
42 IEEE COMMUNICATIONS LETTERS, VOL. 7, NO, 1, JANUARY 2003

A Remedy for Performance Degradation of
TCP Vegas in Asymmetric Networks

Cheng P. Fu, Member, IEEE,and Soung C. Liew, Senior Member, IEEE

Abstract—Many previous studies have indicated that TCP Vegas
outperforms TCP Reno. This letter shows that in asymmetric net-
works in which the bottleneck is on the reverse path rather than on
the forward path, Vegas underutilizes the available bandwidth on
the forward path by a large margin. A solution that makes use of
the TCP timestamp option can effectively restore the throughput
on the forward path.

Index Terms—Asymmetric networks, congestion control, TCP
Vegas.

I. INTRODUCTION

T CP Reno [1] is a widely deployed transport protocol on
the Internet. TCP Vegas [2], which employs a fundamen-

tally different congestion control algorithm from that in Reno,
was proposed and shown to be able to achieve 37% to 71%
throughput improvement over Reno. Comparison of Reno and
Vegas is a contentious issue and the study of their relative advan-
tages [3]–[5] and disadvantages [4]–[6] have been investigated
extensively and debated heatedly by the research community.
This letter adds to the understanding of Vegas by considering
its performance in asymmetric networks, in which the transmis-
sion bottleneck is in a reverse rather than a forward link.

Network asymmetry is becoming more and more prevalent in
the Internet. Satellite technology and access technologies, such
as ADSL and HFC, often have vastly different bandwidths in
the two directions of the link. So much so that when used to
transport TCP packets in the downlink, the ratio of the forward
data rate (in data packets per second) to the reverse data rate
(in acks per second) is often larger than one. In such a scenario,
throughput on the forward path can be limited by ack congestion
on the reverse path, as has been demonstrated in the case of TCP
Reno [7], [8]. It is therefore interesting to investigate if TCP
Vegas exhibits the same degradation in asymmetric networks.

This letter presents results showing that not only does Vegas
suffer from performance degradation in asymmetric networks,
but the degradation can be so severe that the data transport rate
becomes unacceptably low. Fortunately, this degradation can be
remedied with a simple mechanism that makes use of the time-
stamp option of TCP.

Manuscript received April 22, 2002. The associate editor coordinating the
review of this letter and approving it for publication was Dr. J. Kim. This work
was supported in part by the Area of Excellence in IT of Hong Kong Special
Administrative Region, China.

The authors are with the Information Engineering Dept., Chinese Uni-
versity of Hong Kong, Shatin, Hong Kong (e-mail: cpfu@ie.cuhk.edu.hk;
soung@ie.cuhk.edu.hk).

Digital Object Identifier 10.1109/LCOMM.2002.805544

Fig. 1. Asymmetric network model.

II. SIMULATION RESULTS OFASYMMETRIC NETWORKS

We make use of the network simulator (ns) developed at
Lawrence Berkeley Laboratory to investigate TCP Vegas in
asymmetric networks based on the model in Fig. 1. In the
network model, the forward-path capacity and propagation
delay are (in packets/second) and , respectively, and
the reverse-path capacity and propagation delay are(in
acks/second) and , respectively. In our experiments, the
packet size is 1 kbytes and ack size is 40 bytes. Noted the
diagram in Fig. 3 describes how to measure the forward data
rate in our suggested modified Vegas, which will be addressed
in Section III.

Define the asymmetry ratio as . The upper part
of Fig. 2(a) plots the evolution of the congestion windows of
a Reno and a Vegas connection from one source to one desti-
nation, with ms and — i.e., the net-
work is symmetric and the forward path is the bottleneck. It
shows that Vegas’ congestion window remains rather constant
while Reno’s congestion window fluctuates over time. Although
during the initial slow-start phase, Vegas performs worse than
Reno, the averages of the window size, however, are compa-
rable. The throughputs are therefore comparable.

The lower part of Fig. 2(a) plots the results — i.e., the
network is asymmetric and the reverse path is the bottleneck.
We see that the performance of Vegas is significantly worse than
that of Reno in this case.

Table I shows more results for variousvalues for Reno,
Vegas and a modified version of Vegas to remove penalty due
to asymmetry. We first address the figures for Reno and Vegas
here. and are the buffer size at the forward and reverse
paths, respectively. As can be seen, although the performance
of both Reno and Vegas degrade as the degree of asymmetry
increases, the degradation of Vegas is a lot more severe.

This point is further illustrated with Fig. 2(b). In this experi-
ment, the expected throughput, which is the available bandwidth

1089-7798/03$17.00 © 2003 IEEE

FU AND LIEW: A REMEDY FOR PERFORMANCE DEGRADATION OF TCP VEGAS 43

(a)

(b)

Fig. 2. (a) Reno’s and Vegas’ congestion window evolution fork = 0:5 and
k = 3. (b) TCP throughput versus degree of asymmetric network, given� =

25 acks/s network, given� = 25 acks/s.

on the forward path, is varied, while the reverse-path bandwidth
is kept constant. It is clearly shown that the bandwidth utiliza-
tion of the forward path in Vegas is limited to that of the reverse
path when . Although Reno cannot make full use of the
forward bandwidth either, the degradation is less severe.

A. Reason for Performance Degradation of Vegas

A main idea in Vegas is to maintain the packet backlog at the
bottleneck link to between and by dynamic adjustment of
TCP window at the sender. The values ofand are typically
set to 1 and 3, respectively [2]. If the backlog is at least 1 at all
time, the bottleneck link will always have packets to transmit
and it will therefore be fully utilized. By limiting the backlog to
be no more than 3, packet loss due to buffer overflow is avoided.

An implicit assumption in Vegas is that congestion is always
encountered on the forward path and that the bottleneck link is
on the forward path.

TABLE I
THROUGHPUT AND UTILIZATION OF TCP VEGAS AND RENO

(� = 1:6 Mbps,B = 15 packetsB = 10 acks� = � = 50 ms)

Fig. 3. Measurement of forward data rate.

In asymmetric networks, Vegas misinterprets the accumula-
tion of acks at the reverse bottleneck link as indication of con-
gestion on the forward path and decreases the TCP window
accordingly. Meanwhile, the forward buffer can be relatively
empty. This proactive congestion control mechanism prevents
ack loss rather packet loss, causing unnecessary throttling of
data rate.

Unlike Vegas, which adopts proactive congestion control
mechanism, Reno adopt a reactive mechanism to aggressively
increases its TCP window until data packet loss actually occurs.
Although acks on the reverse path may occur before the data
packet loss on the forward path, the cumulative property of acks
(i.e., the loss of an ack can be compensated by the reception of
a subsequent ack) allows the window size to continue increase.
Therefore, Reno does not suffer from the same degree of
degradation as Vegas does in asymmetric networks.

III. SOLUTIONS

Various techniques have been proposed to improve the per-
formance of Reno in asymmetric networks. These techniques,
however, are not effective for handling Vegas’ problems.

ACC (Ack Congestion Control) uses a gateway on the reverse
link to aid congestion control [8]. It tries to detect impending
congestion by tracking the average queue size in the recent past
and then informs the receiver to dynamically decrease the fre-
quency of acks so that each ack effectively acknowledges sev-
eral packets. However, Vegas’ queue size only fluctuates be-
tween 1 and 3 and it is difficult for ACC to react based on queue
size of this narrow range.

AF (Ack Filtering) [8] is a router-based technique that at-
tempts to remove accumulated acks in the reverse buffer to ease
up the congestion. Again, given the small backlog fluctuation in
Vegas, it is difficult for the router to react unless it is aware of

44 IEEE COMMUNICATIONS LETTERS, VOL. 7, NO, 1, JANUARY 2003

the fact that the acks are from Vegas connections and not from
Reno connections.

Our solution employs an end-to-end method. Before ex-
plaining this method, let us review the basic window adjustment
mechanism in Vegas. Specifically, each time a measurement of

, the round trip time, is made, the following algorithm is
performed at the sender:

if ()
/* where */

/* increase congestion window size by
one*/

if ()

else
/* keep congestion window unchanged */

where is the window size, is minimum of
all s measured and (the
difference between expected and actual data rate).
is computed from and is computed
from .

The problem with Vegas in asymmetric networks arises be-
cause the data rate computed as above is not the forward
data rate, but the ack rate. Our solution consists of using the
timestamp option in TCP to encode the arrival times of packets
at the destination in their acks back to the sender. As illustrated
in Fig. 3, , the actual data arrival rate in the forward path
can then be easily computed by the number of packets between
two tagged packets divided by the difference of the reception
times of the two tagged packets.

We re-conducted the experiments with this mechanism in-
stalled. As shown in Table I, with the modified Vegas, the per-
formance degradation has effectively been removed.

IV. CONCLUSIONS

Many previous studies have indicated that TCP Vegas out-
performs TCP Reno. This letter shows that in asymmetric net-
works, Vegas algorithm fails to make full use of the available
bandwidth on the forward path and points out that the Vegas
congestion detection mechanism is the fundamental cause be-
hind such degradations. We have proposed and demonstrated
that the TCP timestamp option can be used for accurate mea-
surement of data rate to remove the limitation of Vegas in asym-
metric networks.

This study has focused on identifying the key reason be-
hind the performance degradation of Vegas in asymmetric
networks and providing a simple solution to it. As such, simple
experimental set-ups have been considered. More extensive
experiments involving large numbers of concurrent reverse and
forward connections, such as those conducted in paper [9],
will be worthwhile to validate our observation and solution in
future work.

REFERENCES

[1] V. Jacobson, “Congestion avoidance and control,” inACM SIGCOMM
88, Stanford, CA, Aug. 1988, pp. 314–329.

[2] L. Brakmo, S O’Malley, and L. Peterson, “TCP Vegas: New techniques
for congestion detection and avoidance,” inACM SIGCOMM’94,
London, U.K., Aug. 1994, pp. 24–35.

[3] J. S. Ahn, P. B. Danzig, Z. Liu, and L. Yan, “Evaluation with TCP Vegas:
Emulation and experiment,” inACM SIGCOMM 1995, Cambridge, MA,
Aug. 1995, pp. 185–205.

[4] G. Hasegawa, M. Murata, and H. Miyahara, “Fairness and stability of
congestion control mechanism of TCP,” inINFOCOM ’99, New York,
Mar. 1999, pp. 1329–1336.

[5] J. Mo, R. J. La, V. Anantharam, and J. Walrand, “Analysis and com-
parison of TCP Reno and Vegas,” inProc. INFOCOM ’99, vol. 3, New
York, Mar. 1999, pp. 1556–1563.

[6] U. Hengartner, J. Bolliger, and T. Gross, “TCP Vegas revisited,”Proc.
IEEE INFOCOM’00, vol. 3, pp. 1546–1555, Mar. 2000.

[7] T. V. Lakshman, U. Madhow, and B. Sutter, “Window-based error re-
covery and flow control with a slow acknowledgment channel,” inIN-
FOCOM ’97, Kobe, Japan, Apr. 1997, pp. 1199–1209.

[8] H. Balakrishnan, V. N. Padmanabhan, and R. H. Katz, “The effects of
TCP/IP performance,” inProc. INFOCOM’97, Budapest, Hungary,
Sept. 1997, pp. 77–89.

[9] S.H. Low, L. Peterson, and L. Wang, “Understanding Vegas: A duality
model,”J. ACM, vol. 49, no. 2, pp. 207–235, Mar. 2002.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

