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Abstract—This paper studies the problem of finding a
minimum-length schedule of a power-controlled wireless network
subject to traffic demands and SINR (signal-to-interference-
plus-noise ratio) constraints. We propose a column generation
based algorithm that finds the optimal schedules and transmit
powers. The column generation method decomposes a complex
linear optimization problem into a restricted master problem
and a pricing problem. We develop a new formulation of the
pricing problem using the Perron-Frobenius eigenvalue condi-
tion, which enables us to integrate link scheduling with power
control in a single framework. This new formulation reduces
the complexity of the pricing problem, and thus improves the
overall efficiency of the column generation method significantly
– for example, the average runtime is reduced by 99.86% in 18-
link networks compared with the traditional column generation
method. Furthermore, we propose a branch-and-price method
that combines column generation with the branch-and-bound
technique to tackle the integer constraints on time slot allocation.
We develop a new branching rule in the branch-and-price method
that maintains the size of the pricing problem after each branch-
ing. Our branch-and-price method can obtain optimal integer
solutions efficiently – for example, the average runtime is reduced
by 99.72% in 18-link networks compared with the traditional
branch-and-price method. We further suggest efficient heuristic
algorithms based on the structure of the optimal algorithms.
Simulation results show that the heuristic algorithms can reach
solutions within 10% of optimality for networks with less than
30 links.

Index Terms—Scheduling, power control, SINR constraints,
column generation, branch-and-price.

I. INTRODUCTION

TO avoid detrimental interference and boost throughputs,
it is important to properly schedule the wireless links

in the proximity of each other and control their transmission
powers. In this paper, we investigate the joint scheduling and
power control problem within the context of Spatial-reuse
Time Division Multiple Access (STDMA) wireless networks.
Consider a set of links with pre-allocated traffic demands (i.e.,
active time slots needed within each frame). STDMA schedul-
ing assigns each link a set of time slots within the frame to
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meet its traffic demand. The system objective is to minimize
the needed time slots such that all links’ traffic demands are
satisfied. We adopt the physical interference model [1], in
which a receiver decodes its signal successfully if the SINR is
above a certain threshold. Here the interference is the sum of
the powers it receives from all concurrent transmitters other
than its own. A good power control algorithm can improve
the system performance. Through careful choices of transmit
powers, we can mitigate the interference so that more wireless
links can transmit simultaneously and thus require less total
time needed in a frame.

STDMA scheduling has been extensively studied since
1980s (e.g., [2]–[9]). Only recent years have witnessed much
research effort on cross-layer study of joint scheduling and
power control (e.g., [10]–[17]). In [10], the authors proposed
a simple heuristic of two alternating phases solution: A central
controller first selects a set of valid links in a greedy way that
eliminates strong interference in phase one, and then applies
the power control algorithm based on [18] to find the minimal
power solutions in phase two. Reference [16] formulated the
joint scheduling and power control problem with fairness
considerations and solved it using a serial linear program-
ming rounding heuristic algorithm. However, it is difficult to
evaluate the performance of these heuristic algorithms when
optimal solutions are not known. Reference [14] examined the
complexity of the joint power control and scheduling problem.
The authors assumed that the allocated time to each link can
be any real number and formulated the problem as a linear
programming (LP) problem. They proved that this problem is
at least as hard as the MAX-SIR-MATCHING problem, which
they claimed is very difficult. The main difficulty in the LP
problem is that the possible combinations of simultaneously
active links grow exponentially with the number of links in
the network. As a result, the LP problem has an exponential
number of variables and is computationally intractable.

In this paper, we propose a column generation method to
alleviate the above problem so that the optimal solutions could
be found efficiently. The column generation method decom-
poses the original problem into a master problem and a pricing
problem. In each iteration, the pricing problem finds a better
set of simultaneously active links only if the objective function
can be further improved. Furthermore, we consider the realistic
case where the number of time slots allocated to a link should
be an integer instead of any real number. Building upon the
column generation method, we further propose a branch-and-
price method that combines the column generation method
with the branch-and-bound method to provide optimal integer
solutions. We note that column generation has previously been
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considered in [11]–[13]. In this work, we significantly improve
the efficiency of both the column generation and the branch-
and-price methods by exploiting the special structure of our
problem. Our key contributions are as follows:

1) Simplif ication of the Pricing Problem : We integrate the
Perron-Frobenius eigenvalue condition ([18], [19]) into
the formulation of the pricing problem. This integration
eliminates the continuous variables and also reduces the
number of the constraints, and thus reduces the compu-
tational complexity of solving the pricing problem.

2) Eff icient Algorithm to Solve the Pricing Problem: We
propose a Smart Enumerating (SE) algorithm that solves
the pricing problem to optimality. Instead of relegating
the pricing problem to a general optimization solver, we
design smart search policies that eliminate the infeasible
solutions and the non-optimal solutions in an efficient
way.

3) New Branching Rule that Controls the Pricing Problem
Size: We develop a new branching rule in the branch-
and-price method. Our new branching rule maintains the
size of the pricing problem after each branching, and
thus improves the overall efficiency of the branch-and-
price method.

In recent works using column generation method (e.g.,
[11]–[13]) , the pricing problem is formulated as a Mixed
Integer Programming problem that contains both continuous
and integer variables. Due to its high complexity, most of the
runtime of the column generation method is spent on solving
the pricing problem to optimality. Our new pricing problem
formulation, together with the SE algorithm, reduces the run-
time spent on the pricing problem. As a result, the efficiency of
the column generation method can be significantly improved.
Take 18-link networks as an example. Simulations show that
using our new pricing problem formulation and the proposed
SE algorithm, it takes only 2.031 seconds on average for the
column generation method to find optimal solutions. However,
using the column generation approach in [11]–[13], an average
runtime of 1461.3 seconds is required. Our column generation
method reduces the runtime by 99.86%.

For cases where reaching a close to optimal solution in a
short time is more attractive than reaching the precise optimal
solution, we propose a fast heuristic algorithm, Combined Sum
Criterion Removal (CSCR), for the pricing problem. If we
just use the CSCR algorithm to solve the pricing problem,
this makes both the column generation and the branch-and-
price methods fast heuristic algorithms. Simulations show that
these heuristic algorithms outperform the ISPA (Integrated
Scheduling and Power control Algorithm) proposed in [20],
a state-of-the-art heuristic algorithm for this problem in the
existing literature.

The rest of this paper is organized as follows. In section II,
we describe the wireless network model assumed. The joint
power control and scheduling problem is formulated in section
III. In section IV, we introduce the column generation method
with emphasis on the new formulation of the pricing problem,
and propose the Smart Enumerating (SE) algorithm to solve
the pricing problem to optimality. In section V, we introduce
the branch-and-price method and propose the new branching
rule. In section VI, we discuss the column generation and

branch-and-price based heuristics. The simulation results are
shown in section VII. Section VIII concludes this paper.

II. THE NETWORK MODEL

A wireless network consists of a set of directed links ℒ =
{𝑙𝑖, 1 ≤ 𝑖 ≤ ∣ℒ∣} with positive traffic demands on all links.
Let 𝑇𝑖 and 𝑅𝑖 denote the transmitter and receiver of link 𝑙𝑖,
respectively. Transmitter 𝑇𝑖 transmits with power 𝑝𝑖, which is
upper-bounded by 𝑝𝑖max.

In general, the transmitter set 𝒯 = {𝑇𝑖, 1 ≤ 𝑖 ≤ ∣ℒ∣} and
the receiver set ℛ = {𝑅𝑖, 1 ≤ 𝑖 ≤ ∣ℒ∣} can have nodes
in common. We can use an ∣ℒ∣ × ∣ℒ∣ incidence matrix A to
denote whether two links 𝑙𝑖, 𝑙𝑗 ∈ ℒ share a common node or
not, where the element 𝑎𝑖𝑗 of A is

𝑎𝑖𝑗 =

⎧⎨
⎩
1, if 𝑖 ∕= 𝑗 and nodes 𝑇𝑖, 𝑅𝑖, 𝑇𝑗 , 𝑅𝑗

have at least one node in common,

0, otherwise.

We assume a simple receiver structure in which the follow-
ing primary constraints must be satisfied:

Def inition 1 (Primary constraints): A node can not trans-
mit and receive simultaneously. Furthermore, a node is not
allowed to transmit to or receive from more than one node
simultaneously.

A set of links which satisfies the primary constraints con-
stitutes a matching:

Def inition 2 (Matching): A matching ℳ ⊆ ℒ is a subset
of the link set ℒ such that no two links inℳ share the same
node, i.e., if links 𝑙𝑖, 𝑙𝑗 ∈ ℳ, then 𝑎𝑖𝑗 = 0.

Besides the primary constraints, wireless links that are
simultaneously active should satisfy the signal to interference-
plus-noise ratio (SINR) constraints at the receivers1. A match-
ing that satisfies the SINR constraints is a feasible matching:

Def inition 3 (Feasible matching): A matching ℳ is fea-
sible if there exists a positive power vector p = (𝑝𝑖 :
∀𝑖 𝑠.𝑡. 𝑙𝑖 ∈ ℳ)𝑇 such that the SINR constraints at the

receivers are satisfied, i.e.,

𝑝𝑖𝐺(𝑇𝑖, 𝑅𝑖)

𝜂𝑖 +
∑

𝑙𝑗∈ℳ,𝑗 ∕=𝑖
𝑝𝑗𝐺(𝑇𝑗 , 𝑅𝑖)

≥ 𝛾𝑖, ∀𝑙𝑖 ∈ℳ, (1)

where 𝐺(𝑇𝑗 , 𝑅𝑖) is the channel gain from 𝑇𝑗 to 𝑅𝑖, 𝜂𝑖 is
the average noise power at 𝑅𝑖, and 𝛾𝑖 is the link-dependent
threshold depending on various considerations such as the
desired bit error rate and the modulation schemes.

Proposition 1 ([21]): Any subset of a feasible matching is
also feasible. Any superset of an infeasible matching is also
infeasible.

Def inition 4 (Maximal feasible matching): A feasible
matching is maximal if it is not a strict subset of any other
feasible matching.

The key notations of this paper are listed in Table I. We use
lowercase boldface symbols, e.g., p, to denote vectors, with
𝑝𝑖 denoting the 𝑖th component. We use uppercase boldface
symbols, e.g., Q, to denote matrices, with 𝑞𝑖𝑗 denoting the
(𝑖, 𝑗)th component and 𝑄𝑗 denoting the 𝑗th column. We
use calligraphic symbols, e.g., ℒ, to denote sets. The vector

1Here we assume fixed coding and modulation schemes.
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TABLE I
KEY NOTATIONS

Notation Physical Meaning

ℒ the set of all links

ℳ matching (Definition 2)

𝒯 the set of transmitters

ℛ the set of receivers

ℰ the set of all the feasible matchings
(Definition 3)

𝐺(𝑇𝑖, 𝑅𝑗) the channel gain between nodes 𝑇𝑖 and 𝑅𝑗

𝑝𝑖 (in vector p) transmit power of link 𝑙𝑖

𝛾𝑖 (in vector 𝜸) SINR requirement of link 𝑙𝑖

𝜂𝑖 the average noise power of link 𝑙𝑖
𝑣𝑖 = 𝛾𝑖𝜂𝑖/𝐺(𝑇𝑖, 𝑅𝑖)

(in vector v)
the normalized noise power of link 𝑙𝑖

B relative channel gain matrix

𝜌(B) the Perron-Frobenius eigenvalue of matrix B

D(⋅) diagonal matrix operator

Q
incidence matrix denoting all the feasible

matchings

𝑈 fixed frame length

𝑊 the airtime length to satisfy the traffic

𝑓𝑖 (in vector f ) the traffic demand of link 𝑙𝑖

𝑢𝑘 (in vector u) the airtime allocated to feasible matching ℰ𝑘

inequalities denoted by ર and ⪯ are component-wise inequal-
ities.

III. PROBLEM FORMULATION

We consider a time-slotted system with a fixed frame
length 𝑈 . Each link in set ℒ has a fixed traffic demand in
a frame, representing a fixed average rate requirement from
the corresponding upper-layer applications. Each link 𝑙𝑖 ∈ ℒ
requires a throughput 𝑡ℎ𝑖. Let 𝑓𝑖 denote the required active
airtime of link 𝑙𝑖 in a frame. The achievable data rate 𝑟𝑖 per
unit time of link 𝑙𝑖 depends on the SINR threshold 𝛾𝑖 at its
receiver 𝑅𝑖. The relation between 𝑡ℎ𝑖 and 𝑓𝑖 is 𝑡ℎ𝑖 = 𝑟𝑖

𝑓𝑖
𝑈 .

Therefore, the throughput demand 𝑡ℎ𝑖 is equal to the active
airtime demand 𝑓𝑖 = 𝑡ℎ𝑖⋅𝑈

𝑟𝑖
in each frame.

Our focus is to minimize the length of airtime 𝑊 needed
to satisfy all the traffic demands in each frame, so that the
maximum airtime 𝑈 −𝑊 can be left for other traffic (e.g.,
best-effort traffic). A minimum value of 𝑊 greater than 𝑈
indicates that the total traffic demands (and the corresponding
average rate requirements) exceed the system capacity and can
not be satisfied.

Now let us formulate the optimization problem formally.
Let ℰ = {ℰ𝑘 : 1 ≤ 𝑘 ≤ ∣ℰ∣} denote the set of all the feasible
matchings of link set ℒ. The transmit power vector of the
feasible matching ℰ𝑘 is denoted by p𝑘. We can also use an
∣ℒ∣×∣ℰ∣ incidence matrix Q to represent ℰ , where the element
𝑞𝑖𝑘 of Q is

𝑞𝑖𝑘 =

{
1, if link 𝑙𝑖 is in the feasible matching ℰ𝑘,
0, otherwise.

We denote the 𝑘th column in Q by 𝑄𝑘, 1 ≤ 𝑘 ≤ ∣ℰ∣, which
represents a feasible matching ℰ𝑘.

Our objective is to minimize the airtime length 𝑊 required.
If the incidence matrix Q and all the associated transmit power

vectors can be obtained a priori, the joint power control and
minimum-airtime scheduling problem can be formulated as
follows:

minimize 𝑊 = e𝑇u

subject to Qu ર f ,

variables u ર 0,

(P1)

where e is the ∣ℰ∣ × 1 all-one vector and f =
(𝑓1, 𝑓2, ⋅ ⋅ ⋅ , 𝑓∣ℒ∣)𝑇 . The variables u = (𝑢𝑘 : 1 ≤ 𝑘 ≤ ∣ℰ∣)𝑇
indicate the chosen feasible matchings to be scheduled in
the frame. In particular, each variable 𝑢𝑘 denotes the airtime
allocated to the feasible matching ℰ𝑘 in the frame.

Problem (P1) is a Linear Program (LP). In a real wireless
system, a slot is the smallest time unit in the time allocation
process. Thus, the joint power control and scheduling problem
should be formulated with additional integer constraints on
the variables u = (𝑢𝑘 : 1 ≤ 𝑘 ≤ ∣ℰ∣)𝑇 . We denote (P1) with
integer constraints on u by (P1)INT, which is an Integer Linear
Program (ILP).

There are two difficulties in (P1) and (P1)INT. First, there
is no known polynomial-time algorithm for finding all the
feasible matchings and the corresponding transmit power
vectors. Thus, completely characterizing the coefficient matrix
Q in advance is difficult. Second, even if all the feasible
matchings could be found, the size of the set ℰ can be huge
and in general increases exponentially with the number of
links [14]. This means that (P1) and (P1)INT can be too
large to be tackled directly. We circumvent these difficulties
using iterative methods that generate feasible matchings on-
the-fly rather than a priori. Specifically, we propose a column
generation method to solve (P1). Building upon it, we use a
branch-and-price method to solve (P1)INT.

The column generation method and the branch-and-price
method are efficient techniques for solving large LP and ILP
that have (exponentially) many variables. They have been
applied to a wide variety of problems [22]. However, there
are two fundamental difficulties when applying the column
generation and the branch-and-price methods to solve (P1)
and (P1)INT:

1) In the column generation method, the pricing problem
contains both binary variables and continuous variables.
In particular, the pricing problem is a Mixed-Integer
Programming (MIP) which is difficult to solve.

2) In the branch-and-price method, applying the conven-
tional branching rule that branches on a single variable
causes a new constraint to be added at each branch. As
a result, a dual variable is added to the corresponding
pricing problem. The pricing problem becomes progres-
sively more complex as we go down the branching tree.

The following sections go into the details of the column
generation and branch-and-price methods. In particular, we
will present details on how the above difficulties arise and
how we can overcome them.

IV. COLUMN GENERATION METHOD

In this section, we propose a Column Generation (CG)
method to solve (P1). The column generation method de-
composes (P1) into two sub-problems – a Restricted Master
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Solve the Restricted 
Master Problem (RMP)

Solve the Pricing Problem (PP)

Yes

No

Add new column to (RMP)

Problem (P1) is solved
Terminate

Is the optimal objective value 
of (PP) greater than 1? 

Fig. 1. Flowchart of the column generation method.

Problem (RMP) and a Pricing Problem (PP) – and solves them
iteratively. The flowchart of the column generation method is
shown in Fig. 1.

A. Restricted Master Problem

The Restricted Master Problem (RMP) is similar to the
original problem (P1) except that only a subset of feasible
matchings ℰ ′ ⊆ ℰ is considered. Let Q′ denote the incidence
matrix of ℰ ′. The restricted master problem is formulated as
follows:

minimize 𝑊 = e𝑇u

subject to Q′u ર f ,

variables u ર 0.

(RMP)

An initial subset of feasible matchings ℰ ′ can be easily
formed by letting the 𝑖th matching consist of link 𝑙𝑖 only (1 ≤
𝑖 ≤ ∣ℒ∣) and none of the other links. Since there is only one
link in each matching, all these ∣ℒ∣ matchings are feasible
matchings. The corresponding initial incidence matrix Q′ is
an identity matrix.

First we solve (RMP) to optimality. We can achieve this
with the simplex method [23] and obtain a primal optimal
solution u∗ and a dual optimal solution 𝝎∗. Since we only
consider a subset of feasible matchings ℰ ′, u∗ may not be the
optimal solution to the original problem (P1).

Consider the columns that are in the matrix Q but not in the
matrix Q′. Notice that in (P1), the cost coefficient of every
variable in the objective function is 1. The reduced cost of a
column 𝑄𝑘 in the matrix Q but not in Q′ is defined as [23]:

𝜎𝑘 = 1− (𝝎∗)𝑇𝑄𝑘.

The reduced cost 𝜎𝑘 of column𝑄𝑘 is the amount by which the
objective function will improve if the corresponding variable
𝑢𝑘 is assumed to be a positive value and is increased by
one unit. If the reduced cost 𝜎𝑘 is less than 0, the objective
function of (P1) can be further reduced. On the other hand,
if the reduced costs of all the columns that are in the matrix
Q but not in Q′ are all non-negative, this means the current
solution u∗ is the optimal solution to (P1).

In the column generation method, instead of computing
the reduced costs for all the columns that are in the matrix
Q but not in Q′, we consider the problem of minimizing
the reduced cost 𝜎 = 1 − (𝝎∗)𝑇𝑄, which is equivalent to
maximizing (𝝎∗)𝑇𝑄, subject to the constraints that ensure 𝑄
is a feasible matching. This optimization problem is called the
pricing problem, which is discussed in the next subsection.

B. Pricing Problem

The Pricing Problem (PP) is to find a feasible matching 𝑄
that maximizes (𝝎∗)𝑇𝑄, which is equivalent to minimizing
the reduced cost 1−(𝝎∗)𝑇𝑄. It can be formulated as follows:

maximize
∣ℒ∣∑
𝑖=1

𝜔∗
𝑖 𝑞𝑖

subject to 𝑎𝑖𝑗 + 𝑞𝑖 + 𝑞𝑗 ≤ 2,

𝑝𝑖 ⋅𝐺 (𝑇𝑖, 𝑅𝑖)

𝜂𝑖 +
∑

𝑙𝑗∈ℒ∖𝑙𝑖
𝑝𝑗 ⋅𝐺 (𝑇𝑗, 𝑅𝑖)

≥ 𝑞𝑖 ⋅ 𝛾𝑖,

𝑝𝑖 ≤ 𝑞𝑖 ⋅ 𝑝𝑖max,

variables 𝑝𝑖 ≥ 0,

𝑞𝑖 ∈ {0, 1} .

(PP)

The coefficient 𝝎∗ = {𝜔∗
𝑖 : 1 ≤ 𝑖 ≤ ∣ℒ∣}𝑇 in the objective

function of (PP) is the optimal dual solution to the (RMP)
problem in the current iteration. The variables in (PP) are the
binary variables 𝑄 = {𝑞𝑖 : 1 ≤ 𝑖 ≤ ∣ℒ∣} and the continuous
variables {𝑝𝑖 : 1 ≤ 𝑖 ≤ ∣ℒ∣}. Binary variable 𝑞𝑖 is 1 if link
𝑙𝑖 is active, and 0 otherwise. Continuous variable 𝑝𝑖 is the
transmission power of link 𝑙𝑖. The first constraint in (PP) is
the primary constraint (Definition 1) that ensures the active
links form a matching. The second constraint guarantees that
the SINR requirement at each active receiver is satisfied. The
third constraint states that the transmission powers are limited.

If the optimal objective value of (PP) is greater than 1, the
optimal solution of (PP), 𝑄∗ = {𝑞∗𝑖 : 1 ≤ 𝑖 ≤ ∣ℒ∣}, is passed
to (RMP) and the next iteration starts. If the optimal objective
value of (PP) is less than or equal to 1, this means the optimal
solution u∗ to the (RMP) problem in the current iteration is
already the optimal solution to the whole problem (P1), and
the column generation terminates.

(RMP) is a small-scale standard linear program that is easy
to solve using the simplex method. However, (PP) is a Mixed
Integer Program with both binary variables and continuous
variables that is quite difficult to solve in general. Therefore,
the overall runtime performance of the column generation
method depends on how well we can solve the pricing problem
(see simulation results in section VII).

C. A New Formulation of the Pricing Problem

One of the key contributions of this paper is that we
reformulate the pricing problem (PP) to reduce its complexity.
The new formulation enables us to remove the continuous
power variables {𝑝𝑖 : 1 ≤ 𝑖 ≤ ∣ℒ∣} and merge the primary
constraints and the SINR constraints.

Consider the SINR constraints and the maximum transmit
power constraints. Given a matching ℳ ⊆ ℒ, we define an
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∣ℳ∣×∣ℳ∣ nonnegative relative-channel-gain matrix Bℳ with
entries as follows:

𝑏𝑖𝑗 =

{
0, if 𝑖 = 𝑗,
𝐺(𝑇𝑗 ,𝑅𝑖)
𝐺(𝑇𝑖,𝑅𝑖)

, if 𝑖 ∕= 𝑗.
(2)

Let the vector 𝜸ℳ = (𝛾𝑖 : ∀𝑖 𝑠.𝑡. 𝑙𝑖 ∈ ℳ) be the SINR
thresholds at the receivers of the links in ℳ and the matrix
D (𝜸ℳ) be the diagonal matrix whose diagonal entries are
(𝛾𝑖 : ∀𝑖 𝑠.𝑡. 𝑙𝑖 ∈ ℳ), respectively. The SINR requirements
(1) can be written in matrix form as

(I−D (𝜸ℳ)Bℳ)pℳ ર vℳ, (3)

where I is an ∣ℳ∣ × ∣ℳ∣ identity matrix and vector vℳ =(
𝛾𝑖𝜂𝑖

𝐺(𝑇𝑖,𝑅𝑖)
: ∀𝑖 𝑠.𝑡. 𝑙𝑖 ∈ ℳ

)𝑇
is the normalized noise power

vector.
Let 𝜌 (D (𝜸ℳ)Bℳ) denote the largest real eigenvalue

(also called Perron-Frobenius eigenvalue or spectral radius)
of matrix D (𝜸ℳ)Bℳ. By Perron-Frobenius Theorem [24],
𝜌(D (𝜸)Bℳ) is positive and the corresponding eigenvector is
positive componentwise. Moreover, the problem of deciding
whether a matching is feasible or not becomes the Perron-
Frobenius eigenvalue condition of the nonnegative matrix
D (𝜸ℳ)Bℳ. The following proposition is a compilation of
the related propositions in [19], [24]–[26].

Proposition 2: Consider a matching ℳ. Assume that the
transmit power vector pℳ is upper bounded by vector
pmax = (𝑝𝑖max : ∀𝑖 𝑠.𝑡. 𝑙𝑖 ∈ ℳ)𝑇 . The necessary and
sufficient conditions for the existence of a positive power
vector pℳ ⪯ pmax that satisfies the SINR requirements in
(3) are

𝜌 (D (𝜸ℳ)Bℳ) < 1 and p∗
ℳ ⪯ pmax, (4)

where

p∗
ℳ = (I−D (𝜸ℳ)Bℳ)

−1
vℳ (5)

is a componentwise minimum solution to (3).
Proposition 2 provides easy conditions to check the feasi-

bility of a matching and a minimum solution to the transmit
powers of transmitters. In particular, given a matching, if
conditions (4) are satisfied, the matching is guaranteed to
be feasible, and the minimum transmit power vector can be
set according to (5); otherwise, no matter how we tune the
transmit powers, the links in the matching can not be active
simultaneously. Incorporating (4) and (5) into the formulation
of the pricing problem enables us to remove the power
variables in the pricing problem. Notice that conditions (4)
can only be applied to a set of links which already forms a
matching. On the other hand, we can define a proper version
of the channel gain matrix such that conditions (4) take care
of both the primary and the SINR constraints in the pricing
problem.

Consider a general wireless network with link set ℒ =
{𝑙𝑖, 1 ≤ 𝑖 ≤ ∣ℒ∣}. For any two different links 𝑙𝑖, 𝑙𝑗 ∈ ℒ
with 𝑎𝑖𝑗 = 1, we re-define the channel gains 𝐺(𝑇𝑖, 𝑅𝑗) and
𝐺(𝑇𝑗 , 𝑅𝑖) as:

𝐺(𝑇𝑖, 𝑅𝑗) =∞ and 𝐺(𝑇𝑗 , 𝑅𝑖) =∞. (6)

The other channel gains remain the same. The definitions in
(6) allow us to extend the definition of the relative-channel-
gain matrix Bℳ defined on a matching ℳ in (2) to B𝒮 ,
which is defined on an arbitrary subset of links 𝒮 ⊆ ℒ. The
matrix B𝒮 is called virtual relative-channel-gain matrix with
elements

𝑏𝑖𝑗 =

⎧⎨
⎩
0, if 𝑖 = 𝑗,
𝐺(𝑇𝑗 ,𝑅𝑖)
𝐺(𝑇𝑖,𝑅𝑖)

, if 𝑖 ∕= 𝑗 and 𝑎𝑖𝑗 = 0,

∞, if 𝑖 ∕= 𝑗 and 𝑎𝑖𝑗 = 1.

Based on the definition of the virtual relative-channel-gain
matrix B𝒮 , condition 𝜌 (D (𝜸𝒮)B𝒮) < 1 will never hold
if 𝒮 is not a matching. This means that the necessary and
sufficient conditions for a subset of links 𝒮 ⊆ ℒ to be a
feasible matching are

𝜌 (D (𝜸𝒮)B𝒮) < 1 and p∗
𝒮 ⪯ pmax, (7)

where
p∗
𝒮 = (I−D (𝜸𝒮)B𝒮)

−1
v𝒮 .

We can now simplify the pricing problem as follows:

maximize
∣ℒ∣∑
𝑖=1

𝜔∗
𝑖 𝑞𝑖

subject to 𝜌
(
D(𝜸𝑄)B𝑄

)
< 1,(

I−D
(
𝜸𝑄

)
B𝑄

)−1
v𝑄 ⪯ pmax,

variables 𝑞𝑖 ∈ {0, 1} , 1 ≤ 𝑖 ≤ ∣ℒ∣ .

(SPP)

In the Simplified Pricing Problem (SPP), the only variables
are the binary variables 𝑄 = {𝑞𝑖 : 1 ≤ 𝑖 ≤ ∣ℒ∣}. The
continuous power variables {𝑝𝑖 : 1 ≤ 𝑖 ≤ ∣ℒ∣} have been
removed. Formulation (SPP) is a binary integer programming
problem which is easier to solve than the original pricing
problem (PP).

D. Finding the optimal solution to the pricing problem

We propose a Smart Enumerating (SE) algorithm that finds
an optimal solution to (SPP). With the help of conditions (7),
the SE algorithm can reduce the search space by eliminating
the infeasible solutions and the non-optimal solutions in an
efficient way. The SE algorithm takes much less time than the
naive exhaustive search among all the subsets of link set ℒ.

In SE, we first solve (SPP) without considering the con-
straint set and obtain the corresponding optimal solution
𝑄𝑤𝑐 = {𝑞𝑖 : 1 ≤ 𝑖 ≤ ∣ℒ∣}. Solution 𝑄𝑤𝑐 is a set of links

that maximizes
∣ℒ∣∑
𝑖=1

𝜔∗
𝑖 𝑞𝑖 only and can be easily found: we set

𝑞𝑖 = 1 if the corresponding coefficient 𝜔∗
𝑖 > 0 and set 𝑞𝑖 = 0

if 𝜔∗
𝑖 ≤ 0.

Next we check if conditions in (7) are satisfied by 𝑄𝑤𝑐. If
yes, then the active links in 𝑄𝑤𝑐 form a feasible matching and
the pricing problem is solved. Otherwise, the optimal solution
𝑄∗ to (SPP) must be a subset of 𝑄𝑤𝑐. The SE algorithm
performs a search among a small number of the subsets of
𝑄𝑤𝑐 using the following two criteria:

Criterion 1: If a subset 𝑄𝑠 of 𝑄𝑤𝑐 is infeasible, all the
supersets of 𝑄𝑠 need not be considered.
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Criterion 2: If a subset 𝑄𝑠 of 𝑄𝑤𝑐 is feasible, all the subsets
of 𝑄𝑠 need not be considered.

Criterion 1 is based on Proposition 1. In Criterion 2, any
subset of 𝑄𝑠 will only have an objective value less than 𝑄𝑠’s
objective value. With these two criteria, a large number of
subsets of 𝑄𝑤𝑐 can be eliminated.

SE finds an optimal solution to the binary integer pro-
gramming (SPP). In general, it still has exponential runtime.
However, because of the reduction in the search space, the SE
algorithm is reasonably efficient for modest size networks.

V. BRANCH-AND-PRICE METHOD

In general, the optimal solution to (P1) may be fractional
(i.e., non-integer) and hence not feasible to (P1)INT. In this
section, we propose a branch-and-price method to address
(P1)INT.

A. Branch-and-Price

The branch-and-price method [27] combines the column
generation method with the branch-and-bound method to pro-
vide optimal integer solutions to (P1)INT. Column generation
is applied to solve the linear relaxation of the ILP problem at
each node in the branch-and-bound tree. The flowchart of the
branch-and-price method is shown in Fig. 2. The branch-and-
price method starts with the original ILP problem (P1)INT as
the root node. We first apply the column generation method
to solve the linear relaxation (P1) to optimality and obtain an
optimal solution u∗. As discussed before, the optimal solution
u∗ may not be integral, so we need to perform branching
by adding constraints. A typical branching rule is to add
constraints that cut off the fractional value in the current
optimal solution u∗. Assume a variable 𝑢∗𝑘 in u∗ takes on a
fractional value 𝛼. Let ⌊𝛼⌋ and ⌈𝛼⌉ denote the largest integer
not greater than 𝛼 and the smallest integer not less than 𝛼,
respectively. The original problem (P1)INT (parent node) then
branches to two sub-problems (child nodes) by adding the
constraint

𝑢𝑘 ≤ ⌊𝛼⌋ , (8)

and the constraint
𝑢𝑘 ≥ ⌈𝛼⌉ , (9)

respectively. After branching, each child node is a new ILP
problem. We then apply column generation to solve the LP
relaxation to each child node. When the optimal solution to the
new LP relaxation at a child node is again fractional, branching
continues from that node.

In the branch-and-price method, the lower and upper bounds
on the objective value at each node are obtained. The lower
bound of a node is obtained by solving the relaxation of that
node with column generation. An integer feasible solution of a
node can be obtained by rounding up the optimal linear relax-
ation solution to the nearest integer. This rounding establishes
an upper bound on the objective value. We maintain the value
𝐶, which is the objective value of the best integer solution
across all nodes so far. If the lower bound for some node is
greater than or equal to 𝐶, this node need not be considered
further (i.e., this node is pruned from the branch-and-bound
tree). Nodes can also be pruned when the problem in a node

Start with (P1)INT

as the root node 

Solve the linear relaxation of the 
current node (problem) with 
column generation method

No

YesIs the optimal 
solution fractional?

Yes

Branch to two sub-problems;
Fathom the infeasible sub-

problems (if any);

Has every node in the 
branch-and-bound
tree been explored?

Integer solution of the 
current node is found;

Calculate the best integer 
solution so far;

Is the current fractional 
solution better than than 
the best integer solution 

so far?

Fathom the 
current node

No

Yes

No

Move to the next 
unexplored node

(P1)INT is solved;
Terminate

Fig. 2. Flowchart of the branch-and-price method.

is infeasible. The branch-and-price terminates when all the
nodes in the branch-and-bound tree have been evaluated and
the optimal integer solution to (P1)INT is found.

B. Improving the Pricing Rule

A component that is critical to the performance of the
branch-and-price method is the branching rule. The conven-
tional branching rule (i.e., (8) and (9)) adds a new constraint
to each of the sub-problems. This causes a new dual variable
to be added to the pricing problem. At depth 𝐻 in the branch-
and-bound tree, there will be 𝐻 additional dual variables. The
size of the pricing problem will increase progressively as we
go down the branch-and-bound tree. Another key contribution
of this paper is that we develop a more efficient new branching
rule to overcome this problem.

We first modify the formulation (P1)INT to incorporate an
upper bound, 𝑔𝑖, on the number of time slots allocated to each
link 𝑙𝑖 in set ℒ. The upper bounds for all links are represented
by the vector g = (𝑔𝑖 : 1 ≤ 𝑖 ≤ ∣ℒ∣)𝑇 . Initially, 𝑔𝑖 simply
takes on the value of the total frame length 𝑈 . The modified
formulation is

minimize 𝑊 = e𝑇u

subject to f ⪯ Qu ⪯ g,

variables u ર 0 and integer.

Instead of adding a constraint, the new branching rule
changes the upper bound or the lower bound. If the optimal
solution u∗ has fractional elements, we calculate the vector
h = Qu∗. Suppose that an element ℎ𝑖 of h is fractional. We
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create two branches, one with∑
𝑘

𝑞𝑖𝑘𝑢𝑘 ≤ ⌊ℎ𝑖⌋ , (10)

and the other with ∑
𝑘

𝑞𝑖𝑘𝑢𝑘 ≥ ⌈ℎ𝑖⌉ . (11)

These two branching inequalities can be carried out by chang-
ing the corresponding upper bound 𝑔𝑖 to ⌊ℎ𝑖⌋ on one branch
and changing the corresponding lower bound 𝑓𝑖 to ⌈ℎ𝑖⌉ on the
other branch, respectively. The new branching rule, (10) and
(11), successfully avoids adding an additional constraint into
the sub-problem, and thus avoids adding a new dual variable
to the corresponding pricing problem.

Branching rule, (10) and (11), is not applicable to the par-
ticular situation in which the optimal solution u∗ is fractional,
but all the elements in the vector h = Qu∗ are integers. In
this case, we revert to the conventional branching rule (8) and
(9).

VI. COLUMN GENERATION AND BRANCH-AND-PRICE

BASED HEURISTIC

The column generation method and the branch-and-price
method can find optimal solutions to the joint power control
and link scheduling problem (P1) and (P1)INT, respectively.
However, for large networks, both methods require a long
computation time. This is due to the high complexity of the
pricing problem. In this section, we focus on efficient heuristic
algorithms that yield near-optimal solutions with much faster
speeds. Our heuristics are built on the foundations of the
column generation and the branch-and-price methods.

A. Heuristic Pricing Problem Solution

Designing an efficient heuristic algorithm for the pricing
problem can significantly reduce the complexities of the
column generation and the branch-and-price methods. Even if
we aim for an optimal solution, such a heuristic algorithm will
still help, as explained in the following. Specifically, to obtain
an optimal solution for the overall problem, it is not necessary
to solve the pricing problem optimally in each iteration – it
is sufficient to obtain any feasible matching with an objective
value over 1. That is, as long as the new column generated
can reduce the cost, it will do, and there is no need to find the
best new column to be included. Thus, we can use a heuristic
to find a cost-reducing column. Only when the heuristic fails
to identify a cost-reducing column is it necessary for us to
resort to the SE algorithm to see if a cost-reducing column
exists.

If short runtime is more of a concern than solution opti-
mality, the heuristic is also useful for finding a near-optimal
solution. In this case, we do not revert to the SE algorithm
even if the heuristic fails to find a cost-reducing column. If
we adopt this strategy, the column generation method and
the branch-and-price method become fast heuristic algorithms
for identifying near-optimal solutions for (P1) and (P1)INT,
respectively. We set a limit of 256 on the maximum number
of iterations in the column generation based heuristic. The
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Fig. 3. Flowchart of the CSCR algorithm.

column generation heuristic will terminate if the heuristic
algorithm for the pricing problem cannot find a better column
or the maximum number of iterations is reached. In the
branch-and-price based heuristic, we also set a limit of 256
on the maximum number of branchings. Setting the maximum
numbers on both the iterations and the branchings will protect
the column generation and branch-and-price based heuristic
algorithms against exponential runtime in the worst-case.

We next propose a Combined Sum Criterion Removal
(CSCR) heuristic algorithm for the pricing problem. The key
idea behind CSCR is to remove one link at a time until the
remaining active links form a feasible matching. The flowchart
of CSCR is shown in Fig. 3.

We first solve (SPP) without considering the constraint set.
This step has been discussed in section IV-D. If the resulting𝑄
is feasible as per the conditions in (7), then the pricing problem
is solved. On the other hand, if 𝑄 is infeasible, we deactivate
one link at a time until the remaining links form a feasible
matching. There are two possible causes of the infeasibility: (i)
𝜌
(
D

(
𝜸𝑄

)
B𝑄

) ≥ 1; or (ii) 𝜌
(
D

(
𝜸𝑄

)
B𝑄

)
< 1, but some

elements in the component-wise minimum power vector p∗
𝑄

are greater than the maximum transmit powers allowed. For
(i), we use the combined sum criterion to remove one link at
a time. Specifically, we set 𝑞�̃� = 0 for a link 𝑙𝑖 that achieves
the maximum of the row sums and the column sums of matrix
D

(
𝜸𝑄

)
B𝑄 :

�̃� = argmax
𝑖

⎧⎨
⎩
∑
𝑗

(
D

(
𝜸𝑄

)
B𝑄

)
𝑖𝑗
,
∑
𝑘

(
D

(
𝜸𝑄

)
B𝑄

)
𝑘𝑖

⎫⎬
⎭ .

The combined sum criterion comes from [18] which inves-
tigated the power control problem in cellular systems. The
combined sum criterion seeks to minimize the upper bound
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of the Perron-Frobenius eigenvalue 𝜌
(
D

(
𝜸𝑄

)
B𝑄

)
assuming

that only one link can be removed, so that the condition
𝜌
(
D

(
𝜸𝑄

)
B𝑄

)
< 1 can be satisfied with a high probability.

The physical meaning of the combined sum criterion is that,
we remove the link that generates or experiences the maximum
interference in the network. For (ii), we also remove one link
at a time, but each time we remove the link whose transmit
power 𝑝∗𝑖 exceeds 𝑝𝑖max by the maximum amount. After the
removal process, the resulting 𝑄 is guaranteed to be a feasible
matching. In the last step of the CSCR heuristic algorithm, we
expand 𝑄 to a maximal feasible matching. This step can be
simply performed by considering the remaining links one by
one. A link is added if both the conditions in (7) are satisfied.

The CSCR heuristic algorithm is simple and computation-
ally efficient. The simulation results in section VII show that
it also works well in practice.

B. Initial Feasible Matchings

For initializing our algorithms, we need a subset of feasible
matchings. Section IV-A shows one possibility where the
initial feasible matchings for (RMP) are those that contain only
one active link. The corresponding initial incidence matrix
Q′ is an identity matrix. This choice, although simple, is not
necessarily the best choice. A better choice could reduce the
number of iterations required in column generation. We pro-
pose a heuristic algorithm, referred to as Increasing Demand
Greedy Scheduling (IDGS), that solves (P1)INT heuristically
to obtain a good initial subset of feasible matchings. In
particular, the IDGS produces a subset of maximal feasible
matchings which will be used by the optimal solution with
high probability.

The IDGS heuristic algorithm is described in Algorithm
1. The inputs are the virtual relative-channel-gain matrix Bℒ
(as defined in Section IV-C), the traffic demand vector f , the
SINR requirement vector 𝜸, and the normalized noise vector
v. The outputs of the IDGS algorithm are the set of maximal
feasible matchings {ℰ1, ℰ2, ⋅ ⋅ ⋅ , ℰ𝐾}, the corresponding trans-
mit power vectors {p1,p2, ⋅ ⋅ ⋅ ,p𝐾}, and the corresponding
airtime allocation vectors {𝑢1, 𝑢2, ⋅ ⋅ ⋅ , 𝑢𝐾}.

In the first step of IDGS, the links are sorted according to
their traffic demands in an increasing order. In each iteration of
the main scheduling while-loop (lines 3 to 11), we determine
one feasible matching ℰ𝑘, the corresponding transmission
power vector p𝑘, and an integeral airtime allocation 𝑢𝑘. The
main idea of IDGS is that we want to eliminate one link from
the link set ℒ in each iteration so that it does not have to
be considered in future iterations. In IDGS, we choose to
eliminate the link with the lightest traffic demand. At the
same time, we want to allow as many other links to transmit
together with the link to be removed as possible. For these
other links, we would like to address those links with heavy
traffic demands. The purpose of the inner while-loop (lines
5 to 10) is to compose ℰ𝑘. In the 𝑘th iteration, let 𝑙𝑘𝑖 and
𝑓𝑘𝑖 denote the 𝑖th link in the remaining link set ℒ and the
remaining traffic demand of link 𝑙𝑘𝑖, respectively. The feasible
matching ℰ𝑘 is formed in a greedy way. We first put link 𝑙𝑘1
that has the minimum traffic demand among the remaining
link set ℒ into ℰ𝑘. Then we start from the last link which

Algorithm 1: Increasing Demand Greedy Scheduling
Input: the virtual relative-channel-gain matrix Bℒ, the

traffic demand vector f , the SINR requirement
vector 𝜸, the normalized noise vector v

Output: a subset of maximal feasible matchings
{ℰ1, ℰ2, ⋅ ⋅ ⋅ , ℰ𝐾}, the transmit power vectors
{p1,p2, ⋅ ⋅ ⋅ ,p𝐾} , the set of integers
{𝑢1, 𝑢2, ⋅ ⋅ ⋅ , 𝑢𝐾}

Sort the links in increasing order of their traffic demands1

𝑓1 ≤ 𝑓2 ≤ ⋅ ⋅ ⋅ ≤ 𝑓∣ℒ∣;
𝑘 ← 1;2

while ℒ ∕= ∅ do3

ℰ𝑘 ← {𝑙𝑘1}; 𝑢𝑘 ← 𝑓𝑘1; 𝑖← ∣ℒ∣;4

while 𝑖 ≥ 1 do5

if ℰ𝑘 ∪ {𝑙𝑘𝑖} forms a feasible matching then6

ℰ𝑘 ← ℰ𝑘 ∪ {𝑙𝑘𝑖}; 𝑓𝑘𝑖 := 𝑓𝑘𝑖 − 𝑢𝑘;7

if 𝑓𝑘,𝑖 ≤ 0 then8

ℒ ← ℒ ∖ {𝑙𝑘𝑖};9

𝑖← 𝑖− 1;10

p𝑘 ←
(
I−D

(
𝜸ℰ𝑘

)
Bℰ𝑘

)−1
vℰ𝑘

;11

has the largest traffic demand within the remaining link set ℒ
and add one link to the set ℰ𝑘 at a time. The link added to
the set ℰ𝑘 must satisfy the condition that the link and all the
links already in the ℰ𝑘 form a feasible matching. This can be
done by checking the conditions in (7). If adding a link will
cause ℰ𝑘 to be infeasible, we move on to the next link without
adding it.

After the feasible matching ℰ𝑘 is formed, we allocate 𝑢𝑘 =
𝑓𝑘1 time slots to ℰ𝑘. The transmission power vector of the
links in set ℰ𝑘 is computed by

(
I−D

(
𝜸ℰ𝑘

)
Bℰ𝑘

)−1
vℰ𝑘

. If
link 𝑙𝑘𝑖 is selected in the feasible matching ℰ𝑘, the remaining
traffic demand of link 𝑙𝑘𝑖 is updated by subtracting 𝑢𝑘 from
it. And if all the traffic demand of link 𝑙𝑘𝑖 has been satisfied,
link 𝑙𝑘𝑖 can be removed from the link set ℒ.

The IDGS algorithm continues until all the links are re-
moved from the link list. The maximum number of iterations
required in IDGS is no larger than the number of links in the
network and is typically much smaller.

VII. SIMULATION RESULTS

We carry out extensive simulations to evaluate the perfor-
mances of the proposed column generation method and the
branch-and-price method. We conduct our simulations on a
computer with a 1.86 GHz CPU and 1 GB of RAM. We use
YALMIP [28] to solve the optimization problems. YALMIP is
a modeling language for solving both convex and non-convex
optimization problems. It relies on external solvers for the
actual computations. Specifically, we use CPLEX 9.0 as the
solver for both LP and ILP problems, and use the bmibnb as
the solver for the general non-linear optimization problems.

In our simulations, random network topologies are gen-
erated. The locations of the transmitters are uniformly dis-
tributed in a square area of 1000𝑚× 1000𝑚. The length of
each link ranges from 100 to 200 meters. More specifically,



1194 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 9, NO. 3, MARCH 2010

0 100 200 300 400 500 600 700 800 900 1000
0

100

200

300

400

500

600

700

800

900

1000

(meter)

(m
et

er
)

Fig. 4. Random network topology with 32 links.

the location of each receiver is randomly chosen within a
radius of 200 meters and outside a radius of 100 meters
from the corresponding transmitter. A random network with
32 links is shown in Fig. 4. The triangular nodes represent the
transmitters and the circular nodes represent the receivers. The
large-scale path loss model with a typical path loss exponent
of 4 is assumed. The maximum transmit power is 100𝑚𝑊 .
The required SINR threshold is uniformly distributed over
[10𝑑𝐵, 20𝑑𝐵]. The traffic demand of each link is a discrete
random variable with 10 equally likely values chosen from the
set of integers {1, 3, 5, ⋅ ⋅ ⋅ , 19}. The expected traffic demand
is 10 time slots. For each given number of links, we investigate
1000 random networks and present the averaged results.

A. Finding Optimal Solutions

Our first investigation focuses on finding optimal solutions
to problems (P1) and (P1)INT. We compare the performances
of the following four algorithms:

1) CG-SE (our algorithm): the column generation method
in which the pricing problem is simplified as (SPP).
The (SPP) is solved with CSCR heuristic first. If the
CSCR fails then we turn to the Smart Enumerating
(SE) algorithm to solve (SPP) to optimality. The initial
feasible matchings are found by the IDGS algorithm.

2) B&P-SE (our algorithm): the branch-and-price method
in which the enhanced branching rule (i.e., (10) and
(11)) is used and the linear relaxation at each node is
solved with CG-SE.

3) CG-traditional: the column generation method proposed
in [11]–[13].

4) B&P-traditional: the branch-and-price method in which
the conventional branching rule (i.e., (8) and (9)) is used
and the linear relaxation at each node is solved with CG-
traditional.

4 6 8 10 12 14 16 18
10

−1

10
0

10
1

10
2

10
3

10
4

the number of links

av
er

ag
e 

ru
nt

im
e 

(s
ec

on
d,

 lo
g 

sc
al

e)

 

 

B&P−traditional
CG−traditional
B&P−SE
CG−SE

Fig. 5. Average runtime performance of our column generation method
(CG-SE) and branch-and-price method (B&P-SE), compared with traditional
column generation method (CG-traditional) and branch-and-price method
(B&P-traditional).

TABLE II
SIMULATION RESULTS (RANDOM NETWORKS WITH 18 LINKS)

Algorithms
Average

number of
time slots

Average
runtime
(sec)

Minimum
runtime
(sec)

Maximum
runtime
(sec)

CG-traditional 70.7 1461.3 601.52 2170.3

B&P-traditional 70.9 1576.7 630.33 2486.8

CG-SE 70.7 2.031 0.33 6.129

B&P-SE 70.9 4.336 0.33 30.99

The simulation results of random networks with 18 links are
shown in Table II. The CG-traditional and CG-SE algorithms
find optimal solutions to (P1); the B&P-traditional and B&P-
SE algorithms find optimal solutions to (P1)INT. Figure 5
shows the average runtimes of these four algorithms for
networks of different sizes. It is clear that CG-SE outperforms
CG-traditional, and B&P-SE outperforms B&P-traditional in
terms of the runtime performance. The improvement becomes
more significant as the number of links increases. When
the networks have 18 links, the average runtimes of CG-
traditional and B&P-traditional are 1461.3 seconds and 1576.7
seconds, respectively. However, the average runtimes of CG-
SE and B&P-SE are only 2.031 seconds and 4.336 sec-
onds, respectively. CG-SE and B&P-SE reduce the average
runtimes by 99.86% and 99.72%, respectively. In column
generation and branch-and-price, the computational effort is
mainly spent in solving the pricing problem to optimality. The
column generation and the branch-and-price become efficient
only when the pricing problem can be solved efficiently. In
the column generation method proposed in [11]–[13], the
pricing problem (PP) is solved directly with the general
optimization solver. However, in CG-SE and B&P-SE, we
solve the simplified pricing problem (SPP) with the Smart
Enumerating (SE) algorithm instead. Thanks to the Perron-
Frobenius eigenvalue condition, the complexity in the pricing
problem can be reduced significantly. Furthermore, the Perron-
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TABLE III
AVERAGE RUNTIME PERFORMANCE OF CG-SE AND B&P-SE

29 links 30 links 31 links 32 links

CG-SE 31.50 48.53 92.08 172.90

B&P-SE 57.50 89.24 151.85 269.97

Frobenius eigenvalue condition also serves as an important
criterion that is used in the SE algorithm to reduce the search
space by eliminating the infeasible solutions and the non-
optimal solutions in an efficient way. We can conclude that
if we want to guarantee optimality, CG-SE and B&P-SE are
much more efficient than CG-traditional and B&P-traditional.

Table III shows the average runtime performance of CG-
SE and B&P-SE when we further increase the number of
links in the network. Notice that when the number of links is
greater than 18, the computation times of both CG-traditional
and B&P-traditional are too large and can not be afforded
any more. We find that CG-SE and B&P-SE work efficiently
for networks less than 30 links. The average runtimes of
CG-SE and B&P-SE are 31.5 seconds and 57.5 seconds
for 29-link networks. However, when the number of links
further increases, the runtimes of CG-SE and B&P-SE increase
dramatically. The average runtimes of CG-SE and B&P-SE
increase to 172.90 seconds and 269.97 seconds for 32-link
networks, respectively. The reason is that although we are
able to reduce the complexity of the pricing problem by
incorporating the Perron-Frobenius eigenvalue condition, the
pricing problem still has an exponential complexity by nature.
Therefore, CG-SE and B&P-SE also have an exponential
complexity in the number of links. We can conclude that
for modest-size network (i.e., less than 30 links), CG-SE and
B&P-SE are computationally efficient optimal algorithms. For
large-size network, finding optimal solutions is really difficult.
In this situation, we need turn to heuristic algorithms that find
close to optimal solutions with short runtime.

B. Performance of Column Generation and Branch-and-Price
Based Heuristics

Next, we investigate the performances of the column gener-
ation and the branch-and-price based heuristics. The column
generation and the branch-and-price methods become heuristic
algorithms for (P1) and (P1)INT when the pricing problem is
solved sub-optimally with the CSCR heuristic. We study the
performances of the following three heuristic algorithms:

1) ISPA: Integrated Scheduling and Power control Algo-
rithm, a heuristic proposed in [20].

2) CG-Heu: the column generation based heuristic for (P1)
in which the pricing problem is solved with CSCR only.
The initial feasible matchings are found by the IDGS
algorithm. The maximum number of iterations is set as
256.

3) B&P-Heu: the branch-and-price based heuristic for
(P1)INT in which the enhanced branching rule (i.e.,(10)
and (11)) is used and the linear relaxation is solved with
CG-Heu. The maximum number of branchings is set as
256.
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Fig. 6. Average percentage cost penalty of the column generation and branch-
and-price based heuristic algorithms (CG-Heu and B&P-Heu), compared with
the ISPA heuristic algorithm proposed in [20].

For comparison purpose, we also obtain optimal solutions to
(P1) and (P1)INT with CG-SE and B&P-SE, respectively. We
introduce the percentage cost penalty to describe the penalty of
the above three heuristic algorithms compared to the optimal
solution. Let 𝑊𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 and 𝑊𝑜𝑝𝑡 denote the number of time
slots the algorithm needs and the optimal value, respectively.
The percentage cost penalty of each algorithm is defined by

𝑃𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 =
𝑊𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 −𝑊𝑜𝑝𝑡

𝑊𝑜𝑝𝑡
× 100%.

Figure 6 shows the performance of the average percentage
cost penalty of the three heuristic algorithms as a function of
the number of links. We see that the performance of ISPA
is the worst among the three algorithms. Compared with
𝑃𝐼𝑆𝑃𝐴, 𝑃𝐶𝐺-𝐻𝑒𝑢 and 𝑃𝐵&𝑃 -𝐻𝑒𝑢 increase much more slowly
with the number of links (i.e., network density). For 29-link
networks, the averaged value of 𝑃𝐼𝑆𝑃𝐴 is 17.12%. However,
the averaged values of 𝑃𝐶𝐺-𝐻𝑒𝑢 and 𝑃𝐵&𝑃 -𝐻𝑒𝑢 are reduced
to 9.73% and 9.01%, respectively. For the different sizes of
networks we simulated, the averaged values of 𝑃𝐶𝐺-𝐻𝑒𝑢 and
𝑃𝐵&𝑃 -𝐻𝑒𝑢 are all below 10%. The column generation and
the branch-and-price based heuristic algorithms perform much
better than the ISPA which is designed in a greedy way. In Fig.
6, it is surprising to find that B&P-Heu has better performance
than CG-Heu in terms of the average percentage cost penalty.
This can be explained as follows. The solution of CG-Heu
is the same as the solution of the linear relaxation at the root
node in B&P-Heu. In the branch-and-bound tree of B&P-Heu,
each node is solved sub-optimally. Therefore, it may happen
that in addition to the feasible matchings found at the root
node, some more desirable feasible matchings can be found
when using CG-Heu to solve the linear relaxation at the child
nodes. So it happens that the integer solutions in B&P-Heu
can be better than the non-integer solutions in CG-Heu.

Furthermore, the column generation and the branch-and-
price based heuristic algorithms can achieve the tradeoff
between the performance and the runtime. Figure 7 shows
the average percentage cost penalty of ISPA and CG-Heu as a



1196 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 9, NO. 3, MARCH 2010

5 10 15 20 25
0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

the number of iterations

av
er

ag
e 

pe
rc

en
ta

ge
 c

os
t p

en
al

ty
P

ISPA

P
CG−Heu

Fig. 7. Average percentage cost penalty of ISPA and the column generation
based heuristic algorithm CG-Heu as a function of the number of iterations.

function of the number of iterations for random networks with
26 links. The ISPA, which is a greedy heuristic algorithm,
can only achieve a fixed average percentage cost penalty
of 14.50% with an average runtime of 0.15 seconds. The
average runtime of each iteration in CG-Heu is 0.15 seconds,
which is equal to the average runtime of ISPA. At the
initial point of CG-Heu, the averaged value of 𝑃𝐶𝐺-𝐻𝑒𝑢 is
21.83%. The averaged value of 𝑃𝐶𝐺-𝐻𝑒𝑢 decreases with the
number of iterations. The improvement is significant at the
first 10 iterations in CG-Heu but is less significant when the
number of iterations further increases. The averaged value of
𝑃𝐶𝐺-𝐻𝑒𝑢 converges to 8.23% after 28 iterations. Therefore,
the column generation based heuristic algorithm can achieve
the tradeoff between the performance and the runtime by
tuning the parameter of the iteration number. Because CG-
Heu is applied to solve the linear relaxation of each node in
B&P-Heu, similarly, the branch-and-price based heuristic can
also achieve the tradeoff between the performance and the
runtime by tuning the parameter of the iteration number.

VIII. CONCLUSION

We have considered the minimum-length scheduling prob-
lem in STDMA wireless networks with power control, subject
to traffic demands and SINR constraints. When power control
is considered, the feasibility of a set of links under the
SINR constraints can be checked by the Perron-Frobenius
eigenvalue condition. This turns out to be a rather useful
condition for expediting the optimization. We propose the
column generation method that finds optimal time schedule
and power solutions. The way to solve the pricing problem
is the key to the efficiency of the column generation method.
We integrate the Perron-Frobenius eigenvalue condition into
both the formulation of the pricing problem and the Smart
Enumerating (SE) algorithm. Such integration improves the
efficiency of the column generation method. We show that
our new formulation, together with the SE algorithm, reduces
the average runtime of the column generation method by
99.86% for wireless networks with 18 links compared with the

traditional column generation method. We further propose the
branch-and-price method that combines the column generation
with the branch-and-bound to provide optimal integer time
schedule solutions. We develop a new branching rule in the
branch-and-price method that maintains the size of the pricing
problem after each branching, and thus improves the overall
efficiency of the branch-and-price method. For example, our
branch-and-price method reduces the average runtime by
99.72% for wireless networks with 18 links compared with
the traditional branch-and-price method.

Both the column generation and the branch-and-price meth-
ods can be used as heuristic algorithms if we solve the
pricing problem sub-optimally. We propose a simple heuristic
algorithm, Combined Sum Criterion Removal (CSCR), for the
pricing problem. Simulation results show that the column gen-
eration and the branch-and-price based heuristics can obtain
near-optimal solutions. In particular, the average cost penalties
are below 10% for networks with less than 30 links.
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