
216 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 21, NO. 2, FEBRUARY 2003

TCP Veno: TCP Enhancement for Transmission Over
Wireless Access Networks

Cheng Peng Fu, Associate Member, IEEE,and Soung C. Liew, Senior Member, IEEE

Abstract—Wireless access networks in the form of wireless
local area networks, home networks, and cellular networks are
becoming an integral part of the Internet. Unlike wired networks,
random packet loss due to bit errors is not negligible in wireless
networks, and this causes significant performance degradation
of transmission control protocol (TCP). We propose and study
a novel end-to-end congestion control mechanism called TCP
Veno that is simple and effective for dealing with random packet
loss. A key ingredient of Veno is that it monitors the network
congestion level and uses that information to decide whether
packet losses are likely to be due to congestion or random bit
errors. Specifically: 1) it refines the multiplicative decrease
algorithm of TCP Reno—the most widely deployed TCP version
in practice—by adjusting the slow-start threshold according to
the perceived network congestion level rather than a fixed drop
factor and 2) it refines the linear increase algorithm so that the
connection can stay longer in an operating region in which the
network bandwidth is fully utilized. Based on extensive network
testbed experiments and live Internet measurements, we show
that Veno can achieve significant throughput improvements
without adversely affecting other concurrent TCP connections,
including other concurrent Reno connections. In typical wireless
access networks with 1% random packet loss rate, throughput
improvement of up to 80% can be demonstrated. A salient feature
of Veno is that it modifies only the sender-side protocol of Reno
without changing the receiver-side protocol stack.

Index Terms—Congestion control, congestion loss, random loss,
transmission control protocol (TCP) Reno, TCP Vegas, TCP Veno,
wireless access networks.

I. INTRODUCTION

W IRELESS communication technology has been making
significant progress in the recent past and will be

playing a more and more important role in access networks,
as evidenced by the widespread adoption of wireless local
area networks (WLANs), wireless home networks, and cel-
lular networks. These wireless access networks are usually
interconnected using wired backbone networks, and many
applications on the networks run on top of the transmission
control protocol/Internet protocol (TCP/IP).

Manuscript received May 1, 2002, revised September 30, 2002. This work
was supported in part by the Area of Excellence in Information Technology
of Hong Kong (AoE/E-01/99), and in part by the Hong Kong Research Grant
Council under the Competitive Earmarked Grant CUHK 4229/00E. The work
of C. P. Fu was done while with the Information Engineering Department, The
Chinese University of Hong Kong, Shatin, Hong Kong.

C. P. Fu was with The Chinese University of Hong Kong Shatin, Hong
Kong. He is now with Nanyang Technological University, Singapore (e-mail:
Franklin.Fu@ieee.org).

S. C. Liew is with The Chinese University of Hong Kong, Shatin, Hong Kong
(e-mail: soung@ie.cuhk.edu.hk).

Digital Object Identifier 10.1109/JSAC.2002.807336

TCP is a reliable connection-oriented protocol that imple-
ments flow control by means of a sliding window algorithm.
TCP Tahoe and Reno [22], [24], which make use of the slow
start (SS) and congestion avoidance (CA) algorithms to adjust
the window size, have enjoyed much success to date. In par-
ticular, Reno is currently the most widely deployed TCP stack,
enabling all sorts of Internet applications.

The Reno algorithm, however, is increasingly being stretched
by the emergence of heterogeneity on the Internet in which dif-
ferent segments of the network may have widely different char-
acteristics. Optical-fiber links are highly reliable while wireless
links are subject to high-bit-error rates; asymmetric digital sub-
scriber line (ADSL) access lines are asymmetric and have dif-
ferent capacities in the two directions; satellite networks can
have much higher propagation delay than terrestrial networks;
and wireless access networks may suffer high packet loss rates.

Reno treats the occurrence of packet loss as a manifestation of
network congestion. This assumption may not apply to networks
with wireless channels, in which packet loss is often induced by
noise, link error, or reasons other than network congestion. As
defined in [26], we refer to such packet loss as random packet
loss. Misinterpretation of random loss as an indication of net-
work congestion causes Reno to back down the sending data
rate unnecessarily, resulting in significant performance degra-
dation [11], [12], [26].

To tackle this problem, we can break it down to two parts:
1) How to distinguish between random loss and congestion loss
and 2) How to make use of that information to refine the con-
gestion-window adjustment process in Reno.

In 1994, TCP Vegas [10], which employs proactive conges-
tion detection, was proposed with the claim of being able to
achieve throughput improvement ranging from 37% to 71%
compared with Reno. Reference [4] reproduced the claims
made in [10] and showed that by reducing packet loss and
subsequent retransmissions, Vegas could indeed offer higher
throughput than Reno. Recent work [20], [28], [30], however,
showed that the performance of Vegas connections degrades
significantly when they coexist with other concurrent Reno
connections. The bias against Vegas is particularly severe in
asymmetric networks [3].

Despite its limitations, an innovative idea in Vegas is that it
uses a very simple mechanism to gauge the network condition.
Instead of using Vegas’ estimate on the network condition
to prevent packet loss proactively, we could use it to deter-
mine whether packet losses are likely to be due to network
congestion or random phenomena. Specifically, if a packet
loss is detected while the estimate indicates that the network
is not congested, we could declare that the loss is random.

0733-8716/03$17.00 © 2003 IEEE



FU AND LIEW: TCP VENO 217

Reno could be modified so that it reduces the sending rateless
aggressively when random loss is detected, thus preventing
unnecessary throughput degradation. We refer to the algorithm
that combines these ideas fromVegasandRenoasVeno.1

Over the past few decades, TCP has been extensively
studied [5], [7], [8], [11], [12], [16]–[18], [32], [35]. Numerous
proposals [9], [10], [12]–[17], [23], [25], [31], [33], [37],
[38] were presented to improve TCP performance. However,
if practical deployment issues and overall evaluation over
the heterogeneous networks were to be considered [6], most
proposals do not compare well with Reno. Reno remains the
dominant version used in practice. This paper is an attempt to
demonstrate that Veno is a viable enhancement to Reno.

Based on extensive network testbed experiments and live In-
ternet measurements, we show that Veno can achieve signifi-
cant throughput improvementswithoutadversely affecting other
concurrent TCP connections in the same network, including
concurrent connections that make use of the legacy Reno im-
plementation. We present evidence, showing that Veno derives
its improvement from its efficiency in tapping unused band-
width, not from hogging network bandwidth at the expense of
other TCP connections. In wireless networks with random loss
of 1%, throughput improvement of up to 80% can be demon-
strated. Veno involves only modification of Reno on the sender
side without requiring any changes of the receiver protocol stack
or intervention of the intermediate network nodes. It can there-
fore be deployed immediately in server applications over the
current Internet, coexisting compatibly with the large installed
base of Reno.

The rest of this paper is organized as follows. Section II de-
scribes the Veno’s mechanism. It presents the observations that
led us to the refined multiplicative decrease and additive in-
crease algorithms. In Section III experimental results are firstly
presented to show the ineffectiveness of the refined algorithms,
and then a comprehensive evaluation of the Veno’s performance
over real network and live Internet are demonstrated. Section IV
contains the conclusions and suggestions for future work.

II. TCP VENO

Distinguishing between congestion loss and random loss, and
providing different measures to deal with them, is a fundamental
problem that remains unsolved for TCP. Veno makes use of a
mechanism similar to that in Vegas to estimate the state of the
connection, nonetheless, such a scheme is used to deduce what
kind of packet loss–congestion loss or random loss—is most
likely to have occurred, rather than to pursue preventing packet
loss as in Vega. If packet loss is detected while the connection
is in the congestive state, Veno assumes the loss is due to con-
gestion; otherwise, it assumes the loss is random.

Veno makes use of a mechanism similar to that in Vegas to
estimate the state of the connection, nonetheless, such a scheme
is used to deduce what kind of packet loss ÿ congestion loss or

1TCP Veno has been implemented in NetBSD1.1, FreeBSD4.2 and Linux 2.4.
Its enhanced version with selective acknowledgement (SACK) option has also
been implemented, its source codes are available by email request, for more de-
tailed work, please see the reference [1] and [41] documented in July 2001, we
also noticed that at same time another modified TCP called Westwood [40]pro-
posed an alternative approach to deal with TCP suffering in wireless networks.

random loss -- is most likely to have occurred, rather than to
pursue preventing packet loss as in Vegas.

A. Distinguishing Between Congestive and Noncongestive
States

In Vegas [10], the sender measures the so-calledExpectedand
Actual rates

where cwnd is the current TCP window size,BaseRTTis
the minimum of measured round-trip times, andRTT is the
smoothed round-trip time measured. The difference of the rate
is

When , there is a bottleneck link where
the packets of the connection accumulate. Let the backlog at the
queue be denoted by . We have

That is, we attribute the extra delay to the bottleneck link in
the second term of the right side above. Rearranging, we have

Vegas attempts to keep to a small range by adjusting
the TCP window size proactively, thus avoiding packet loss
due to buffer overflow altogether. Unfortunately, this proactive
window adjustment also puts Vegas at a disadvantage when
there are coexisting Reno connections in its path [4], [20], [30]
since it is less aggressive than Reno’s policy, which continues
to increase window size until packet loss occurs.

A second problem with Vegas is that the backlog it measures
is not necessary the data backlog [3]. In asymmetric networks
where the bottleneck link is on the reverse path, the backlog
as indicated by the above equation may be due to the backlog
of TCP acknowledgment on the bottleneck link. Because of this
backlog, Vegas would not continue to increase the window size
to allow a higher data-sending rate on the forward path even
though its forward path is still congestion free. Reno, in contrast,
probes for additional forward bandwidth by increasing window
size continually.

The main idea of our algorithm, Veno, is that we will use
the measurement of not as a way to adjust the window size
proactively, but rather as an indication of whether the connection
is in a congestive state. The essential idea of Reno, in which the
window size is increased progressively when there is no packet
loss, remains intact in Veno.

Specifically, if when a packet loss is detected, Veno
will assume the loss to be random rather than congestive, and
a different window-adjustment scheme from that in Reno will
be used; otherwise, Veno will assume the loss to be congestive,
and the Reno window adjustment scheme will be adopted. Our
experiments indicate that is a good setting.

It is worth pointing out that the original Vegas algorithm,
BaseRTTis continually updated throughout the live time of the
TCP connection with the minimum round-trip time collected so
far. In our work, however,BaseRTTis reset whenever packet



218 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 21, NO. 2, FEBRUARY 2003

loss is detected, either due to time-out or duplicate acknowl-
edgements (ACKs).BaseRTTis then updated as in the original
Vegas algorithm until the next fast recovery or slow start is trig-
gered. This is done to take into account of the changing traffic
from other connections and that the bandwidth acquired by a
single connection among the many connections may change
from time to time, causing theBaseRTTto change also.

B. Congestion Control Based on Connection State

Reno employs several fundamental algorithms. In the fol-
lowing sections, we review these algorithms and describe how
Veno modifies them.

1) Slow Start Algorithm:At the start-up phase of a connec-
tion, Reno sets the window size,cwnd, to one and sends out the
first packet. Thereafter, each time a packet is acknowledged, the
window size increases by one. Thus,cwnd increases from one
to two after the first round-trip time, from two to four after the
second round-trip time (because of the reception of two ACKs),
and so on. This results in an exponential increase of the sending
rate over time until packet loss is experienced. Veno employs
the same initial slow-start algorithm as Reno’s without modifi-
cations.

2) Additive Increase Algorithm:In addition tocwnd, there
is a window threshold parameterssthresh(slow-start threshold)
in Reno. Whencwndis belowssthresh, the slow-start algorithm
will be used to adjustcwnd. However, when ,
the window increase rate is reduced to avoid congestion. Specif-
ically, cwndwill be increased by one after each round-trip time
rather than after the reception of each ACK. Essentially,cwnd
is set to after each ACK to achieve a linear in-
crease effect. In Reno, the initial value ofssthreshis 64 kB. The
value ofssthreshis changed dynamically throughout the dura-
tion of the connection, as will be detailed later.

In Veno, the Additive Increase Algorithm of Reno is modified
as follows:

If // available bandwidth not
fully utilized
set when each new ACK
is received

else if // available bandwidth
fully utilized
set when every other
new ACK is received

The first part is the same as the algorithm in Reno. In the
second part, the backlog packets in the buffer exceeds,
and we increase the window size by one every two round-trip
times so that the connection can stay in this operating region
longer.

For illustration, Fig. 1(a) and (b) shows the difference be-
tween the window evolutions of a Veno and a Reno connection
in an experiment over our campus network.

As can be seen in the figures, Veno experiences fewer oscil-
lations than a Reno does. In addition, Veno stays at the large-
window region longer because it does not increase its window
size as quickly as Reno does when the critical region

is reached. This aspect of Veno is also drastically different
from the algorithm of Vegas, in which a window-decreasing
scheme is adopted when the critical region is reached.

(a)

(b)

Fig. 1. (a) TCP Veno evolution. (b) TCP Reno evolution, when there is no
random loss.

Generally, the TCP throughput is given by .
When there is no backlog, increasingcwnddoes not increase
RTT, and therefore the throughput goes up accordingly. How-
ever, when there is backlog, increasing the window size will
not increase the TCP throughput anymore because there is a
corresponding increase ofRTTdue to the increasing backlog at
the bottleneck link. TCP throughput flattens out with increasing
cwndwhen there is backlog. In Veno, increasing the window
more slowly (compared with Reno) in the critical region of
backlog not only does not cause any throughput
reduction, but also has the effect of deferring the onset of
self-induced congestion loss and, thus forcing TCP to stay
longer in the "optimal" transmission-rate region. In Fig. 1 of
400s experimental trace, we see Veno experiences almost 40%
less congestion loss (if excluding packet losses resulted by
initial slow start) than Reno does.

Additionally, from the practical standpoint, as Reno has been
widely deployed in the current Internet, any modified TCP
version must conform to specifications as defined in RFC793,



FU AND LIEW: TCP VENO 219

RFC1122, and RFC2914. Veno continues to increase window
when imminent congestion is detected but with a slower speed
than Reno does. Veno complies with the rule as set out in the
RFCs.

3) Multiplicative Decrease Algorithm:In Reno, there are
two ways to detect packet loss. A packet can be declared to be
lost if it has not been acknowledged by the receiver when a timer
expires. If that is the case, the slow-start algorithm is initiated
again withssthreshset to andcwndreset to one. This
has the drastic effect of suddenly reducing the sending rate by
a large amount. That is, expiration of timer is interpreted as an
indication ofseverecongestion. Veno does not modify this part
of the algorithm.

Reno also employs another algorithm, fast retransmit, to de-
tect packet loss. Each time the receiver in a Reno connection
receives an out-of-order packet, it retransmits the last ACK to
the sender. For example, if the receiver has received packet 3,
but not packet 4 when packet 5 arrives, it will send out an ACK
with ACK number . This tells the sender that the receiver
is still expecting packet 4. To the sender, this is a duplicate
ACK because the receiver has also previously issued an ACK
4 when it receives packet 3. If packet 6 arrives while packet
4 is still missing, the receiver will issue yet another ACK 4.
In Reno, when the sender receives three duplicate ACKs, it
declares the corresponding packet to be lost even if the timer
has not expired. A complementary algorithm to fast retransmit,
called fast recovery, is then employed to alleviate the conges-
tion as follows.

1) Retransmit the missing packet
set
set .

2) Each time another dup ACK arrives, incrementcwndby
one packet.

3) When the next ACK acknowledging new data arrives, set
cwndto ssthresh(value in step 1).

Veno modifies only the part in step 1 wheressthreshis set.
Specifically

if random loss due to bit er-
rors is most likely to have occurred

;
else ; // congestive loss

is most likely to have occurred

In other words, if the connection is not in the congestive state
(i.e., if ), Veno assumes that the loss is random. Ac-
cordingly, it reduces thessthresh, hence thecwnd, by a smaller
amount. In the above example and the experimental results pre-
sented in this paper, a factor of is used. In general, we could
use any factor larger than , but smaller than one so that the
cutback in window size is less drastic than the case when loss is
due to congestion. Our experimentation shows that a factor of
larger than is desirable.

For illustration, Fig. 2 shows typical window evolutions of
Veno and Reno obtained experimentally. More detailed results
will be shown in the next section. In this example, the round-trip
time as traced bytracerouteis 180 ms and the random loss rate
is 1%. For Veno, packets losses are artificially induced in the
network at 9s, 19s, 37s, 39s, 61s, 65s, 79s, 84s, 85s 86s, 89s,
95s, 109s, and 112s. As compared to Reno’s blindly reducing

(a)

(b)

Fig. 2. (a) Veno’s window evolution. (b) Reno’s window evolution.

window by , Veno decreases the window by a factor of
at the losses of 9s, 39s, 61s, 65s, 84s, 85s, 86s, 89s, 95s, and
112s. But for the losses at 19s, 37s, 79s and 109s, Veno reduces
the window by half due to the false alarms (Veno misinterprets
random loss as congestion loss). We see, in these cases, Veno’
behavior degenerates to that of Reno’s, but the consequence
should be no worse than that experienced by Reno. In some
sense, as addressed in Section III-A.2, such severe penalty, cor-
responding to these kinds of random loss, may be the right ac-
tion since the connection has been trapped into congestive state

even thought the buffer overflowing has not happened.
Intuitively, seeing Fig. 2(a) and (b), Veno’s window evolution
seems more robust and has sort of immune capability to random
loss.

In summary, Veno only refines the additive increase, mul-
tiplicative decrease (AIMD) mechanism of Reno. All other
parts of Reno, including initial slow start, fast retransmit,
fast recovery, computation of the retransmission timeout, and
the backoff algorithm remain intact. Only the sender stack is
modified.



220 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 21, NO. 2, FEBRUARY 2003

(a)

(b)

Fig. 3. Experimental networks. (a) Random loss is artificially induced in
router. (b) Random loss actually occurs in the wireless link; no random loss
is artificially induced in router.

A final point to be noted is that the clock resolution in the
conventional TCP is 500 ms, which is too coarse grained for the
measurement ofRTTfor calculation of theActualandExpected
rates. In Veno, a millisecond resolution timestamp is recorded
for each transmitted segment once the connection leaves the ini-
tial slow start stage. The detailed implementation is discussed in
[1].

III. PERFORMANCEEVALUATION OF TCP VENO

We describe the experimental set-ups in Section III-A and
study the effectiveness of packet loss distinguishing scheme in
Veno. In Sections III-B and III-C, we present and compare the
performance results of Reno and Veno TCP in lossy and non-
lossy experimental networks (i.e., networks with random loss
and without random loss). It is demonstrated that Veno not only
achieves significant throughput improvements over Reno, but
can also coexist harmoniously with the Reno in that it does not
degrade the performance of Reno. Live Internet measurements
in Section III-D further back-up these observations.

A. Verification of Packet Loss Distinguishing Scheme in Veno

1) Experimental Network Setup:We performed two exper-
iments. One with packet loss artificially induced, the other on
real wireless network where random packet loss actually occurs.

Fig. 3(a) shows our first experimental set-up.
are TCP senders that run TCP Reno or Veno over

NetBSD1.1. are TCP receivers with Red Hat
Linux installed. The links are labeled with their bandwidth
capacities.

A drop-tailrouter2 with first-in–first-out (FIFO) queues is set
up using FreeBSD4.2. It has embedded IPFW [19], [34] com-
mands to configure the forward buffer size, backward buffer
size , forward bandwidth , reverse bandwidth , forward
propagation delay , and reverse propagation delay. Dif-
ferent random packet loss rates can also be artificially induced
using the embedded system command in FreeBSD4.2.

In Fig. 3(b), a wireless client (WC1) is connected to the router
through a wireless access point (AP), TCP connection is set up
between a Veno source (Src2) and the wireless client (WC1).
In addition, a UDP connection can be set up betweenSrc1and
Des1to provide the background traffic. By logging packets from
Veno source (Src2) to the router, and from the router to the wire-
less client (WC1), and together withTCPsuitedeveloped by us,
we can infer which packets are lost due to buffer overflow in the
router and which packets are in the wireless link. That is, con-
gestion loss and random loss can be successfully separated. In
Section III-A-2, we use this setup to verify the effectiveness of
Veno’s packet loss distinguishing scheme.

2) The Verification of Packet Loss Distinguishing
Scheme:In this section, we report our test on the effec-
tiveness of the proposed packet loss distinguishing scheme in
Veno. For this purpose, we first consider a single TCP Veno
connection sharing bottleneck link without background traffic,
and then study the case in which background traffic is provided
by a UDP connection. The configuration experimented here
features a Mb/s bottleneck link with FCFS
discipline and buffer size of . TCP and UDP
packets are assigned the same priority. The round-trip time
(traced bytracerouter) is about 60 ms betweenWC1andSrc2.
Table I shows the results of three runs of the experiment within
one day. A 12 MB file was transferred betweenWC1andSrc2
in each Veno’s test.

In the first run of the experiment, Veno experienced 240 fast
retransmits when the UDP sending rate is 500 kb/s. Out of the
240 fast retransmits, 84 were triggered when Veno estimated the
connection to be in noncongestive state, and 156 were triggered
when Veno estimated the connection to be in congestive state.

For the 84 fast retransmits, there was only one wrong esti-
mation, when the packet loss was due to buffer overflow in the
router rather than noncongestive loss in the wireless link. The
accuracy of the estimation is close to . Data with
zero and 1 Mb/s UDP background traffic, as well as those in the
other two runs of the experiment show consistently high estima-
tion accuracy.

For the other 156 fast retransmits triggered with Veno as-
suming the connection to be in congestive state, the accuracy
is rather low. Only ten out of the 156 fast retransmit were due to
correct state estimations. However, misinterpreting random loss
as congestion loss does not cause any adverse effects since the
congestion window is reduced by half, the same as in Reno. At
most, the misdiagnosis does not bring any throughput improve-
ment to Veno. As a matter of fact, most of these 146 random
losses occur during the period in which the connection is being
trapped into congestive states (in which imply there are at least

extra packets being accumulated in the buffer of the bottle-
neck router along the TCP connection path, and buffer over-
flowing still has not occurred). In some sense, window-halved

2A drop-tail router drops the newly arriving packets when the buffer is full.



FU AND LIEW: TCP VENO 221

TABLE I
EFFECTIVENESS OFVENO’S PACKET LOSSDISTINGUISHING SCHEME UNDER DIFFERENTUDP SENDING RATES (#FF4/5, #FF1/2: FAST RETRANSMIT

TRIGGERED WHENVENO ESTIMATED THE CONNECTION TO BE IN NON-CONGESTIVE AND CONGESTIVE STATES, RESPECTIVELY. 4/5 AND

1/2 REFER TO THEREDUCTION FACTOR OF THECONGESTIONWINDOW)

reductions corresponding to these kinds of random loss may be
right actions because the available bandwidth has been fully uti-
lized in these situations. These kinds of random loss could be re-
garded as congestive drops because system has been congested
to some extent.

We may also examine the congestive losses (columns under
“Congestion” in Table I) themselves and see how many of them
caused the wrong window reduction in Veno. For example,
when the UDP background traffic in 500 kb/s, in the first round,
one out of ten congestive losses were misdiagnosed. Looking
at all the results, the rate of misdiagnosing congestive losses
as random losses is no more than 17% (two out of twelve in
the first run when UDP traffic is 1 Mb/s), and usually much
lower than that (zero when there is no background traffic and
the Veno connection is the only traffic, and no more than 12%
when the background traffic is 500 kb/s).

B. Single Connection Experiments

In this section, we present single-TCP connection re-
sults—i.e., only one of the source-destination pairs in Fig. 3(a)
is turned on. Fig. 4 shows the evolution of the average
sending rate for loss probabilities ranging from 10to 10 .
The buffer size at the router is set to be 12, the link speed

Mb/s, round-trip propagation delay is 120 ms,
and the maximum segment size is 1460 B. In Fig. 4, thez axis
is the sending rate of a TCP connection,x axis is time, andy
axis is segment loss probability. Each data point of the sending
rate corresponds to the amount of data sent over an interval of
160 ms divided by 160 ms.

The durations of all experiments are 150s. When the packet
loss rate is relatively smaller 10 , the evolutions of Veno
and Reno are similar. But when the loss rate is close to 10
packets/s, which corresponds to bit error rate of 10 b/s
for segment size of 1460 B or to 10 b/s for segment
size of 512 B, Veno shows large improvements over Reno.

To better observe the throughput difference between Reno
and Veno under different packet loss rates, throughput versus
loss rate is plotted in Fig. 5. One 32-MB file is transferred for
each run. Other parameters are the same as the above experi-
ment setting. Throughput is derived by dividing 32 MB by the
time taken to transfer the file. It is shown that the throughput
of TCP Veno is consistently higher than that of TCP Reno for
a range of random loss probabilities. In particular, at loss rate
of 10 packets/s, the throughput of TCP Veno (146.5 kB/s) is

(a)

(b)

Fig. 4. Average sending rate for loss probability ranging from 10to 10 .

80% higher than that of TCP Reno (81.9 kB/s). These desirable
results are mainly attributed to Veno’s refined multiplicative
decrease algorithm that performs intelligent window adjustment
based on the estimated connection state.

Under low-loss environments (random loss rate is less than or
equal to 10 packets/s), however, Veno and Reno have roughly
the same throughput. At these low rates, random loss is not a
significant factor any more. The likelihood of having a packet
loss within a congestion window,cwnd, a fundamental param-
eter determining the TCP behavior, is small in this case.



222 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 21, NO. 2, FEBRUARY 2003

Fig. 5. Throughput versus packet loss rate for Reno and Veno.

Also, under very heavy random loss situation (close to 10),
neither Reno nor Veno can maintain the TCP self-clocking
mechanism and they both experience frequent timeouts. When
timeouts occur, Veno and Reno operate similarly by falling
back to the slow start algorithm. With reference to Fig. 4(a)
and (b), both TCPs degrade significantly at loss rate 10.
However, heavy packet loss rate of 10seldom occurs in
real wireless networks. Random packet loss rate of 10is
more typical. RFC3002 [29], for example, shows that wireless
channel with IS-95 CDMA-based data service has an error rate
of 1%–2% with little correlation among losses.

C. Experiments Involving Multiple Co-existing Connections

For experiments in this section, we again used the network de-
picted in Fig. 3(a). The maximum segment size is 1460 Bytes.
To verify the compatibility between Veno and Reno, we set up
four connections consisting of a mixture of Veno and Reno to
share a common bottleneck link of 4 Mb/s with
and round-trip propagation time of 120 ms. Each connection
transferred a 32-MB file. Fig. 6(a) shows the sequence number
evolution of four Reno connections, and Fig. 6(b) shows the se-
quence number evolution of two Reno connections (solid curve)
and two Veno connections (dashed curve), with no random loss
introduced. As shown in the two graphs, Veno competes with
Reno in a fair manner, since throughputs in all connections are
roughly the same.

Fig. 6(c) and (d) shows the results of the same experiments
with random loss rate of 10 introduced. As indicated
in Fig. 6(d), Veno connections exhibit substantially higher
throughput than coexisting Reno connections. Note, however,
that the evolution of two Reno connections in Fig. 6(d) is close
to that of Fig. 6(c), where Veno is absent. We can therefore
infer that Veno does not achieve its superior throughput by
aggressively grabbing bandwidth away from Reno; rather it is
better able to use the available bandwidth that will be otherwise
left unused. Since Veno does not adversely affect coexisting
Reno, we can conclude that Veno is compatible with Reno.

It is interesting to observe that the slopes of the Veno connec-
tions in Fig. 6(d) are roughly the same as those in Fig. 6(b). This
means that the Veno connections are not adversely affected by
the random loss rate of 0.01.

Comparison of the two Veno connections within Fig. 6(b)
or (d), also shows that the two Veno connections share band-
width with each other in a fair manner. The fairness among Veno
connections and their compatibility with Reno connections are
further verified through additional experiments, the results of
which are depicted in Fig. 7.

We measured the throughput for a total of five connections
consisting of a mixture of Reno and Veno connections. Fig. 7
shows the average throughput per connection for Reno and
Veno. The horizontal axis is the number of Veno connections.
For example, the experiment corresponding to the point
marked 3 on the axis consisted of two Reno and three Veno
connections. Besides the average throughput per connection,
the standard deviations are also shown. From these two graphs,
three important observations can be made.

The first observation is about fairness. All the data points ex-
hibit small standard deviations. Therefore, fairness is observed
within the group of Reno or Veno connections.

The second observation is that the curves are nearly hori-
zontal regardless of the combination of Reno and Veno con-
nections. The significance of this observation is that coexisting
Veno will not starve the bandwidth used by Reno connections,
or vice versa. They can coexist harmoniously.

The third observation is that Veno has somewhat higher
throughput than Reno in nonlossy environments, but in lossy
networks, significant improvements over Reno are obtained.
Obviously, these improvements can be attributed to their
efficient utilization of the available bandwidth.

D. Live Internet Measurements

In the preceding section, a lossy network model was artifi-
cially introduced at the router in order to simulate the behaviors
of TCP in different situations. The results of live Internet mea-
surements are presented in this section. The performance over
WLAN and wide area network (WAN) is studied.

1) Measurement of TCP Veno and TCP Reno in WLAN:A
wireless LAN as shown in Fig. 8(a) was set up for single-con-
nection experiments. The wireless base station is Proxim
RangeLAN2-7510 and the wireless network adapter of the
laptop is RangeLAN2-7400.

The base station is located in one room, the laptop in an-
other room. The distance between them is about 8 m. We use
the laptop as a client to download an 8-MB file from the data
server, which is connected to the Ethernet switch. The
round-trip time between laptop and server is about 20 ms (traced
by traceroute). Fig. 8(b) shows ten throughput measurements
over one day duration. In total, we conducted our tests over a
period of five days. All the results are similar. Generally, the
throughput of a Veno connection is about 336 kb/s, 21% im-
provement over that of a Reno connection (about 255 kb/s).
In our latest experiments on 802.11, Veno gets throughput im-
provement of up to 35%.

Although the throughput measurement is a straightforward
metric to gauge the performance of TCP, it does not capture the
detailed behavior of TCP connections. In practice, its aggres-
siveness [6] can be evaluated by measuring the number of re-
transmitted packets, which depends on how many timeouts are
experienced, and how many fast retransmits are triggered. In this
section and the following section, these metrics are used to eval-
uate whether the behavior of Veno and Reno TCP is aggressive
or not.

Using tcptrace, the average number of retransmitted packets
for the Veno connection was found to be 42.9 packets, a 36% re-
duction as compared with 67 retransmitted packets of the Reno
connection. The average number of timeouts experienced by



FU AND LIEW: TCP VENO 223

(a) (b)

(c) (d)

Fig. 6. (a) Four Reno connections with no random loss. (b) Two Reno and two Veno connections with no random loss. (c) Four Reno with random loss rate 10.
(d) Two Reno and two Veno with random loss rate 10.

Veno is 4.1, a 53% reduction with respect to the 8.7 timeouts
of Reno. Moreover, using theTCPsuitetool developed by us,
the average number of fast retransmits triggered by Veno was
found to be 13.9 versus Reno’s 23.8, a reduction of 42%.

The gathered data suggest that Veno’s improvement over
Reno is attributed to its efficient utilization of the available
bandwidth. As a matter of fact, with respect to the frequencies
of retransmits and timeouts, a Veno connection with the refined
AIMD employed is more conservative than a Reno connection,
particular in nonlossy or lower loss situations when only the
modified additive increase (and not the modified multiplicative
decrease) comes into effect. This is further confirmed by
the experiments for metropolitan and cross-country WAN
presented in the following part.

2) Measurement of Veno and Reno in WAN:We conducted
live measurement over the wide-area Internet. As shown in
Fig. 9, we set up a server at the Chinese University of Hong

Kong (CUHK) with Veno and Reno installed.3 Clients were
separately located at the Tsing Hua University (TSU) in China,
and the University of Hong Kong (HKU). CUHK and HKU are
connected via metropolitan WANs, while CUHK and TSU are
connected via cross-country WANs. Additionally, a client at
the University of California, Berkeley, is being planned. This
paper, however, only presents results related to CUHK, TSU,
and HKU.

We first conducted an experiment without introducing any
wireless links along the tested path. Therefore, the random
packet loss probability should be very small, and one would
expect the improvement of Veno over Reno to be small or
has similar behavior as seen in Fig. 6(b). The purpose of this
experiment is to verify that Veno indeed works over a live
network environment.

3Our implementation lets users choose between different TCP versions using
the socket functionsetsockpot()



224 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 21, NO. 2, FEBRUARY 2003

(a)

(b)

Fig. 7. Average throughput versus number of Veno connections given the sum
of Veno and Reno connections is fixed at five. (a) Nonlossy network. (b) Lossy
network.

The measured results in different time slots within one day are
shown in Table II. There are six time slots within the day. For
each time slot, we conducted five tests with one-minute breaks
among the consecutive tests. In each test, two TCP connections,
one Veno and one Reno, were set up simultaneously for transfer
of a 16-Mb data file between CUHK and HKU. The data shown
in each column are the averaged values over these five runs.
The round-trip time as traced bytraceroutebetween HKU and
CUHK is about 45 ms with 10 ms variation over different time
slots.

Totally, we conducted the tests for the six time slots over five
days (from Monday to Friday). The general trends of the results
among the five days are similar and, therefore, we show only the
results of one day in Table II. With reference to Table II, Veno
only obtains slightly higher throughput than Reno. Based on the
reduced amount of timeouts, fast retransmits, and retransmitted
packets, Veno is shown to be less aggressive than Reno. Veno
does not “steal” bandwidth from Reno and can coexist harmo-
niously with a Reno connection. Its slight higher performance
achievement is attributed to its better utilization of the available
bandwidth.

In the next set of experiments, we set up WLAN as access
networks in HKU. As can be seen in Fig. 9, the mobile client

(a)

(b)

Fig. 8 (a) Wireless LAN topology. (b) Wireless LAN measurement.

Fig. 9. WAN measurement topology.

(laptop) is connected to the outside Internet via this wireless
access network. The models adopted here are the same as that
in Section III-D.1. The base station and the client are located in
separated rooms.

A 16-MB file was transferred between the server and the mo-
bile client in each test. Table III shows the results of our tests be-
tween CUHK and HKU during different periods of the day for



FU AND LIEW: TCP VENO 225

TABLE II
MEASUREMENTS FORMULTIPLE CONNECTIONS (ONE RENO AND ONE VENO) BETWEEN CUHK AND HKU

(TO: TIMEOUT, FF: FAST RETRANSMIT TRIGGERED, RETRAN. PKS: RETRANSMITTED PACKETS)

TABLE III
MEASUREMENTS OFSINGLE CONNECTION OVER METROPOLITAN WANs BETWEEN CUHK AND HKU

(TO: TIMEOUT, FF: FAST RETRANSMIT TRIGGERED, RETRAN. PKS: RETRANSMITTED PACKETS)

TABLE IV
MEASUREMENTS FORSINGLE CONNECTION OVER CROSS-COUNTRY WANs BETWEEN CUHK AND TSU

(TO: TIMEOUT, FF: FAST RETRANSMIT TRIGGERED, RETRAN. PKS: RETRANSMITTED PACKETS)

Reno and Veno. There are six time slots within the day. For each
time slot, we conducted ten tests, five for Reno and five for Veno
in the following sequence: A Reno connection was first tested
and then after it was completed, a test for Veno was started one
minute later. Thereafter, there was an eight-minute break, after
which Reno and Veno was tested again with one minute between
the tests. This was repeated until all ten tests were completed.
The values in Table III for each time slot are the average values
over the five tests. The round-trip time as traced bytraceroute
between HKU and CUHK is about 45 ms with 10 ms variation
over different time slots.

We conducted the tests for the six time slots over five
days (from Monday to Friday). The general trends of the
results among the five days are similar, and therefore we show
only the results of one day in Table III. With reference to
Table III, Veno obtains throughput improvement of up to 41%
over Reno in different time slots. The numbers of timeouts,
fast retransmits triggered, and retransmitted packets are much
lower in Veno.

The above measurements are obtained in the metropolitan
WANs. We next look at test results over cross-country WANs

between TSU host and CUHK to Table IV. We also set up one
wireless LAN (same model as above) as access network in Tsing
Hua University. The round-trip time as measured bytraceroute
between TSU and CUHK was about 290 ms with 30-ms varia-
tion among different tests. Again, the general trends of the re-
sults among the five days are similar. Table IV only shows mea-
surement results of one day.

With reference to the above two tables, we see that gener-
ally Veno achieves a much higher throughput than Reno, par-
ticularly in metropolitan WAN. Nonetheless, the improvement
is not consistent throughout the day, perhaps due to variability
of other factors in the live Internet itself, e.g., how much inter-
fering traffic there is over the cross-country path when the ex-
periments were conducted. Again, Veno is less aggressive than
Reno in terms of the numbers of timeouts, fast retransmits trig-
gered, and retransmitted packets.

IV. CONCLUDING REMARKS AND FUTURE WORK

Random packet loss in the wireless access networks can
cause performance degradation in an end-to-end TCP connec-



226 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 21, NO. 2, FEBRUARY 2003

tion. We have proposed and demonstrated that a novel TCP
version called TCP Veno can deal with random packet loss
effectively on an end-to-end basis. Numerous experiments
[1] have been conducted in experimental networks and live
Internet straddling across different areas in Hong Kong, and
Mainland China. The detailed investigations clearly indicate
that TCP Veno can achieve significant improvement without
adverselyaffecting other concurrent TCP connections in the
same network.

Veno is desirable from the following three standpoints.
1) Deployability: For any improved TCP to be worthwhile,

it must be easy to deploy over the existing Internet. Therefore,
before modifying the legacy TCP design, we must ask the
question: “Is this modification or design amenable to easy de-
ployment in real networks?” To realize this goal, ideally, there
should little or preferably no changes required at intermediate
routers. For the two ends of the communicating terminals, it
is preferred that only one side requires changes, so that the
party interested in the enhanced performance can incorporate
the new algorithm without requiring or forcing all its peers to
adopt the changes. Generally, it is preferred that the sender
that sends large volumes of data to many receivers to modify
its algorithm (e.g., the Web server) rather than the receivers.
The simple modification at the TCP sender stack makes Veno
easily deployable in real networks. Any party who is interested
in the enhanced performance can single-handedly do that by
installing the Veno stack.

2) Compatibility: Compatibility refers to whether a newly
introduced TCP is compatible with the legacy TCP in the sense
that it does not cause any detrimental effects to the legacy
TCP, and vice versa, when they are running concurrently in the
same network. Veno coexists harmoniously with Reno without
“stealing” bandwidth from Reno. Its improvement is attributed
to its efficient utilization of the available bandwidth.

3) Flexibility: Flexibility refers to whether the TCP can deal
with a range of different environments effectively. It is difficult
to categorically declare one TCP version to be flexible or not
flexible. We can say, however, Veno is more flexible than Reno
in that it can deal with random loss in wireless networks better,
alleviate the suffering in asymmetric networks [1], and has com-
parable performance in wired networks.

Although the idea of Veno is straightforward on hindsight, it
was not that obvious in the beginning when this work was first
started. It combines elements from two opposing TCP camps:
1) Reno which uses reactive congestion control and 2) Vegas
which uses proactive congestion control. Veno can still be re-
garded as a reactive algorithm because it certainly does not
aim to eliminate packet loss entirely: it makes use of the idea
of state estimation in Vegas to formulate better strategies to
deal with packet loss and to stay in the “optimal” operating re-
gion longer.

This paper has not addressed the issue of bursty packet loss
in wireless networks. SACK [14] option has been proposed and
shown to be effective in dealing with multiple packet losses
within a congestion window. Veno by itself does not solve the
problem of multiple packet losses. However, Veno and SACK
can be combined easily to yield an enhanced TCP implementa-
tion, SACK Veno.

Reference [2] has investigated the performance of SACK
Veno under different network conditions. The results show that
SACK Veno can increase the throughput of pure SACK by up
to 60% at packet loss rate of 0.01. As with comparison between
Veno and Reno, experiments show that the improvement of
SACK Veno can be attributed to its better efficiency rather than
aggressiveness in grabbing bandwidth from other connections.
Many TCP protocol stacks are now providing the SACK option.
If SACK is already available on the receiver side, SACK Veno
requires only the modification of the sender stack.

Generally speaking, we can see TCP Veno borrows the idea
of congestion detection scheme in Vegas and intelligently inte-
grates it into Reno’s additive increase phase. Its state estima-
tion is used as supplementary reference information to decide
how to refine additive increase at the next step and how much
the window is to be reduced once fast retransmit is triggered.
Of course, principally, we could also use other predictive con-
gestion detections (e.g., PBM’ [7], Packet Pair [25]) or/and the
other better predictive congestion detection schemes, or combi-
nations of these schemes to refine Reno evolution.

What TCP Veno proposes is to refine Reno’s AIMD evolution
over heterogeneous networks by using the complete judgment of
network state estimation – congestive state or non-congestive
state, rather than merely depending on packet loss occurrence.

To date, much work has been explored to center on accu-
rately making out which of packet losses are due to conges-
tion and which are due to bit-errors or other noncongestion rea-
sons, but, limited to too many uncertain factors (i.e., background
traffic changing along the connection path) in real networks,
progress in this kind of judging looks very slow. Perhaps, it may
be more meaningful and more practical for a TCP connection
to differentiate between congestive drops (occurring in conges-
tive state) and noncongestive drops (occurring in nonconges-
tive state). Veno adopts such differentiation to circumvent the
packet-loss-type-distinguishing. Further study on this issue will
be conducted in future work.

ACKNOWLEDGMENT

The train of thoughts leading to Veno started from reading
Floyd’s RFC2914, , the list of TCP-compatible congestion
control procedures is not limited to AIMD with the same
increase/ decrease parameters as TCP. Other TCP-compatible
congestion control procedures include rate-based variants
of AIMD; AIMD with different sets of increase/decrease
parameters that give the same steady-state behavior.

The authors would like to thank Dr. V. Paxson for his in-
valuable constructive suggestions and original tool provided.
Without his guidance, this work will be impossible to finish.

The authors would like to thank Prof. X. Li, Dr. J. L. Wang,
Tsinghua University, Beijing, China, Prof. O. K. Li, Dr. K. L.
Yeung, University of Hong Kong, and Prof. T. S. Yum, Chinese
University of Hong Kong, for their great help, and in sincerely
acknowledging Miss L. C. Chung, Mr. H. N. Lui, Mr. C. H.
Nam, and Mr. W. Wang for their experimental work, and Dr.
K. L. E. Law, University of Toronto, for his constructive discus-
sion, and many thanks for anonymous reviewers of IEEE JSAC
for their valuable comments and suggestions. The authors are



FU AND LIEW: TCP VENO 227

grateful to Dr. Q. B. Xie – founding member of SCTP, at Mo-
torola for his encouragement, B. Bing, at the research faculty at
Georgia Institute of Technology, for his comments, and Dr. D.
M. Chiu, Research Lab, SUN Microsystem Inc., for his careful
guidance, in particular, his paper [39] that has deeply influenced
the design of Veno’s algorithm.

REFERENCES

[1] C. P. Fu, “TCP Veno: End-to-End Congestion Control Over Heteroge-
neous Networks,” Ph.D. dissertation, The Chinese Univ. Hong Kong,,
Hong Kong,, 2001.

[2] L.-C. Chung, “SACK TCP : An Enhanced Version of SACK TCP,”
M.Phil thesis, The Chinese Univ. Hong Kong,, Hong Kong,, 2001.

[3] C. P. Fu, L.-C. Chung, and S. C. Liew, “Performance Degradation of TCP
Vegas in Asymmetric Networks and its Remedies,” inProc. ICC’2001,
vol. 10, Helsinki, Finland, 2001, pp. 3229–3236.

[4] J. S. Ahn, P. B. Danzig, Z. Liu, and E. Yan, “Evaluation with TCP Vegas:
Emulation and Experiment,”ACM Comput. Commun. Rev., vol. 25, no.
4, pp. 185–195, Aug. 1995.

[5] M. Allman, S. Dawkins, and D. Glover, “Ongoing TCP Research
Related to Satellites,” Internet Engineering Task Force (IETF), ser.
RFC2760, 2000.

[6] M. Allman and A. Falk, “On the Effective Evaluation of TCP,”ACM
Comput. Commun. Rev, vol. 29, no. 5, Oct. 1999.

[7] M. Allman and V. Paxson, “On Estimating End-to-End Network
Path Properties,” inProc. SIGCOMM’99, Cambridge, Aug. 1999, pp.
263–274.

[8] M. Allman, V. Paxson, and W. R. Stevens, “TCP Congestion Control,”
Internet Engineering Task Force (IETF), ser. RFC 2581, Apr. 1999.

[9] R. K. Balan, B. P. Lee, and K. R. R. Kumar, “TCP HACK: TCP Header
Checksum Option to Improve Performance Over Lossy Links,” inProc.
INFOCOM’2001, Anchorage, AK, pp. 309–318.

[10] L. S. Brakmo, S. W. O’Malley, and L. L. Peterson, “TCP Vegas:
New techniques for congestion detection and avoidance,,” inProc.
SIGCOMM’94, London, U.K., Oct. 1994, pp. 24–35.

[11] H. Balakrishnan, V. Padmanabhan, S. Sechan, and R. Katz, “A Com-
parison of Mechanisms for Improving TCP Performance Over Wireless
Links,” in Proc. SIGCOMM’1996, vol. 26, Stanford, CA.

[12] H.Hari Balakrishnan, “Challenges to Reliable Data Transport Over Het-
erogeneous Wireless Networks,” Ph.D. dissertation, Univ. California,
Berkeley, CA, 1998.

[13] A. Chockalingam, M. Zorzi, and V. Tralli, “Wireless TCP Performance
with Link Layer FEC/ARQ,” inProc. ICC’99, 1999, pp. 1212–1216.

[14] K. Fall and S. Floyd, “Simulation-based comparisons of Tahoe, Reno,
and SACK TCP,”Comput. Commun. Rev., vol. 26, no. 3, pp. 5–21, July
1996.

[15] S. Floyd, J. Mahdavi, M. Mathis, M. Podolsky, and A. Romanow. (1999,
Nov.). An Extension to the Selective Acknowledgment (SACK) Option
for TCP. [Online]. Available: http://www.ietf.org/internet-drafts/draft-
floyd-sack-00.txt

[16] S. Floyd, “Congestion Control Principle,” Internet Engineering Task
Force (IETF), ser. RFC2914, Sept. 2000.

[17] , “TCP and Explicit Congestion Notification,”ACM Comput.
Commun. Rev., vol. 24, no. 5, pp. 8–23, Oct. 1994.

[18] S. Floyd and K. Fall, “Promoting the use of end-to-end congestion con-
trol in the Internet,”IEEE/ACM Trans. Networking, vol. 7, pp. 458–472,
Aug. 1999.

[19] FreeBSD 4.2 Handbook. [Online]. Available: http://freebsd.org/hand-
book/index.html

[20] U. Hengartner, J. Bolliger, and T. Gross, “TCP Vegas Revisited,” in
Proc. INFOCOM’2000, pp. 1546–1555.

[21] J. Hoe, “Improving the Start-Up Behavior of a Congestion Control
Scheme for TCP,” inProc. SIGCOMM’1996, Palto Alto, CA, pp.
270–280.

[22] V. Jacobson, “Congestion Avoidance and Control,” inProc. SIG-
COMM’88, Stanford, CA, pp. 314–329.

[23] R. Jain, “A delayed-based approach for congestion avoidance in inter-
connected heterogeneous computer networks,”ACM Comput. Commun.
Rev., vol. 19, no. 5, pp. 56–71, Oct. 1989.

[24] V. Jacobson, Modified TCP Congestion Avoidance Algorithm, Apr. 30,
1990. end2end-interest mailing list.

[25] S. Keshav, “A Control-Theoretic Approach to Flow Control,” inProc.
SIGCOMM’91, Zurich, Switzerland, Sept. 1991, pp. 3–15.

[26] T. V. Lakshman and U. Madhow, “The performance of TCP/IP for
networks with high bandwidth-delay products and random loss,”
IEEE/ACM Trans. Networking, vol. 5, pp. 336–350, June 1997.

[27] T. V. Lakshman, U. Madhow, and B. Suter, “Window-Based Error
Recovery and Flow Control with a Slow Acknowledgment Channel:
A Study of TCP/IP Performance,” inProc. INFOCOM ’97, pp.
1199–1209.

[28] R. J. La, J. Walrand, and V. Anantharam. (1998, July)Issues in TCP
Vegas[Online]. Available: http://www.path.berkeley.edu/∼hyongla

[29] D. Mitzel, “Overview of 2000 IAB Wireless Internet Working Work-
shop,” Internet Engineering Task Force (IETF), ser. Rep. RFC3002.

[30] J. Mo, R. J. La, V. Anantharam, and J.Jean Walrand, “Analysis and Com-
parison of TCP Reno and Vegas,” inProc. INFOCOM’99, vol. 3, pp.
1556–1563.

[31] C. Parsa and J. J. Garcia-Luna-Aceves, “Improving TCP performance
over wireless networks at the link layer,”ACM Mobile Networks and
Applications J., vol. 5, no. 1, pp. 57–71, 2000.

[32] V. Paxson, “Measurements and Analysis of End-to-End Internet Dy-
namics,” Ph. D. dissertation, Univ. California, CA, 1997.

[33] C. Parsa and J. J. Garcia-Luna-Aceves,Improving TCP Conges-
tion Control Over Internets with Heterogeneous Transmission
Media. Berkeley, CA: Comput. Eng. Dept., Univ. California, 1999.

[34] L. Rizzo. (1997) Dummynet: a simple approach to the evaluation of net-
work protocols. ACM Comput. Commun. Rev.[Online], pp. 31–41

[35] S. Raman and S. McCanne, “A Model, Analysis, and Protocol Frame-
work for Soft State-Based Communication,” inProc. SIGCOMM’1999,
Cambridge, MA, pp. 15–25.

[36] I. T. Ming-Chit, D. Jinsong, and W. Wang, “Improving TCP performance
over asymmetric networks,”ACM Comput. Commun. Rev., vol. 30, no.
3, pp. 45–54, 2000.

[37] Z. Wang and J. Crowcroft, “A new congestion control scheme: slow start
and search (Tri-S),”ACM Comput. Commun. Rev., pp. 32–43, Jan. 1991.

[38] S. Y. Wang and H. T. Kung, “Use of TCP decoupling in improving
TCP performance over wireless networks,”Wireless Network, vol. 7, pp.
221–236, 2001.

[39] D.-M. Chiu and R. Jain, “Analysis of the increase and decrease algo-
rithms for congestion avoidance in computer networks,”J. Comput. Net-
works and ISDN, vol. 17, no. 1, pp. 1–14, June 1989.

[40] C. Casetti, M. Gerla, S. Mascolo, M.Y. Sanadidi, and R. Wang, “TCP
Westwood: Bandwidth estimation for enhanced transport over wireless
links,” in Proc. ACM Mobicom 2001, Rome, Italy, July 16–21, 2001, pp.
287–297.

[41] C. Chung, C. P. Fu, and S.C. Liew, “Improvements achieved by SACK
employing TCP Veno equilibrium-oriented mechanism over lossy net-
works,” in Proc. EUROCON’2001, Int. Conf. Trends in Communica-
tions, Bratislava, Slovakia, July 2001, pp. 202–209.

Cheng Peng Fu(S’01–A’02) received the B.Eng. and
M.Phil. degrees in electromagnetic theory and mi-
crowave technology, and the Ph.D. degree in informa-
tion engineering from the Shanghai University of Sci-
ence and Technology, Shanghai, China, and the Chi-
nese University of Hong Kong, Hong Kong, in 1990,
1995, and 2001, respectively.

He is one of founding members of CERNET
(China Education and Research Network), which
was launched in 1995 to network 1000 universities
in China by TCP/IP technology while he served

Shanghai Jiao Tong University as a Faculty Member at Networking Center
from 1995 to 1997. Meanwhile, he also designed and deployed Shanghai Jiao
Tong Campus ATM Network, Shanghai Education and Research Network,
and Shanghai Telemedicine Center. Then, he joined SUN Microsystem Inc.,
Shanghai, China, as a Senior Member of the Technical Staff. He is currently an
Assistant Professor at Nanyang Technological University, Singapore.

He has worked at Datun Meikuang TV as a news reporter for two years after
graduation in 1990. He has conducted research and published actively in areas
of network protocol and architecture design, distributed object design of J2EE,
and microwave analysis and measurement.



228 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 21, NO. 2, FEBRUARY 2003

Soung C. Liew (S’84-M’87-SM’92) received the
S.B., S.M., E.E., and Ph.D. degrees from the Massa-
chusetts Institute of Technology (MIT), Cambridge.

From 1984 to 1988, he was at the MIT Laboratory
for Information and Decision Systems, where he
investigated fiber-optic communications networks.
From March 1988 to July 1993, he was at Bellcore
(now Telcordia), NJ, where he engaged in broadband
network research. He is currently a Professor at the
Chinese University of Hong Kong, Hong Kong.

He is currently Co-Director of the Area of Excel-
lence in Information Technology (AoE-IT), Hong Kong, a joint project with par-
ticipations from the Chinese University, University of Science and Technology,
and the University of Hong Kong. Besides academic activities, he is also active
in the industry. He cofounded two technology start-ups in Internet Software and
is currently a Consultant for the Hong Kong Applied Science and Technology
Research Institute. He is the holder of three U.S. patents. His research inter-
ests include Internet protocols, multimedia communications, optical networks,
and broadband packet switch design, and he initiated and coordinated the first
inter-university ATM network testbed in Hong Kong, in 1993.

Dr. Liew is a Member of the Research Grant Council Engineering Panel of
Hong Kong, and Fellow of IEE and HKIE. He is listed in MarquisWho’s Who
in Science and Engineering.


	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 


