5) shown in Theorem 1.
The task of the for-loop (from line 16 to line 13) is to form

the set Fi+1 (the links to be scheduled in the next iteration)
and the updated traffic demand vector fi+1. The traffic demand
of each link lij in the set Ei is subtracted by ui and the traffic
demands of the other links remain the same. The set Fi+1 is
formed by removing the links whose updated traffic demands
are less than or equal to 0 from the set Fi.

IDGS continues until all the links are removed from the
link list. In each iteration of the outer while-loop, at least the
traffic demand of one link will be satisfied entirely. Thus the
maximum number of iterations required is no longer than the
number of links in the matching.

IDGS is computationally efficient and also gives a good
solution to the general ILP problem. Presentation of the
simulation results supporting this claim is deferred to section
VI. Next, we present a column generation (CG) method, which
when combined with IDGS, yields even better performance.

V. A COLUMN GENERATION METHOD

As shown in section III, the number of feasible sub-
matchings can be huge, so that forming the coefficient matrix
Q in full is impractical. We now introduce a column generation
(CG) solution which uses the (revised) simplex method to
generate columns of Q as needed rather than in advance.

We remove the integer restrictions in the last row of
(8) and use CG to solve the linear programming problem.
CG decomposes the original LP problem into two different
problems, a restricted master problem and a sub-problem. The
restricted master problem is similar to the original LP problem
except that only a subset E′ ⊆ E is considered. Let Q′ denote
the incidence matrix of E′. The restricted master problem is
as follows:

min eT u (9)

s.t. Q′u ≥ f

1

ρ
(
BQ′

j

) ≥ γ0, 1 ≤ j ≤ |E′|

u ≥ 0

An initial subset of feasible sub-matchings can be easily
formed. We may let the ith sub-matching consist of link li
only (1 ≤ i ≤ |M |) and none of the other links. Since there is
only one link in each sub-matching and the transmission power
is unlimited, the SNR constraints can always be satisfied.

All these |M | sub-matchings are feasible sub-matchings. The
corresponding initial matrix is an identity matrix. Another
possible initial subset is the feasible sub-matchings found by
IDGS described in section IV. For our problem, the selection
of the initial subset in the column generation algorithm is
crucial in terms of both the algorithm performance and the
algorithm run time. (Please refer to the simulation results in
section VI.)

First we solve the restricted master problem (9). This gives
a basis matrix D and an associated basic feasible solution
ū. Because the cost coefficient of every variable in the
objective function is unity, the simplex multipliers become
ωT = eD

T D−1, where every component of the vector eD

is equal to 1. As known from linear programming [9], the
reduced costs are defined by:

σj = ej − ωT Qj = 1 − ωT Qj (10)

where Qj denotes the column which is in the matrix Q but
not in matrix Q′. Instead of computing the reduced costs for
all the columns which are not in the matrix Q′ in the simplex
method, we consider the problem of minimizing the reduced
cost σj = 1−ωT Qj . This is equivalent to maximizing ωT Qj .
If the maximum is less than or equal to 1, all the reduced costs
are nonnegative and the current basic feasible solution ū is the
optimal solution of the original LP problem; otherwise, the
reduced cost is negative and the corresponding column enters
the matrix Q′.

The sub-problem of finding a feasible sub-matching that
maximizes ωT Qj can be formulated as a combinatorial opti-
mization problem:

max

|M |∑
i=1

ωiyi (11)

s.t.
1

ρ (By)
≥ γ0 1 ≤ i ≤ |M | (12)

yi ∈ {0, 1} 1 ≤ i ≤ |M |
where ωi is the ith component of the simplex multipliers and
yi is a binary variable that is 1 if link li is active, and 0
otherwise.

The sub-problem itself is a difficult one. The main difficulty
lies in the first constraint in (12), the SINR constraint. We pro-
pose the following heuristic algorithm, called the Combined
Sum Criterion Selection (CSCS) algorithm, to solve the sub-
problem. The idea is to remove one link at one time until
the required γ0 is satisfied in the remaining active links. The
CSCS algorithm is as follows:

1) First solve the problem of finding a sub-matching that

maximizes
|M |∑
i=1

ωiyi without the SINR constraints (12).

This step is very easy. We set yi = 1 if ωi ≥ 0 and set
yi = 0 if ωi < 0.

2) Compute the best γ∗
y = 1

ρ(By) corresponding to the
sub-matching y obtained in step one. If γ∗

y ≥ γ0, the
sub-matching y is a feasible sub-matching and the sub-
problem is solved; otherwise proceed to step 3. The
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TABLE I
SIMULATION RESULTS (THE NETWORK CONTAINS 15 LINKS)

Algorithms
Average number

of time slots
Average percentage

cost penalty

Number of incidences
in which optimal

solution is obtained

Number of incidences in
which percentage cost
penalty is within 10%

Average run
time (second)

Exhaustive search 42.684 0% 1000 1000 4.2985

CG-identity 59.463 39.19% 96 198 0.076194

IDGS 48.328 13.69% 173 457 0.014935

CG-IDGS 45.828 7.60% 437 692 0.048009

transmission power vector of feasible sub-matching y is
c ·py , where py is the Perron eigenvector of the relative-
path-gain matrix By and c satisfies the inequality (5)
given in Theorem 1.

3) Remove one link from the active links. Set yi = 0 for
which the maximum of the row sums and the column
sums of the relative-path-gain matrix By is maximized
(combined sum criterion):

max
i




∑
j

(By)ij ,
∑

k

(By)ki


 (13)

Go to step 2.

The combined sum criterion comes from [8] which inves-
tigates the power control problem in cellular systems. The
combined sum criterion seeks to maximize the lower bound
of the γ∗ in the next iteration.

The feasible sub-matchings found in the column generation
method give a good subset of “interesting” feasible sub-
matchings which can then be used to find an integer solution.
Problem (8) becomes the following integer linear program-
ming problem:

min eT u (14)

s.t. Qcu ≥ f

u ≥ 0
int. u

where Qc contains only the set of feasible sub-matchings
found in column generation. Since all the columns in Qc are
feasible sub-matchings, the SINR constraints can be removed.
Therefore, we can use the well-known methods (e.g., branch
and bound) for solving the linear integer programming prob-
lem to solve the above problem.

VI. SIMULATION RESULTS

In this section, we carry out simulations to evaluate the
performances of the IDGS , CG initialized with the identity
matrix (CG-identity), and CG initialized with the solution of
IDGS (CG-IDGS). For comparison purposes, we also obtain
the optimal solution by exhaustive search.

In our simulations, the locations of the transmitting nodes
are uniformly distributed in a square area of 1000m×1000m.
The distance of each link ranges from 100 to 200 meters. The
location of each receiving node is randomly chosen within a
radius of 200 meters and outside a radius of 100 meters from
the corresponding transmitting node. The large-scale path loss
model with the typical path loss exponent of 4 is assumed. The
required SINR threshold γ0 = 10dB. The traffic demand of
each link is a discrete random variable with 10 equally likely
values [1, 3, 5, · · · , 19]. The expected value is 10 time slots.
The number of links in the network is no more than 17. When
the number of links is beyond 17, the exponentially increasing
run time of the exhaustive search for benchmarking becomes
prohibitive. For each given number of links in the network, we
present the results averaged over 1000 instances. We conduct
our simulations on a computer with a 1.86 GHz CPU and 1
GB of RAM.
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Fig. 1. Average Percentage Cost Penalty

The simulation results of the network containing 15 links
are shown in Table I. Figure 1 shows the performance of
average percentage cost penalty of the three algorithms as a
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function of the number of links in the network. We see that
the performance of CG-identity is the worst among the three
algorithms. For example, when there are 15 links, the average
percentage cost penalty is 39.19% which is very high. Among
the 1000 instances, only 96 reach the optimal solution. The av-
erage percentage cost penalty of CG-identity increases quickly
with number of links (i.e., network density). In general, CG-
identity can not ensure acceptable performance. The reason
is that starting from the identity matrix as the initial solution,
several very desirable feasible sub-matchings can not be found
in the subsequent iterations of column generation. IDGS has
better performance than CG-identity. The number of instances
reaching the optimal solution increases to 173 and the average
percentage cost penalty increases much more slowly with the
number of links. CG-IDGS has the best performance among
the three algorithms. The number of instances reaching the
optimal solution is 437, more than twice and five times over
those in IDGS and CG-identity, respectively. Also, the average
percentage cost penalty increases more slowly with number of
links in CG-IDGS.
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Fig. 2. Average Run Time

From the last column of Table I, we can see that the run
time of all the three algorithms is very small compared with
the run time of exhaustive search. Figure 2 plots run time
versus number of links. Compared with the exponentially
increasing run time of exhaustive search, the run times of
the three algorithms increase much more slowly. The simplest
algorithm, IDGS, consumes the shortest amount of time. CG-
IDGS consumes a little more time. The reason for this small
increase is that when starting with the feasible sub-matchings
found in IDGS, CG terminates quickly after a few iterations.
So much so that, CG-IDGS outperforms CG-identity in terms
of run time. In short, CG-IDGS is an attractive algorithm in
that superior solutions can be obtained with good run time
performance.

VII. CONCLUSION

We have considered the minimum-frame-length scheduling
problem in TDMA wireless networks with power control, sub-
ject to traffic demands and SINR constraints. We formulated
the general joint link scheduling and power control problem
as an ILP problem. The feasibility of a set of links under the
SINR constraints can be checked by Perron-Frobenius eigen-
value condition. This turns out to be a rather useful condition
for expediting the optimization algorithm. Accordingly, we
have integrated the Perron-Frobenius eigenvalue condition into
both the problem formulation and the proposed algorithms to
improve their efficiency. We have presented a simple heuristic
algorithm, Increasing Demand Greedy Scheduling (IDGS), to
solve the general ILP problem. We have demonstrated that
IDGS is computationally efficient and provides a good solution
to the ILP problem. We further proposed an algorithm based
on the column generation (CG) method. Although CG does not
work well when it is initialized with an identity matrix initial
solution (CG-identity), it works well and further improves the
performance of IDGS if it is initialized with the IDGS solution
(CG-IDGS). We showed that when the number of links is no
more than 17 (in which the exponentially increasing run time
of the exhaustive search for benchmarking can be afforded),
the performance of the CG-IDGS is comparable to that of the
optimal solution obtained by exhaustive search. In particular,
simulation results show that the average cost penalty of the
CG-IDGS relative to the optimal cost is below 10%, with an
average run time less than 0.1 second.

In this paper, we have focused on wireless links that form
a matching. We can easily extend the IDGS and the column
generation algorithms for general wireless networks in which
the links do not necessarily form a matching by redefining
several elements of the relative-path-gain matrix B. Specifi-
cally, for the general setting, we set the element Bij = ∞
if link i �= j and the transmitters and the receivers of link i
and link j are not distinct, i.e., link i and link j have at least
one node in common. The other elements of matrix B remain
the same as defined in (2). After redefining the relative-path-
gain matrix B, the links in the general network which satisfy
the SINR constraints, i.e., the 1

ρ(B) is greater than or equal
to the required SINR γ0, will automatically form a matching.
In fact, instead of setting Bij = ∞, we could set Bij equal
to any value which is great than 1

γ0
. Since the relative-path-

gain matrix B is the input of the IDGS and column generation
algorithms, there is no need to modify these two algorithms
at all to schedule links in the general wireless network. We
will discuss the detailed results of general networks in a future
paper.
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