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Abstract—It is well known that links in CSMA wireless networks
are prone to starvation. Prior works focused almost exclusively
on equilibrium starvation. In this paper, we show that links
in CSMA wireless networks are also susceptible to temporal
starvation. Specifically, although some links have good equilibrium
throughputs and do not suffer from equilibrium starvation, they
can still have no throughput for extended periods from time to
time. For real-time applications such as VoIP and video streaming,
it is desirable to understand and characterize temporal starvation
in CSMA wireless networks. To this end, we develop a “trap
theory” to analyze the temporal throughput fluctuations. Based on
the trap theory, we can develop analytical tools for computing the
“degrees of starvation” for CSMA networks to aid network design.
For example, given a CSMA wireless network, we can determine
whether it suffers from starvation, and if so, which links will starve.
Furthermore, the likelihood and durations of temporal starvation
can also be computed. We believe that the ability to identify and
characterize temporal starvation as established in this paper will
serve as an important first step toward the design of effective
remedies for it.

Index Terms—Starvation, CSMA, IEEE802.11.

I. Introduction

Starvation in communication networks is an undesirable

phenomenon in which some users receive zero or close-to-zero

throughputs. Wireless carrier-sense-multiple-access (CSMA)

networks, such as Wi-Fi, are prone to starvation [1]–[9].

In CSMA networks, different stations compete with each

other using the CSMA medium-access control (MAC) protocol.

When a station hears its neighbors transmit, it will refrain from

transmitting in order to avoid packet collisions.

If each station can hear all other stations, the competition

for airtime usage is fair. However, if each station hears only a

subset of the other stations, and different stations hear different

subsets of stations, then unfairness can arise. In this paper, we

refer to such CSMA networks as “non-all-inclusive” networks.

The unfairness in non-all-inclusive CSMA networks can be to

the extent that some stations are totally starved while other

stations enjoy good throughputs. As shown in prior works [1]–

[5], starvation can happen in many CSMA network topologies,

even in the absence of hidden terminals [10].

There are two types of starvation in CSMA networks:

• Equilibrium Starvation — A link could be starved because

it receives near-zero throughput all the time.

• Temporal Starvation — A link could be starved in the

temporal sense: it may have good long-term average

throughput, but its throughput is near zero for excessively

long periods from time to time.

The study of equilibrium throughputs in prior works [1]–

[5] could only capture equilibrium starvation. The analysis
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Fig. 1. An example network and its associated contention graph.

of the temporal behavior of CSMA network is particularly

challenging and there has been little prior research on the tem-

poral throughput fluctuations for the non-all-inclusive CSMA

networks. However, with the increasing real-time applications

over CSMA wireless networks (e.g., VoIP and video streaming),

it is desirable to understand and characterize temporal starvation

in them. This paper is devoted to a detailed quantitative study

of temporal starvation in CSMA networks. To our knowledge,

this paper is the first attempt to characterize temporal starvation

analytically.

To characterize temporal starvation, we need to analyze the

transient behavior of the underlying stochastic process of the

CSMA protocol. We emphasize that by “temporal”, we do not

mean that the starvation is temporary or ephemeral in nature.

Indeed, temporal starvation in CSMA wireless networks can be

long-lasting.

Fig. 1 shows an example of temporal starvation. We have

a small grid network consisting of six links. All the links

have good long-term average throughputs; yet they suffer from

temporal starvation, as described below.

The carrier-sensing relationships in the network are repre-

sented by the contention graph on the right of Fig. 1. In the

contention graph, links are represented by vertices, and an edge

joins two vertices if the transmitters of the two links can sense

(hear) each other. Thus, in this network, when links 1, 4, and

5 transmit, links 2, 3, and 6 cannot transmit, and vice versa.

The normalized equilibrium throughput of each link in the

network can be shown to be around 0.5 either by simulation or

by analysis using the method in [5]. However, as shown by the

simulation results presented in Fig. 2, the temporal throughputs

of links vary drastically over time.

Fig. 2 plots the normalized throughputs versus time for links

1 and 2. Each data point is the throughput averaged over a

window of one second. As can be seen, once a link gets access

to the channel, it can transmit consecutively for a long time;

on the other hand, once it loses the channel, it also has to wait

for a long time before it enjoys good throughputs again.

The above example is a small network. Temporal starvation

can be more severe for larger networks. For example, in an

N ×M grid network similar to that in Fig. 1, but with larger N

and M, the active and idle periods are much longer than those

shown in Fig. 2.

In this paper, we propose a “trap theory” for the identification
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Fig. 2. Temporal throughputs measured over successive one-second intervals
of links 1 and 2 in Fig. 1. Throughputs of other links exhibit similar fluctuations.

and characterization of temporal starvation. A trap is a subset

of system states during which certain links receive zero or

little throughputs; while the system evolves within the trap,

these links suffer from temporal starvation. Based on the trap

theory and the prior equilibrium analysis [5], we can construct

computational tools to aid network design. For example, we

can determine whether a given CSMA network suffers from

starvation; if so, which links will starve, and whether the

starvation is equilibrium or temporal in nature. Furthermore, for

each link, the probability of temporal starvation and its duration

can be characterized quantitatively. We believe the ability to

identify and characterize starvation is an important first step

toward finding the remedies to circumvent it.

Related Work

The equilibrium throughput of CSMA wireless networks has

been well studied. Ref. [11] derived the equilibrium throughput

of CSMA networks in which all links can sense all the other

links. Refs. [2] and [5] investigated non-all-inclusive CSMA

networks and showed that equilibrium throughputs of the links

can be computed by modeling the network state as a time-

reversible Markov chain. The temporal throughput fluctuations,

however, were not considered.
Refs. [6]–[8] developed analytical models to evaluate the

average transmission delay, delay jitter and the short-term

unfairness in CSMA wireless networks. However, they only

considered networks in which all links can hear each other.
Ref. [9] considered large CSMA wireless networks with 1D

and 2D regular contention graphs. The border effects, fairness

and phase transition phenomenon were investigated. Different

from the regular networks studied in [9], this paper provides

an analytical framework for characterizing temporal starvation

in general CSMA wireless networks.
To save space, some derivations and results are omitted in

this paper. They can be found in our technical report [12].

II. SystemModel

We present an idealized version of the CSMA network (ICN)

to capture the main features of the CSMA protocol responsible

for the interaction and dependency among links. The ICN

model was used in several prior investigations [2], [5], [9]. The

correspondence between ICN and the IEEE 802.11 protocol

[13] can be found in [5].

A. The ICN model

In ICN, the carrier-sensing relationship among links is de-

scribed by a contention graph in which each link is modeled

as a vertex. Edges, on the other hand, model the carrier-

sensing relationships among links. There is an edge between

two vertices if the transmitters of the two associated links can

sense each other.

At any time, a link is in one of two possible states, active or

idle. A link is active if there is a data transmission between its

two end nodes. Thanks to carrier sensing, any two links that

can hear each other will refrain from being active at the same

time. A link sees the channel as idle if and only if none of its

neighbors is active.

In ICN, each link maintains a backoff timer, C, the initial

value of which is a random variable with arbitrary distribution

f (tcd) and mean E [tcd]. The timer value of the link decreases

in a continuous manner with dC/dt = −1 as long as the link

senses the channel as idle. If the channel is sensed busy, the

countdown process is frozen and dC/dt = 0. When the channel

becomes idle again, the countdown continues and dC/dt = −1

with C initialized to the previous frozen value. When C reaches

0, the link transmits a packet. The transmission duration is

a random variable with arbitrary distribution g(ttr) and mean

E[ttr]. After the transmission, the link resets C to a new random

value according to the distribution f (tcd), and the process

repeats. We define the access intensity of a link as the ratio

of its mean transmission duration to its mean backoff time:

ρ = E[ttr]/E [tcd]. In this paper, we will normalize time such

that E[ttr] = 1. That is, time is measured in units of mean

packet duration. Thus, ρ = 1/E [tcd].

Let xi ∈ {0, 1} denote the state of link i, where xi = 1 if link

i is active (transmitting) and xi = 0 if link i is idle (actively

counting down or frozen). The overall system state of ICN is

s = x1x2...xN , where N is the number of links in the network.

Note that xi and x j cannot both be 1 at the same time if links

i and j are neighbors because (i) they can sense each other;

and (ii) the probability of them counting down to zero and

transmitting together is 0 under ICN (because the backoff time

is a continuous random variable).

The collection of feasible states corresponds to the collection

of independent sets of the contention graph. An independent set

(IS) of a graph is a subset of vertices such that no edge joins

any two of them [14]. For a particular feasible state x1x2...xN ,

link i is in the corresponding IS if and only if xi = 1. Thus, we

may also denote the system state by the subset of active links

in the state, e.g., s = {1, 4, 5} represents a state in which links

1, 4 and 5 are active and the other links are idle. A maximal

independent set (MaIS) is an IS that is not a subset of any other

independent set [14], and a maximum independent set (MIS)

is a largest maximal independent set [14]. Under an MaIS or

an MIS, all non-active links are frozen, and none of them can

become active.

As an example, Fig. 3 shows the state-transition diagram

of the network in Fig. 1 under the ICN model. To avoid

clutters, we have merged the two directional transitions between

two states into one line. Each transition from left to right

corresponds to the beginning of a transmission on one particular

link, while the reverse transition corresponds to the ending of

a transmission on the same link.

B. Equilibrium Analysis

This part is a quick review of the result in [5], and the

reader is referred to [5] for details. If we further assume

that the transmission time and backoff time are exponentially

distributed, then s (t) is a time-reversible Markov process. For

any pair of neighbor states in the continuous-time Markov
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Fig. 3. The state-transition diagram of the network shown in Fig. 1. G
(2)

1
and

G
(2)

2
are two traps.

chain, the transition from the left state to the right state occurs

at rate 1/E [tcd] = ρ, and the transition from the right state to the

left state occurs at rate 1/E [ttr] = 1. The stationary distribution

of state s can be computed by

Ps = ρ
n/Z,∀s ∈ S (n), where Z =

∑

n
|S (n)|ρn (1)

In (1), S (n) is the subset of feasible states with n active links

and Z is the normalization factor. The fraction of time during

which link i transmits is Thi =
∑

s:xi=1 Ps. We will refer to Thi

as the normalized throughput of link i.

Ref. [5] showed that (1) is in fact quite general and does not

require the system state s(t) to be Markovian. In particular, (1)

is insensitive to the distributions of the transmission time and

the backoff time, given the ratio of their mean ρ. In other words,

(1) still holds even if the transmission time and the backoff time

are not exponentially distributed.

III. Traps and Temporal Starvation

This section gives the mathematical definition of traps and

relates traps to temporal starvation in CSMA networks.

A. Definition of Traps

Recall that for a non-MaIS state, the transition rate to a right

neighbor state is ρ, and the transition rate to a left neighbor

is 1. Note that the backoff countdown period is typically much

smaller than the packet transmission duration in CSMA wireless

networks (i.e., ρ is large) and ρ can be larger when TXOP [15]

is increased to reduce the backoff countdown overhead. Large ρ

tends to push the system to states with more transmitting links.

That is, in the state-transition diagram the movement from the

right to the left is much more difficult than the movement from

the left to the right. This could be seen from the relationship

given in (1) as well, in which states with more transmitting

links have higher probabilities through the factor ρn.

Before defining traps precisely, for illustration and motiva-

tion, let us look at the example of Fig.1. With respect to its state-

transition diagram in Fig. 3, MIS {1, 4, 5} and {2, 3, 6} have the

highest probabilities. Starting from either MIS, the process will

next visit a state with one fewer transmitting link when it makes

a transition. After that, the state may evolve back to the MIS

(with rate ρ) or to a state with yet one additional idle link (with

rate 1). However, large ρ makes the movement to the left states

a lot less likely. The system process tends to circulate among

the subset of states composed of an MIS and its neighboring

states. In particular, with large ρ, the system evolution will be

anchored around the MIS, with departures from it soon drifting

back to it. This will continue for a duration of time, depending

on the “depth” of the trap (to be defined soon) and the value of

ρ, until the system evolves to the other set of states anchored

by the other MIS.

To isolate the two sets of states anchored around the two

MIS, we could truncate the left two columns of the state-

transition diagram in Fig. 3. We could then define the sets of

states connected to MIS {1, 4, 5} and MIS {2, 3, 6} as two traps,

respectively (i.e., the states enclosed in the two boxes in Fig.

3). Links 2, 3, 6 suffer from starvation in the first trap, and links

1, 4, 5 suffer from starvation in the second trap. We could use

a transient analysis to analyze the time it takes for the system

to evolve out of a trap, which sheds light on the duration of

temporal starvation.

From Fig. 3, we see that a trap is a subset of “connected”

states in which multiple links (e.g., links 1, 4 and 5) transmit

and hog the channel for excessive time. While the system

evolves within this subset of states, their neighboring links

(e.g., links 2, 3 and 6) may get starved. Within the trap, the

throughputs of these starved links may be much lower than

their equilibrium throughputs. In this case, we say that temporal

starvation occurs.

Moving beyond the above illustrating example, we now

present the exact definition of traps in a general CSMA network.

Let us denote the complete state-transition diagram of a CSMA

network by G. In G, we arrange the states (vertices) such that

the states with the same number of active links are in the same

column. Label the column from left to right as 0, 1, 2, · · · (i.e.,

the states in column l have l active links).

Definition of the l-column truncated state-transition dia-

gram: The state-transition diagram with columns 0, 1, 2, · · · , l−

1 truncated, denoted by G(l), will be referred to as the l-column

truncated state-transition diagram. Each state in the leftmost

column of Gl has l transmitting links 1.

Definition of disconnected subgraphs and traps in G(l):

G(l) may consist of a number of subgraphs such that within

each subgraph, all states are connected, but the states between

the subgraphs are disconnected. Let Nl denote the number of

disconnected subgraphs in G(l), and G
(l)

1
,G

(l)

2
, · · · ,G

(l)

Nl
denote

the subgraphs themselves. A subgraph G
(l)

j
, j ∈ {1, ...,Nl}, is

said to be a trap if there are at least two columns in it 2.

Procedure to identify traps

As mentioned above, temporal starvation occurs within traps.

To determine whether a given network suffers from temporal

starvation, we need to study traps in its state-transition diagram.

We now describe a procedure to decompose the system states

into traps in a hierarchical manner (in general, there could

be traps within a trap). In practice, this procedure could be

automated by a computer program as part of a toolset to identify

and analyze temporal starvation for a given CSMA network.

We use the network on the left of Fig. 4 as an illustrating

1Note that when we truncate a state (vertex), we also eliminate the transitions
(edges) out of it and into it. If two states are retained in a truncated graph, the
transitions between them remain intact.

2The reason for requiring G
(l)
j

to have at least two columns to qualify as a

trap is as follows. A general property of ICN is that in G, there is no direct

transition (edge) between two states of the same column. Thus, if G
(l)
j

has only

one column, then it must have only one single state; otherwise, the condition

that all states in G
(l)
j

are connected as defined above would not be fulfilled.

This means that when the process enters G
(l)
j

, with probability 1 the next state

that the process will visit will be a state in the left of G
(l)
j

. That is, regardless

of ρ, the process will not get “trapped” in G
(l)
j

for long.
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example. The state-transition diagram of the network is shown

on the right of Fig. 4.

1) Step 1: We find the minimum l such that G(l) consists

of at least two disconnected subgraphs. Among the subgraphs

G
(l)

1
,G

(l)

2
, · · · ,G

(l)

Nl
, if none of them has at least two columns,

then there is no trap in the network. Otherwise, we call those

G
(l)

j
, j ∈ {1, ...,Nl}, with at least two columns the first-level traps.

For the example of Fig. 4, we have l = 1, and Nl = 2. Both

G
(1)

1
and G

(1)

2
are first-level traps as shown on the right of Fig.

4.

Depth of a trap: For each trap, we define the depth of a trap

as the maximum cardinality of the states in the trap minus l.

Mathematically, the depth of a trap is

D
(

G
(l)

j

)

= max
s∈G

(l)

j

|s| − l (2)

In other words, D
(

G
(l)

j

)

+1 is the number of columns in G
(l)

j
;

and for G
(l)

j
to qualify as a trap, D

(

G
(l)

j

)

≥ 1.

For simplicity, when we refer to a trap in general, instead of

writing G
(l)

j
, we write Tr with the understanding that there is

an implicit l and j in Tr. Let Th(i | Tr) denote the normalized

throughput of link i given that the process is within the trap.

Mathematically, Th(i | Tr) is a conditional probability:

Th(i | Tr) = Pr {link i is active |the process is within Tr}

= Pr {s : xi = 1| s ∈ Tr} =
∑

s:xi=1,s∈Tr Ps

/∑

s∈Tr Ps

(3)

where Ps is given by (1).

We define the links which cannot receive a minimum target

throughput while within the trap as the starving links of the

trap, denoted by S (Tr):

S (Tr) =
{

i|Th (i |Tr) < Thtemp

}

(4)

where Thtemp is determined by the requirement of the applica-

tions running on top of the wireless network.

For our example in Fig. 4, we have two first-level traps: G
(1)

1

and G
(1)

2
. D
(

G
(1)

1

)

= 2 and D
(

G
(1)

2

)

= 1. For any Thtemp > 0, we

have S
(

G
(1)

1

)

= links {5, 7} and S
(

G
(1)

2

)

= links {1, 2, 3, 4, 6}.

2) Step 2: For each first-level trap, we increase l further and

check whether it can be further decomposed into a number of

second-level traps.

For our example in Fig. 4, G
(1)

2
cannot be decomposed any

further, while G
(1)

1
can be decomposed to two second-level

traps: G
(2)

1
and G

(2)

2
. D
(

G
(2)

1

)

= 1 and D
(

G
(2)

2

)

= 1; for any

Thtemp > 0, we have S
(

G
(2)

1

)

= links {2, 3, 5, 7} and S
(

G
(2)

2

)

=

links {1, 4, 5, 7}.

3) Further Steps: Similarly, we construct the third-level

traps by decomposing the second-level traps. Repeat this pro-

cedure until all the newly formed traps cannot be decomposed

further.

B. Definition of Temporal Starvation

Next we relate the trap concept to temporal starvation. In this

paper we define temporal starvation as follows:
Definition of temporal starvation: A link i is said to suffer

from temporal starvation if there is at least a trap Tr with

average trap duration larger than Ttarget in which link i gets

throughputs below Thtemp within the trap (i.e., link i ∈ S (Tr)).
As will be argued in Section IV, the average duration of

a trap is a function of both D(Tr) and ρ. In particular, it

grows exponentially with D(Tr). That is, D(Tr) is an important

parameter characterizing the severity of the temporal starvation

suffered by links in S (Tr). Our procedure to identify temporal

starvation presented in Section V is motivated by this result.

IV. Analysis of Trap Duration

We characterize the mean trap duration by its ergodic sojourn

time and study its properties. In particular, we obtain asymptotic

analytical results for the trap duration for large ρ. When ρ

is not large, we propose a simple computation method by

constructing an approximate Birth-Death process, from which

we can obtain closed-form expression of ergodic sojourn time

of traps. Interested readers are referred to Section V-D of [12]

for more details.

A. Definition of Ergodic Sojourn Time of a Trap

We now define the ergodic sojourn time of a trap, which

provides a measure of the mean trap duration.
Write B = G\Tr. All visits to a trap Tr begin at some state

within it. Assuming the system process is ergodic, we would

like to derive the probability of a visit to Tr beginning at state

s ∈ Tr. Let hBs be the average number of visits to Tr per unit

time that begins at state s ∈ Tr, defined as follows:

hBs = lim
t→∞

[the number of transitions from B to s in (0, t)] /t

=
∑

s′∈B Ps′υs′ s

(5)

where υs′ s is the transition rate from state s′ to state s in the

complete continuous-time Markov chain s (t).
When the system just arrives at the trap, the initial distribu-

tion is given by

Ps (0) =

{

hBs

/∑

s′∈Tr hBs′ s ∈ Tr

0, s ∈ B
(6)

Definition of Ergodic sojourn time of a trap: The ergodic

sojourn time of a trap Tr is defined as the time for the system

process to evolve out of the trap given that the initial condition

(6):

TV (Tr) =
∑

s∈Tr
Ps (0) TsB (7)

where TsB is the expectation of the first passage time from a

particular state s within Tr to the subset of the state space B.
In fact, a similar definition is used in [16] to characterize the

expected sojourn time of visits to a group of states in general

Markov chains.
It can be shown that the journey into the trap begins at any

of the |Al| states in the leftmost column of the trap with equal

probability (details can be found in [12]). Thus, (7) can be

written as

TV (Tr) =
∑

s∈Tr,|s|=l
TsB/|Al| (8)
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B. Property of TsB

We study the time it takes to exit the trap given that the

system is in a particular state within the trap: TsB.

We index the columns of a trap Tr = G
(l)

i
with respect to the

overall state-transition diagram G. That is, column l refers to

the leftmost column, and column l + d refers to the rightmost

column, of Tr, where d is its depth. Let Ak, l ≤ k ≤ l + d

denote the states in column k of the trap. We have the following

theorem:

Theorem 1: Consider a trap Tr = G
(l)

i
within the state-

transition diagram of a CSMA wireless network. For any state

s ∈ Tr and ρ > 1, we have

TsB = βρ
d + o

(

ρd
)

(9)

where d is the depth of the trap, and β = |Al+d | / (l |Al|); |Al| is

the number of states in the leftmost column of Tr, and |Al+d |

is the number of states in the rightmost column of Tr.

Proof: Theorem 1 is non-trivial to prove. We refer the

reader to the Appendix A of [12] for the lengthy proof.

Theorem 1 indicates that starting with any state within the

trap, the expected passage time to arrive at a state outside the

trap is of order βρd, where β is a constant determined by the

network topology and d is the depth of the trap. Given a fixed

network topology, TsB increases polynomially with ρ. Given a

fixed ρ, TsB increases exponentially with d. We can see that

for a large ρ and a finite network, traps of higher depth are

much more significant than traps of lower depth in terms of

trap duration.

An interesting and significant observation of Theorem 1 is

that for large ρ, the dominant term βρd in TsB is independent

of the state s. Different states yield different TsB only through

the term o
(

ρd
)

. This means that for large ρ, the duration of the

trap depends only weakly on where the journey into the trap

begins.

C. Asymptotic results of TV (Tr)

Combining Theorem 1 and (8), we have

TV (Tr) = βρd + o
(

ρd
)

(10)

For large ρ, TV (Tr) is dominated by the term βρd. For

moderate ρ, we provide a simple method to approximate

TV (Tr) in Section V-D of [12].

According to our definition of traps, the ergodic sojourn time

of a trap provides a lower bound for the duration of temporal

starvation. Once the system process evolves into a trap, on

average the starving links of the trap will receive below-Thtemp

throughputs for at least the duration of the trap. Furthermore,

a starving link of a trap may starve even longer if the system

returns to the trap without passing through states in which the

link receives good throughputs.

V. Analyzing Temporal Starvation Using Trap Theory

In this section, we propose the procedure to identify temporal

starvation from traps and list the corresponding starving links.

Besides the mean trap duration studied in Section IV, the

severity of temporal starvation is further characterized by the

probability of traps. One potential outcome of our analysis

above is to construct a computational toolset to quantitatively

characterize temporal starvation in a general CSMA wireless

network.

A. Procedure to Identify Temporal Starvation

Links suffer from temporal starvation within traps. The nor-

malized link throughput within the traps can be computed using

(3). To identify temporal starvation according to its definition

in Section III-B, we need to examine the mean trap duration.

Next we convert the target upperbound of average trap duration

Ttarget to reference trap depth dtarget.

Converting Ttarget to dtarget: As can be seen in (10), the

ergodic sojourn time of a trap is a function of both ρ and d.

Given Ttarget, we can determine the reference trap depth dtarget

with respect to ρ from (10) , i.e., βρdtarget ≈ Ttarget → dtarget ≈

log(Ttarget/β)/ log(ρ) (for ρ that is not large, we could instead

use the approximation provided in [12]). We then identify all

the traps with depth no less than dtarget and list the links that

suffer from temporal starvation.

Given the procedure to identify traps and dtarget, the procedure

to identify temporal starvation is quite straightforward: First,

all the traps in the network are identified using the procedure

described in Section III-A. We then go through all the traps

with depth no less than dtarget and identify the links that suffer

from temporal starvation.

Let us illustrate the procedure with the example in Fig. 4.

For simplicity, we assume dtarget = 1. For any Thtemp > 0, links

1 and 4 suffer from temporal starvation in both traps G
(1)

2
and

G
(2)

2
; links 2 and 3, in both traps G

(1)

2
and G

(2)

1
; links 5 and 7,

in traps G
(1)

1
, G

(2)

1
and G

(2)

2
; link 6, in trap G

(1)

2
.

For the above example, all links suffer from temporal star-

vation. However, their probabilities and durations of temporal

starvation can be quite different. In general, the significance

of a trap Tr in terms of inducing temporal starvation on links

S (Tr) depends on two of its properties: the probability and the

duration of Tr. The trap duration has been carefully analyzed

in Section IV. We study the probability of a trap below.

B. Probability of Traps

We define the probability of a trap as the stationary proba-

bility for the process to be within the trap:

Pr{Tr} =
∑

s∈Tr
Ps (11)

The probability of a trap Tr characterizes how likely the links

in S (Tr) will suffer from temporal starvation because of Tr.

The probability of a trap can be directly obtained from (1).

For our example in Fig. 4, we have

Pr{G
(1)

1
} =
(

5ρ + 6ρ2 + 2ρ3
)

/Z0, Pr{G
(1)

2
} =
(

2ρ + ρ2
)

/Z0

Pr{G
(2)

1
} =
(

3ρ2 + ρ3
)

/Z0, Pr{G
(2)

2
} =
(

3ρ2 + ρ3
)

/Z0

Z0 = 1 + 7ρ + 7ρ2 + 2ρ3

(12)

Given the value of ρ, we can compute the probability each

link suffers from temporal starvation using (12).

C. Temporal Analysis of General CSMA Networks

For general CSMA wireless networks, with theory and tools

developed thus far, we can construct an analytical toolset to

study the temporal behavior of throughputs. The tool can be

implemented by a computer program for modest-size CSMA

networks. The inputs to the program are the network topology

in the form of a contention graph, the value of ρ and Ttarget. The

outputs of the program are as follows: 1) the list of starving
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links; 2) the list of traps in the network; 3) the probability of

traps, and 4) the durations of traps.
Refer to our example in Fig. 4, the user inputs the contention

graph shown on the left of Fig. 4, the value of ρ and Ttarget.

As on the right of the Fig. 4, the computer program produces

the state-transition diagram together with identification of traps

using the procedure described in Section III-A, upon which

we obtain the lists of traps that incur temporal starvation with

respect to Ttarget in the network and the list of starving links.

Then the user may want to find out the likelihood of links

starvation and the durations of such starvation as follows.
All links in Fig. 4 suffer from temporal starvation assuming

dtarget = 1. Equation (11) characterizes the probabilities of traps

in the network, from which we can compute the probabilities

of the occurrence of temporal starvation for each link. Invoking

(10), the ergodic sojourn time of traps can be computed as

TV

(

G
(1)

1

)

= ρ2/5 + o
(

ρ2
)

,TV

(

G
(1)

2

)

= ρ/2 + o (ρ)

TV

(

G
(2)

1

)

= TV

(

G
(2)

2

)

= ρ/6 + o (ρ)
(13)

When ρ is large, the mean trap duration becomes rather large

and hence the temporal starvation becomes more severe. In Fig.

4, links 1, 2, 3, 4 and 6 have good equilibrium throughputs;

however, they still get starved when the system process evolves

into trap G
(1)

2
. To see this, we set up a simulation in which we

initialized by letting links 5 and 7 transmit first (i.e., the system

process starts within the trap G
(1)

2
). Fig. 5 shows the temporal

throughputs measured over successive 50-ms intervals. As can

be seen, at the beginning period (0 ∼ 250 ms), links 5 and 7

have the maximum throughputs while the other links receive

zero throughputs, since the system process is within trap G
(1)

2
.

After that, the process evolves to trap G
(2)

2
, in which links 1, 4, 5

and 7 get starved while links 2, 3 and 6 enjoy good throughputs.

After 80*50 ms in the figure, the process evolves into trap

G
(2)

1
, in which links 2, 3, 5 and 7 starve. In the simulation,

we observed that as time evolves, the system process transits

among the three traps and all the links take turns to suffer from

temporal starvation.
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Fig. 5. Temporal throughputs of links 1, 2, 5 and 6 in the network of Fig. 4,
and ρ = 500 measured over successive 50-ms intervals. Link 3, link 4 and link
7 have similar throughputs to that of link 2, link 1 and link 5, respectively.

In the network of Fig. 4, links 5 and 7 are the most prone to

starvation and get starved in both traps G
(2)

1
and G

(2)

2
. Most of

the time links {1, 4} and links {2, 3} alternate to receive good

and zero throughputs. Link 6, however, has good throughputs in

both traps G
(2)

1
and G

(2)

2
. Finally, links 1, 2, 3, 4 and 6 may get

starved in trap G
(1)

2
, although the probability of this starvation

is small. The probability of link starvation and the mean trap

duration can be computed by (12) and (13), respectively.
In general, our work allows the design of an automated

computational tool to identify and quantitatively characterize

starvation phenomenon in CSMA wireless networks. Given

the state-transition diagram of the system, it is easy to de-

termine computationally whether the truncated diagram G(l) is

connected and then identify traps [14]. Hence, the complexity

mainly lies in generating the state space of the system process

as described in Section II-B. For modest-size CSMA wireless

networks, we can quickly identify temporal starvation using our

toolset described above. The complexity issue of large CSMA

wireless networks will be tackled in our future studies.

VI. Conclusion

This paper has proposed a framework called the trap theory

for the study of temporal starvation in CSMA networks. The

theory serves two functions: 1) it allows us to establish analyti-

cal results that provide insights on the dependencies of transient

behavior of CSMA networks on the system parameters (e.g.,

how does access intensity ρ affects temporal starvation); 2) it

allows us to build computational tools to aid network design

(e.g., a computer program can be written to determine whether

a given CSMA network suffers from starvation, the degree of

starvation, and the links that will be starved).

A goal of this paper is to enrich our understanding on the

starvation phenomenon in CSMA wireless networks. Equilib-

rium throughput analysis cannot capture temporal starvation.

The study of temporal starvation in this paper is a first step

toward finding the solution for it.
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