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Abstract – This is Part I of a two-part paper series that studies the use of the proportional fairness (PF) 

utility function as the basis for capacity allocation and scheduling in multi-channel multi-rate wireless 

networks. The contributions of Part I are threefold. (i) First, we lay down the theoretical foundation for 

PF. Specifically, we present the fundamental properties and physical/economic interpretation of PF. 

We show by general mathematical arguments that PF leads to equal airtime allocation to users for the 

single-channel case; and equal equivalent airtime allocation to users for the multi-channel case, where 

the equivalent airtime enjoyed by a user is a weighted sum of the airtimes enjoyed by the user on all 

channels, with the weight of a channel being the price or value of that channel. We also establish the 

Pareto efficiency of PF solutions. (ii) Second, we derive characteristics of PF solutions that are useful 

for the construction of PF-optimization algorithms. We present several PF-optimization algorithms, 

including a fast algorithm that is amenable to parallel implementation. (iii) Third, we study the use of 

PF utility for capacity allocation in large-scale WiFi networks consisting of many adjacent wireless 

LANs. We find that the PF solution simultaneously achieves higher system throughput, better fairness, 

and lower outage probability with respect to the default solution given by today’s 802.11 commercial 

products.  
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I. INTRODUCTION 
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Capacity allocation is a fundamental problem in communications networks when there are competing 

demands from users for the network bandwidth. When allocating capacity to network users, there is 

generally a tradeoff between system throughput and fairness. Fig. 1 (a) and (b) are simple illustrating 

examples. Fig. 1(a) shows a wired network with three nodes: a, b, and c. A link connects nodes a and b, 

and another link connects nodes b and c.  The capacity of each link is one unit. There are three traffic 

flows: flow 1 from node a to node b; flow 2 from node b to node c; and flow 3 from node a to node c. 

Let iT  be the throughput of flow i. To maximize the system throughput ∑i iT , we should set 

121 == TT  and 03 =T , for a total throughput of 2. This solution, however, is totally unfair to flow 3. 

On the other hand, if the goal is to be fair so that we maximize )(min ii T , then .21321 === TTT  The 

total throughput will then be 223 < .  

Fig. 1(b) shows a wireless network with two wireless stations. Because of their different distances to 

the base station, the transmission rate of link 1 is 1b  bps, and that of link 2 is 2b  bps, with 21 bb >> . At 

any one time, only one of the links can be in use because they share the same wireless medium. Let iP  

be the fraction of airtime used by link i. Then, the throughput of station i is iii bPT =  and the system 

throughput is 2211 bPbP +  . If the goal is to maximize system throughput, then 11 =P  and 02 =P . If we 

maximize )(min ii T  for fairness, then )( 2121 bbbP +=  and )( 2112 bbbP += . Note that if 02 ≈b , this 

yields system throughput 0≈  (i.e., trying to achieve equal throughputs among users may cause the 

system throughput to be dragged down by a poor performing station [1]). 

Since the publication of Ref. [2], there has been growing interest in capacity allocation based on 

maximizing the log utility function, log( )iiy T= ∑ . With this utility function, the solution to Fig. 1(a) 

becomes 3221 == TT , ;313 =T  and the solution to Fig. 1(b) becomes ,2121 == PP  yielding 

211 bT = , 222 bT = . The log utility is also referred to as the proportional fairness (PF) utility. Most 

prior work, particularly those related to wired networks, adopts the PF utility so as to strike a balance 

between system throughput and fairness. However, the implicit assumption that user happiness, or the 

perceived quality of service, increases according to the log of its throughput has not been established 

on a solid foundation. There also appears to be no direct physical justification for the use of PF utility. 

In contrast, the use of PF utility in wireless networks has an appealing physical justification. We show 

in this paper that in multi-rate wireless networks, maximizing PF utility is equivalent to allocating 

equal airtime to all users, hence establishing a physical correspondence to the use of PF utility. That is, 
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maximizing PF in the throughput domain is equivalent to max min fairness in the airtime domain. If we 

treat airtime as the previous resource for which the users compete in a wireless network, then 

maximizing PF yields fair resource allocation.  

 Earlier, a paper co-authored by one of us [3] made this observation of IEEE 802.11 networks. The 

current paper, however, shows that this result is generic and applies to all multi-rate wireless networks 

(i.e., not just 802.11 networks). The result is also valid for wireless networks with multiple channels 

except that in place of airtime, we need the concept of equivalent airtime, in which the airtime of a 

particular channel is weighted the “value” or “price” of the channel. Maximizing PF will then 

correspond to allocating equal equivalent airtime to all users.  

Problem Formulation and Motivating Examples 

The formulation in this paper is quite general and applies to capacity allocation and scheduling 

problems in various settings. Two scenarios are shown in Fig. 2 and Fig. 3. Fig. 2 concerns the problem 

of assigning wireless stations to wireless local area networks (WLAN). There are U wireless stations 

(STA) and S wireless access points (AP) distributed over a geographical region. Suppose that adjacent 

APs operate on different frequency channels (e.g., in 802.11a, there are eight available orthogonal 

frequency channels) so that there is no co-channel interference among the WLANs. Then, essentially 

we have S channels in the system. The data transmission rate enjoyed by STA i if it connects to channel 

k (AP k) is kib , , where kib ,  is a function of the signal-to-noise ratio (SNR) with respect to channel k 

(e.g., in 802.11a, there are eight possible data transmission rates: 6, 9, 12, 18, 24, 36, 48, or 54Mbps, so 

that kib ,  is  one of these values, or 0Mbps if STA i is too far away from AP k ).  

In current 802.11 networks, an STA usually associates itself with the AP with the strongest signal. 

This may lead to load imbalance and uneven throughputs among STAs when the distribution of STAs 

is not uniform. To avoid this problem, we could solve the optimization problem as follows: 
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where kiP ,  is the fraction of airtime of channel k used by STA i, and ( )∑∑= k kikii bPy ,,log  is the PF 

utility function. Note that we have assumed the integration of the capacity assignment and scheduling 

problems in the above formulation. In particular, we assume that once airtimes kiP ,  are determined, 
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there is a medium access control (MAC) scheduling protocol that will make sure that user i uses no 

more that  kiP ,  fraction of the airtime of channel k when all STAs are busy.  The reader is referred to 

[3] for such MAC protocols.  

Fig. 3 depicts an OFDM system [4] in which the air channel is divided into S subcarriers which can be 

dynamically assigned to users. For the downlink (uplink), the base station can simultaneously transmit 

to (receive from) multiple users on different subcarriers. With respect to Fig. 3, kiP ,  in (1) corresponds 

to the fraction of the airtime of subcarrier k allocated to user i, and kib ,  is the bit rate of user i on 

subcarrier k.  

This paper series considers the problem formulation as in (1) and its variations. Besides deriving the 

theories and general results that apply to different multi-channel multi-rate settings, we focus on the 

application scenario of Fig. 2 to show how to apply the PF algorithms in system designs. The 

remainder of this paper is organized as follows. Section II presents general results related to 

interpretations of PF optimality in multi-channel wireless networks. Section III gives several 

characteristics of PF optimal solutions that help the construction of PF algorithms and interpretation of 

numerical results later. Section IV presents several PF algorithms. Section V makes use of one of the 

algorithms to generate numerical results for the application scenario of Fig. 2. Section V concludes Part 

I of the paper series.  

II. INTERPRETATIONS OF PF OPTIMALITY IN MULTI-CHANNEL WIRELESS NETWORKS 

This section presents two fundamental properties associated with the multi-channel multi-rate PF 

optimization problem in (1). These properties give us an economic interpretation for PF optimality. 

Specifically, we show the following:  

1. In the PF-optimal solution, the users are allocated equal equivalent airtime.  

2. The PF-optimal solution is Pareto efficient. 

A. Single-channel Case and Conditions for PF-Optimality in the Multi-channel Case. 

Ref. [3] considered scheduling in 802.11 WLAN to achieve PF optimality, which corresponds to the 

single channel case (S = 1) under our general setting here. The main result is that PF optimality in the 

throughput domain is equivalent to max-min fairness in the airtime domain, and that the 802.11 MAC 

protocol could be configured to achieve PF optimality easily. As shown below, the essence of this 

conclusion is in principle true for all wireless networks (including cellular networks), and not just 

802.11 networks. To focus on the fundamental, we shall ignore protocol overhead in the following 
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discussion. Interested readers are referred to [3] for how such overhead can be taken into account in 

802.11 networks.  

Consider a wireless network with S = 1, and let us label the sole channel as channel 1. At any one 

time, only one user can transmit. We assume that there is enough traffic in the network so that it is 

always busy. Pick a random point in time. Let 1,iP  be the probability of finding user i transmitting. The 

throughput of user i is 1,1, iii bPT = . It can be easily shown that the optimal solution to (1) is obtained by 

setting UPi 11, =  for all i.  

The above formulation is quite general. For a time-slotted system with time slots of fixed duration, PF 

optimality means that each user is equally likely to transmit in a given time slot. For a packet system 

with fixed packet size (in byte), the packet duration (in second) of user i is proportional to 1,1 ib . To 

satisfy the optimal condition UPi 11, = , the underlying scheduling scheme should make sure that an 

arbitrary transmitted packet is that from user i with probability ∑i ii bb 1,1, . This interpretation can be 

easily mapped into 802.11 MAC either by varying the contention window (CW) or transmission 

opportunity (TXOP) among the users [3]. In general, the system does not even have to adopt 

probabilistic scheduling. As long as the system schedules user i to transmit UPi 11, =  fraction of the 

time, it is PF optimal.  

PF optimality in the single-channel case has a nice and simple interpretation: users should have equal 

shares of airtime. This makes economic sense in situations where the users are subscribers who pay the 

same subscription fee to the service provider. In [1], it was shown that a user that transmits at very low 

rate because of poor SNR can easily drag down the performance of all other users in an 802.11 WLAN, 

because of the excessive airtime it uses. As a result, everybody suffers because of the “poor” user. With 

PF scheduling, this problem can be removed, because equal airtime usage establishes a sort of 

“firewall” among users [3].    

One can of course generalize the concept to situations where different users have different priorities 

(see Extension to Theorem 1 in Section 2.B) and should therefore be allocated different amounts of 

airtimes. The key concept, however, is that “airtime” is the resource that should be meted out to the 

users carefully rather than raw throughput.  

We shall see that unlike in a single-channel system, PF optimality in a multi-channel system does not 

mean equal “physical” airtime usage. The airtime of each channel must first be weighted by a “shadow 

price”. Once that is done the concept of an equivalent airtime can then be defined so that PF optimality 
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means equal equivalent airtime among all users. We first present the Karush-Kuhn-Tucker (KKT) 

conditions for the optimization problem of (1) below.  

Karush-Kuhn-Tucker (KKT) Conditions for Multi-channel PF Optimality 

We now turn our attention to the multi-channel problem in (1).  Let ][ ,kiP  be the matrix representing 

a feasible solution, in which rows correspond to users, and columns correspond to channels. Thanks to 

the concavity of y in the feasible region, the following KKT conditions [5] are necessary and sufficient 

for a feasible solution ][ *
,kiP  (with corresponding ∑= k kikii bPT ,

*
,

* ) to be optimal: 

1. For each channel k, for each pair of users i and j with 0*
, >kiP and 0*

, =kjP ,  
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, jkjiki TbTb ≥ . (3) 

2. For each channel k, for each pair of users i and j with 0*
, >kiP  and 0*

, >kjP ,  
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, jkjiki TbTb = . (5) 

2-User-2-Channel Example 

Let ][ ,kib  be the matrix consisting of the bit rates of different users on different channels. Consider a 

2-user-2-channel example in which  

⎥
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⎢
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⎡
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It can be verified that the solution  

⎥
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⎤
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⎣

⎡
=

4/30
4/11

][ *
,kiP  

satisfies the KKT conditions and is therefore optimal. 

We observe the following about the optimal solution: 1) the two users do not have equal airtime on 

each channel: in fact, user 2 has zero airtime on channel 1; 2) neither are the sums of airtimes on the 

channels equal: user 1 has total airtime of 1.25, and user 2 has total airtime of 0.75, on the two 

channels. So, the equal-airtime property of PF optimality in the single channel case does not carry over 

to the multi-channel case directly. 
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B.   Equivalent Airtime in Multi-channel Problem 

In the above 2-user-2-channel example, if we weight the airtime on each channel by its “shadow 

price”, 
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where 0*
, >kiP , then the total weighted airtime of user 1 is 125.0 *

12,1
*

11,1 =+ TbTb ; and the total 

weighted airtimes of user 2 is 175.0 *
22,2 =Tb . So, the total weighted airtimes of the two users are 

equal.  

The interpretation is as follows. In the above example, both users can transmit at higher bit rates on 

channel 2. So, channel 2 is more valuable than channel 1. The shadow price of a channel k is a measure 

of the “value” of the airtime of the channel. Specifically, it is a measure of the potential increase in the 

utility function y for each unit increase in airtime on channel k under optimality (i.e., how much y could 

be increased further if the constraint 1
,

=∑ kii P  could be relaxed). Of course, physically, the sum of 

the fractions of airtimes used by all users on channel k cannot be increased to beyond 1. Nevertheless, 

this does not invalidate the use of the shadow price as a “pricing mechanism” for our optimization 

problem.  

We now formally show that the equivalent airtime usage of all users must be equal for multi-channel 

PF optimality. Consider an optimal solution ][ *
,kiP . Let *

kλ be the shadow price of channel k. Define the 

equivalent airtime usage of user i as ∑∑
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Extension of Theorem 1: Suppose that user i is willing to pay a subscription cost of ic , and we modify 

the utility function in (1) to ( )∑∑= k kikii i bPcy ,,log . Then icE ii ∀=    . 

Proof: In this case, the shadow price is 
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So,   ii
Kk

kikii
Kk

kiki cTPbcPE
ii
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∈∈
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λ  (7) 

  
We see from the above extension that users may get varying amounts of equivalent airtimes according 

to the costs they pay.  

C. Pareto Efficiency of PF Optimality 

The PF utility function is just one of many possible utility functions that can serve as the optimization 

criterion.  Within the feasible region defined by the constraints in (1), there are many feasible solutions, 

each corresponding to one achievable set of throughputs among the users.  Generally, there is a tradeoff 

among the throughputs enjoyed by different users so that increasing the throughput of one user means 

decreasing the throughput of another user. When such a tradeoff exists, one cannot say for sure whether 

one feasible solution is better than the other: much depends on the utility function being adopted. 

However, some of the solutions do have ranking among them so that we can establish that one solution 

is superior to the other regardless of the utility assumed. This requires the concept of Pareto efficiency 

borrowed from the field of economics.  

Let ][ iTT =  be the vector representing the user throughputs in a feasible solution. We say that 

][]'[ ii TT  if  ii TT ≥'  for all i, and there is at least an i such that ii TT >' . So, a solution yielding ]'[ iT  

is superior to another solution yielding ][ iT  in the sense that no user has lower throughput in the former 

than in the latter, but there is at least one user with higher throughput in the former. Note that the 

concept of ranking is independent of the utility function adopted. If a solution is ranked higher than 

another solution, no matter what utility function is used, it is still superior to the other solution.  

Definition of Pareto Efficiency: A feasible solution yielding ][ iTT =  is Pareto efficient if and only if 

one cannot identify another feasible solution yielding ]'[' iTT =  such that TT ' . 

The optimal solutions under utilities of PF and max system throughput are both Pareto-efficient. The 

Pareto efficiency of the PF solution can be proven quite trivially, as in Theorem 2. We assume that 

there is no user i such that 0, =kib  for all k; otherwise, user i should be removed from consideration 

since 0=iT  regardless of the optimization process, and the PF utility function will always be negative 

infinity.  

Definition of Strong PF in Multi-channel Optimization: We define “strong” PF to mean that all users 

i with 0, =kib  for all k should be removed from consideration in the optimization process. PF 

optimality in this paper means strong PF optimality.  
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Theorem 2: A PF-optimal solution is Pareto-efficient. 

Proof: Suppose the optimal solution yields the utility ∑= i iTy ** log  and that the solution is not 

Pareto efficient. Then we can find another solution that yields ∑= i iTy 'log'  such that  *' ii TT ≥  for all 

i, and there is at least an i such that *' ii TT > . In other words, *' yy > , and therefore y* could not have 

been the optimal solution under PF.  

III. CHARACTERISTICS OF PF OPTIMAL SOLUTIONS 

This section discusses characteristics of PF optimal solution useful for the construction of 

optimization algorithms. We will also use these characteristics to interpret the numerical results in 

Section V.  

A. Numbers of Shared and Exclusively Assigned Channels 

In the 2-user-2-channel example in Section 2, we see that in the optimal solution, one channel is 

shared and one channel is exclusively assigned to one user. At the same time, one user uses just one 

channel while the other user uses both channels. It turns out that in a U-user-S-channel system, there is 

an optimal solution in which there are at most 1−U shared channels, and at most 1−S  users using 

more than one channel.  

Definition of Shared Channels:  

1. A channel k is said to be shared if there are at least two non-zero ikP ,  UIi ∈ , where UI  is the set 

of all users in the system. 

2. A channel k is shared among N ( UN ≤ ) users in the system if there are at least two non-zero ikP , 

NIi ∈ , where NIi ∈ , and UN II ⊆  is the subset containing the N users. 

3. N  ( UN ≤ ) users are said to share K ( SK ≤ ) channels if each and every of the K channels is 

shared among the N users.  

Theorem 3: Consider a system with U users and S channels. There is an optimal solution in which the 

number of shared channels among any N of the U users is no more than 1−N .  

Corollary 1: For a U-user-S-channel system, there is an optimal solution with no more than 

)1,min( −US  shared channels, and with at least )1,0max( +−US  channels that are exclusively used 

by just one user. 

Proof of Corollary 1: Obvious from Theorem 3. 
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Proof of Theorem 3: Consider an optimal solution which yields throughput *
iT  for user i.  Suppose that 

in this solution, there are N users sharing NK ≥  channels (see Definition 3 above on shared channels). 

We show that we can find another optimal solution such that the N users share no more than 1−N  

channels.   

Consider the representation of a feasible solution by a bipartite graph in which the left vertices 

represent the users and the right vertices represent the channels, and in which there is an edge between 

a vertex i on the left and a vertex k on the right if 0, >kiP . For the bipartite graph to be loop-free, there 

can be no more than )1( −+ KN  edges. The bipartite graph corresponding to the original optimal 

solution above contains a loop, because according to our definition of shared channels, there are at least 

KNK +≥2  edges in the original solution. 

Loop-removal Procedure 

We present a procedure that shifts probability assignments to remove loops while maintaining the 

throughput *
iT for each user i. Consider a loop with n left vertices and n right vertices. Label the left 

vertices 1i , 2i , .., ni ; and the right vertices 1k , 2k , …, nk , with the edges in the loop being ( 1i , 1k ), 

( 2i , 1k ), ( 2i , 2k ), ( 3i , 2k ), …, ( ni , nk ), ( 1i , nk ). The KKT conditions for optimality require  

121121
**

kikiii bbTT =  

232232
**

kikiii bbTT =  

   (8) 

1111
**

−−−−
=

nnnnnn kikiii bbTT  

and  ))...()((
111222311211 1

**
−−−

==
nnnnnnnn kikikikikikikikiii bbbbbbbbTT    (9) 

where the right side of (9) is obtained by substitution from (8). Define 
hhhh kikih bbd

1−
=  for 

nh ..., ,3 ,2=  and 
1111 kiki bbd

n
= . From (9), we have 

 1...321 =ndddd  (10) 

Define hh dddc ...21=  (11)  

and ( )nkinnkihkihhkikikikiki cPcPcPcPcPcPcPcPD
nnhhh 11232121

,,...,,,...,,,,min 222111 +
=  . (12) 

Suppose that hhki cPD
h

=  for some h (note: the case where D = hhki cP
h 1+

 follows a similar 

probability-shifting procedure as below except that the + and – signs are reversed.). Then, shift 

probabilities as follows to obtain a new solution: 
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0=−← DcPP hkiki hhhh
; 0

11
≥+←

++
DcPP hkiki hhhh

; 

011111
≥−← +++++

DcPP hkiki hhhh
; 011212

≥+← +++++
DcPP hkiki hhhh

; 

 
0≥−← DcPP nkiki nnnn

; 0
11

≥+← DcPP nkiki nn
; 

 
0111

≥−← −−−
DcPP hkiki hhhh

 

After applying the above procedure, the change in *
jiT  for nj ,...,2=  is  

 011
=+− −−

DcbDcb jkijki jjjj
; (13) 

and the change in *
1iT  is  

 0
111111 11 =+−=+− DbDdbDcbDcb

nn kikinkiki . (14) 

So, the new solution remains optimal. Furthermore, one edge in the bipartite graph, ),( hh ki , has been 

removed.  

If there is still a loop remaining, iterate the above procedure until no loop is left. When there is no 

loop left, there cannot be more than )1( −+ KN  edges. For this new solution, let sK  be the number of 

shared channels and uK  be the number of unshared channels. Each shared channel is associated with at 

least two edges; and each unshared channel is associated with one edge (note: an unshared channel 

cannot be associated with zero edge after the above loop-removal procedure because we started out 

assuming all the K channels are shared, and the loop-free procedure preserves ∑ ∈ NIi ikP  for each 

channel k , so that at least one user is still associated with channel k). So, 2/)1( us KKNK −−+≤ . 

This gives .1−≤ NK s    

B. Numbers of Multiply and Singly Assigned Users 

Definition of Multiply Assigned Users:  

1. A user i is said to be assigned to multiple channels (or multiply assigned) if there are at least two 

non-zero ikP ,  SKk ∈ , where SK  is the set of all channels in the system. 

2. A user i is multiply assigned to K ( SK ≤ ) channels in the system if there are at least two non-zero 

ikP , KKk ∈ , where SK KK ⊆  is the subset containing the K channels. 

3. N ( UN ≤ ) users are multiply assigned to K ( SK ≤ ) channels if each and every of the N users is 

multiply assigned to the K channels. 
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Theorem 4: Consider a system with U users and S channels. There is an optimal solution in which the 

number of users that are multiply assigned to any K of the S channels is no more than 1−K .  

Corollary 2: There is an optimal solution with no more than ( )1,min −SU  multiply assigned users in 

the overall system, and with at least ( )1,0max +− SU  users non-multiply assigned.  

Comment: With respect to the AP allocation problem in Fig. 2, to the extent that there are many more 

STAs than APs, Corollary 2 basically says that most STAs will associate with only one AP.  

Proof of Corollary 2: Obvious from Theorem 4.  

Proof of Theorem 4: Similar to the proof of Theorem 3, we start out by assuming there are KN ≥  

users that are multiply assigned to K channels in an optimal solution. We then find a loop-free optimal 

solution using the loop-removal procedure. So, the number of non-zero ikP  in the loop-free optimal 

solution is no more than )1( −+ KN . Each user i must have at least one non-zero ikP  after the loop-

removal procedure, since otherwise iT  cannot be preserved. Let mN  be the number of multiply 

assigned users and uN  be the number of non-multiply assigned users after the loop-removal procedure. 

Then,  

 12 −+≤+ KNNN um . (15) 

So, we have 1−≤ KmN  (16) 

after substituting um NNN += .  

IV. PROPORTIONAL-FAIRNESS ALGORTIHMS 

This section presents several algorithms for the PF optimization problem. Subsections A and B 

consider the special cases where there are only 2 users and 2 channels, respectively. The optimal-

solution characteristics derived in the preceding come in handy for the construction of fast algorithms 

in these cases. Subsection C presents a parallel algorithm for the general case.  

A. 2-User-S-Channel Case 

We present a fast  )log( SSO  algorithm for the 2-user-S-channel case. The idea is to sort the S 

channels according to kk bb ,2,1  from large to small. The )log( SSO  computation time is due to the 

sort operation. Let us relabel the channel numbers according to the sort result so that 

)1(,2)1(,1,2,1 ++≥ kkkk bbbb  for all k.  

According to Corollary 1, there is an optimal solution with at most one channel that is shared by the 

two users. Together with the KKT conditions, this implies the following property: 
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Property 1:  There is an optimal solution with throughputs *
1T and *

2T , and a channel *S , such that 

either (i) all channels *Sk ≤  are exclusively assigned to user 1; all channels *Sk > are exclusively 

assigned to user 2; or (ii) channel *S  is shared; all channels *Sk <  are exclusively assigned to user 1; 

all channels *Sk > are exclusively assigned to user 2.  

For (i),  ** ,2,1
*
2

*
1 SS bbTT ≤  and )1(,2)1(,1

*
2

*
1 ** ++≥ SS bbTT . (17) 

For (ii),  ** ,2,1
*
2

*
1 SS bbTT = . (18) 

Let us define ∑
=

=
k

l
l

k bT
1

,1
)(

1  and ∑
+=

=
S

kl
l

k bT
1

,2
)(

2  (i.e., the solution given by exclusively assigning 

channels 1 to k to user 1, and channels k+1 to S to user 2). Note that  

 kTTTT kkkk ∀≤ ++   )1(
2

)1(
1

)(
2

)(
1 . (19) 

Property 2: Suppose that lS  and uS  are some known lower and upper bounds for the optimal solution 
*S  (i.e., )* ul SSS ≤≤ . Consider a tentative solution 'S  within the bound, in which channels 1 to 'S   

are exclusively assigned to user 1 and the other channels are exclusively assigned to user 2. (i) If 

',2',1
)'(

2
)'(

1 SS
SS bbTT > , then '* SS ≤ . (ii) If  )1'(,2)1'(,1

)'(
2

)'(
1 ++< SS

SS bbTT , then .1'* +≥ SS  

To see Property 2(i), consider a channel 'Sk > . Then,   

 
)(

2

)(
1

)'(
2

)'(
1

',2

',1

,2

,1
k

k

S

S

S

S

k

k

T

T

T

T
b
b

b
b

≤<≤ . (20) 

The inequality 
)(

2

)(
1

,2

,1
k

k

k

k

T

T
b
b

<  means k cannot be *S  under solution (i) in Property 1. That 

)(
2

)(
1

)'(
2

)'(
1

,2

,1
k

k

S

S

k

k

T

T

T

T
b
b

≤<  for 'Sk >  means k cannot be *S  under solution (ii) in Property 1 either, since 

** ,2,1
*
2

*
1 SS bbTT =  cannot be achieved by shifting probability from kP ,1  to kP ,2 . 

To see Property 2(ii), consider a channel 'Sk ≤ . Then,  

 .
)(

2

)(
1

)'(
2

)'(
1

)1'(,2

)1'(,1

,2

,1
k

k

S

S

S

S

k

k

T

T

T

T
b

b

b
b

≥>≥
+

+  (21) 

The inequality 
)(

2

)(
1

,2

,1
k

k

k

k

T

T
b
b

>  means k cannot be *S  under solution (ii) in Property 1 by shifting 

probability from kP ,1  to kP ,2 . Also,  
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)(

2

)(
1

)'(
2

)'(
1

)1'(,2

)1'(,1

)1(,2

)1(,1
k

k

S

S

S

S

k

k

T

T

T

T
b

b

b

b
≥>≥

+

+

+

+ . (22) 

So, k cannot be *S  under solution (i) in Property 1 either. 
The following is a binary search algorithm to identify *S  based on Properties 1 and 2.  

2-User-S-Channel Algorithm 

Initial solution: ⎣ ⎦2/' SS ← ; 1←lS ; SS u ← .     

Step 1:   1,1 ←kP  for ',...,1 Sk = ; 1,2 ←kP  for SSk ,...,1'+= ; 0, ←kiP  otherwise. 

 Compute )'(
1

ST  and )'(
2

ST . 

Step 2:  if '.2',1
)'(

2
)'(

1 SS
SS bbTT >  (See Property 2(i))  

   then { 'SS u ← ; ⎣ ⎦2)(' ul SSS +← ; 

           if lu SS =  then goto step 5; else goto Step 1. } 

Step 3:  if )'1'(,2)1'(,1
)'(

2
)'(

1 ++< SS
SS bbTT   (see Property 2(ii))                

  then { 1'+← SS l ; ⎣ ⎦2)(' ul SSS +← ; 

                        if lu SS =  then goto Step 5; else goto Step 1. } 

Step 4:  ;'* SS ←  (Condition in Property 1(i) satisfied. All channels exclusively assigned.) 
               stop. 

Step 5:   ;'* SS ←  (Channel *S  is shared.) 

  1,1 ←kP  for 1,...,1 * −= Sk  and 1,2 ←kP  for SSk ,...,1* += ;        

2

)...( )...(1 ****

*
,11,11,1,2,21,2

1
SSSSS

S

bbbbbb
P −+ ++−+++

← ; 

   ;1 ** 12 SS PP −←  
  stop. 

B. U-User-2-Channel Case 

We present a fast  )log( UUO  algorithm for the U-user-2-channel case. The idea is similar to the 2-

user-S-channel case.  We sort the U users according to 2,1, ii bb  from large to small, and relabel the 

user index so that 2),1(1),1(2,1, ++≥ iiii bbbb  for all i. According to Corollary 2, there is an optimal 

solution with at most one user that uses both channels. The rest use just one of the channels.  

Property 3: To achieve proportional fairness, equal airtime should be assigned to the users that are non-

multiply assigned to the same channel. 

Corollary 2, the KKT conditions, and Property 3 imply the following property: 
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Property 4:  There is an optimal solution with throughputs *
iT , Ui ,...,1= , and a user *U , such that 

either (i) all users *Ui ≤  use channel 1 only; all users *Ui >  use channel 2 only; or (ii) user *U  use 

both channels; all users *Ui <  use channel 1 only; all users *Ui >  use channel 2 only. 

For (i), 
2,

1,
*

*

2),1(

1),1(

*

*

*

*

U

U

U

U

b

b

UU
U

b

b
≤

−
≤

+

+ . (23) 

For (ii),  *

*

2,

1,
*

*

*

*

1
1

UU
U

b

b

UU
U

U

U

−
<<

+−

− . (24) 

(i) in the above is derived from the fact that 1),1(1,
*

1
*

**** ++
≤ UUUU bbTT , 2),1(2,

*
1

*
**** ++

≥ UUUU bbTT , 

and  Property 3 (i.e., *
1,

*
** UbT UU =  and )( *

2,1
*

1 ** UUbT UU −= ++
. To see (ii), user *U  uses 

channels 1 and 2 with probabilities 1,*UP  and 2,*UP , respectively. By computing *
iT  for all i, and 

setting  

 1,1,
**

** iUiU bbTT =  for 1,...,1 * −= Ui  (25) 

and  2,2,
**

** iUiU bbTT =  for UUi ,...,1* += , (26) 

 we can find an expression for 1,*UP  and an expression for 2,*UP . The requirements of 01,* >UP  and 

02,* >UP  lead to (ii). 

Property 5:  Suppose that lU  and uU  are some known lower and upper bounds for the optimal 

solution *U  (i.e., )* ul UUU ≤≤ . Consider a tentative solution 'U  within the bound, in which users 1 

to 'U   use only channel 1 and the other users use only channel 2. (i) If 
'

'

2,'

1,'

UU
U

b
b

U

U

−
< , then '* UU ≤ . 

(ii) If  
'

'

2),1'(

1),1'(

UU
U

b
b

U

U

−
>

+

+ , then 1'* +≥ UU . 

To see Property 5(i), consider a user 1'+≥ Ui . Then,   

 .
'

'
1

1

2,

1,

2,'

1,'

i

i

U

U

b
b

b
b

UU
U

iU
i

iU
i

≥>
−

≥
+−

−
>

−
 (27) 

So, i cannot be *U  under solutions (i) or (ii) in Property 4. To see Property 5(ii), consider a user 

'Ui ≤ . Then,  
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 .
'

'

2,

1,

2),1(

1),1(

2),1'(

1),1'(

i

i

i

i

U

U

b
b

b

b

b

b

UU
U

iU
i

≤≤<
−

≤
− +

+

+

+  (28) 

So, i cannot be *U  under solutions (i) or (ii) in Property 4 either. 

U-User-2-Channel Algorithm 

Initial solution: ⎣ ⎦2/' UU ← ; 1←lU ; UU u ← .   

Step 1: if 
'

'

2,'

1,'

UU
U

b
b

U

U

−
<  (see Property 5(i)) 

then { 'UU u ← ; ⎣ ⎦2/)(' ul UUU +← ; 

            if ul UU = then goto Step 4; else goto Step 1} 

Step 2: if 
'

'

2),1'(

1),1'(

UU
U

b
b

U

U

−
>

+

+  (see Property 5(ii)) 

    then { 1' +← UU l ; ⎣ ⎦2/)(' ul UUU +← ;      

      if ul UU = then goto Step 4; else goto Step 1} 

Step 3:  '* UU ← ; (Condition in Property 4(i) satisfied. All users non-multiply assigned.) 

⎪⎩

⎪
⎨
⎧ =←

otherwise0

,,1for 1 *
*1,

Ui
UPi ; 

⎪⎩

⎪
⎨
⎧ +=

−←
otherwise0

,,1for 1 *
*2,

UUi
UUPi . 

             stop. 

Step 4: '* UU ← ; (User *U  uses both channels) 

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

−=
−

−

=⋅
−

−
+−

←

otherwise0

1,,1for 
1

1

for 11

*
*

1,

*

1,

2,
**

1,
*

*

*

Ui
U

P

Ui
b

b

U
U

U
UU

P U

U

U

i ; 

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

+=
−

−

=⋅
−

−

←

otherwise0

,,1for  
1

for 

*
*
2,

*

2,

1,
**

2,
*

*

*

UUi
UU

P

Ui
b

b

U
UU

U
U

P U

U

U

i  

 
stop. 

C. U-User-S-Channel Case 

We now present a parallel algorithm for the general U-user-S-channel case. In the algorithm, kiP ,  is 

adjusted step by step. In each step, for each channel k we try to equate  kiki Tb ,,  for all users with 

0, >kiP , so that the KKT condition is satisfied. The computation-intensive steps of the algorithm 

below (steps marked with *) can be carried out on all channels in parallel for fast execution speed. To 
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start with, we set the initial kiP ,  to be U1  for all i and k. The algorithm, however, will work for other 

initial kiP , . To avoid oscillations, we use a factor ς  to limit the maximum step size by which kiP ,  can be 

adjusted in each iteration.  

U-User-S-Channel Algorithm 

Without loss of generality, we focus on an arbitrary channel k in the following description. 

Initial solution: iUP ki ∀←  1, ;  iUbT
S

k
kii ∀← ∑

=
 

1
, . 

Step 1*: { } 0| , >← kik PiI ; ∑
∈

=
kIi

k
i

ki
k I

T
b

R , . 

(Note that ikiki TbdPdy ,, =  and kR  as computed above is the average kidPdy , among all 
users with 0, >kiP . The parameter kR  serves as a “reference kidPdy , ”  in our algorithm 
such that users with kki RdPdy ≥,  will have their kiP , increased, while users with  

kki RdPdy <,  and 0, >kiP will have their kiP ,  decreased.) 

Step 2:  
⎭
⎬
⎫

⎩
⎨
⎧

≥∈←+
k

i

ki
kk R

T
b

IiiI , and| ; 
⎭
⎬
⎫

⎩
⎨
⎧

<∈←−
k

i

ki
kk R

T
b

IiiI , and| ; 

  and 0| ,
,

⎭
⎬
⎫

⎩
⎨
⎧

≥=←+
k

i

ki
kik R

T
b

PiI ; 
⎭
⎬
⎫

⎩
⎨
⎧

<==−
k

i

ki
kik R

T
b

PiI ,
,  and 0|  

∑
+∪∈

+∪←
kk IIi

kk
i

kinew
k II

T
b

R , ; 

if new
kk RR = , then goto Step 3 

       else new
kk RR ←  and goto Step 2.  

(The purpose of Step 2 is include users with 0, =kiP  but kki RdPdy ≥,  (i.e.,  +
kI ) in the set of 

user whose kiP ,   will be increased. Step 1 included only users with 0, >kiP  as a first attempt. 
Note that kR  is adjusted to be the average kidPdy ,  of the users whose kiP , will be increased. ) 

Step 3*: +∪∈∀−← kkk
i

ki
ki IIiR

T
b

 ,
,δ ; −∈∀← kki Ii 0,δ ; 

ki

ki

IIi

P

kk ,

,1
min

δ
α

−
←

++ ∪∈
; 

ki

ki

Ii

P

k ,

,min
δ

β
−

←
−∈

; ( )βας ,,min←c ; (29) 

icPP kikiki ∀+←  ,,, δ  (30) 
 (The amount by which kiP ,  will be increased (decreased) is proportional to ki,δ , with constant 

of proporationality c. It is easy to show that 0, =∑i kicδ and ( )  1,, =+∑i kiki cP δ . In other 
words, the airtime reallocation in (30) does not change the total airtime usage. 
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Note that α  and β  in (29) is to ensure the new probability assignment stays between 0 and 1 
(i.e.,  icP kiki ∀≤+≤  10 ,, δ ). The parameter ς  imposes a limit on the adjustment of kiP ,   in 
each iteration to avoid oscillations.) 

Step 4: ibPT
S

k
kikii ∀← ∑

=
 

1
,, ; 

if the KKT condition is satisfied, (i.e., 0 and 0 if ,,
,, >>= kjki
j

kj

i

ki PP
T

b

T
b

 and 

kPP
T

b
T

b
kjki

j

kj

i

ki ∀=>≥ 0 and 0 if ,,
,, ), then stop; 

else goto Step 1. 

The above U-user-S-channel algorithm is used to generate numerical results for the study in the next 

section. A non-parallel version of the program has been written using MATLAB. Alternatively, the 

built-in functions in MATLAB optimization toolbox based on generic algorithms1 could be used. 

However, we find that using the generic algorithms takes exceedingly long computational time even for 

PF-optimization problems of moderate size, making generating a large number of data points for the 

numerical study in the next section virtually impossible. In contrast, the computational time is quite 

manageable with the above U-user-S-channel algorithm, even for a non-parallel version. It typically 

takes around 0.6 seconds2 to converge when there are, for instance, 16 APs and 64 mobile stations in 

the WiFi network shown in Fig. 2. With this kind of time scale, the algorithm is also suitable for actual 

field deployment beyond mere numerical studies, since AP allocation and re-allocation are usually not 

invoked in a frequent manner in typical WLAN-usage scenarios where the users are not highly mobile.  

V. NUMERICAL RESULTS: PF CAPACITY ALLOCATION IN WIFI NETWORKS 

We now move on to the capacity allocation problem in WiFi networks with multiple adjacent 

WLANs (see Fig. 2).  In this study, we assume that there are 16 APs being placed in a square grid. The 

adjacent APs are separated by 20 meters. A wrap-around method is applied to create a torus topology to 

eliminate the edge effect: i.e., the rightmost column (top row) is adjacent to the leftmost column 

(bottom row). A mobile station can transmit at different data rates depending on the SNR with respect 

to an AP. The possible data transmission rates and the corresponding required SNRs are listed in Table 

1.  

                                                 
1 MATLAB solves the constrained nonlinear optimization problem using a subspace trust region method for large-scale 
problems and a sequential quadratic programming method for medium scale problems.  
2 We performed our simulations with MATLAB 7.0 on a Pentium 2GHz machine.  
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We further assume a two-ray ground model with path loss exponent of 3 and log-normal shadowing 

with standard deviation of 6 dB. The average SNR (averaged over shadowing) at the cell boundary is 

10 dB. That is, there is a 4 dB shadowing margin for achieving a minimum data rate of 1Mbps. 

For comparison purposes, besides PF, three conventional AP association schemes, namely, maximum 

throughput (MT), signal-strength based association with intra-cell throughput fairness (SS-TF), and 

signal-strength based association with intra-cell airtime fairness (SS-AF), are also simulated.  

MT aims to maximize the total throughput of the WLAN. Each AP selects among all the STAs those 

that enjoy the highest data transmission rate to serve. If more than one STA has the same highest rate, 

equal airtime is assigned to these STAs. SS-TF is adopted in the current 802.11 networks. The STAs 

associate themselves with the APs with the strongest signal. Meanwhile, the same throughput is 

guaranteed for the STAs associated with the same AP. SS-AF is similar to SS-TF except that the STAs 

associated with the same AP are allocated equal airtime. As proved in [3], intra-cell equal airtime 

allocation leads to PF optimality within a single AP coverage. 

In the first set of experiments, we assume that the STAs are uniformly distributed in the whole area. 

Fig. 4 plots total throughput versus number of STAs in the overall network. An interesting observation 

is that when the number of STAs is small relative to the number of APs, the throughput of PF 

converges to that of MT. This is because most of the APs are exclusively allocated to just one STA in 

this case (see Theorem 3 and Corollary 1). To maximize the PF utility, the STA chosen by an AP is the 

one with the highest throughput, which coincides with MT.  

In contrast, when the total number of STAs is much larger than the number of APs, the throughput of 

PF converges to that of SS-AF. This is also due to the characteristic of PF optimal solutions (see 

Theorem 4 and Corollary 2). When there are many more STAs than APs, most STAs are associated 

with only one AP, which is usually the one with the strongest signal strength. Meanwhile, PF 

optimality leads to equal airtime allocation within each cell, which coincides with SS-AF.  

Fig. 4 also indicates that SS-AF and PF outperform SS-TF. Most current WiFi products adopt SS-TF, 

in which (i) each STA associates with the AP with the highest signal strength; and (ii) the default 

802.11 MAC scheduling algorithm is used.  An STA at cell boundary has weak SNR and transmits at 

low data rates. With SS-TF, the throughputs of all STAs will be dragged down by these “weak STAs” 

[1]. With SS-AF, (ii) is modified to ensure equal airtime for all STAs of an AP [3]. The equal airtime 

allocation establishes a “firewall” between the strong and weak STAs so that the weak STAs do not eat 

into the airtime of the strong STAs.  We also note that whereas SS-AF is better than SS-TF only when 

number of STAs is large, PF is better than SS-TF for both small and large numbers of STAs.  
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In Table 2, we compare the fairness performance of the PF scheme with other schemes using the 

Jain’s fairness index [6]: 

 ( )∑∑
==

U

i
i

U

i
i TUT

1

2
2

1
, (31) 

We see that the fairness of MT is significantly worse than the other schemes. Comparatively, PF, SS-

TF and SS-AF guarantee much fairer service. In particular, PF achieves consistently better fairness than 

MT, SS-TF, and SS-AF do.  

In Fig. 5, we investigate the outage probability. A user is said to be suffering an outage if its 

throughput is lower than a minimum data-rate requirement, which is assumed to be 1Mbps in the 

figure. As the figure shows, PF achieves the lowest outage probability among the four schemes. 

In Fig. 4, Fig. 5, and Table 2, we have demonstrated that PF strikes a good balance between system 

throughput and fairness. In the following figures, we show that in a WLAN with hot spots, PF can 

effectively balance traffic loads among the cells. In this set of experiments, the total number of STAs is 

64. Out of the 16 APs, one AP is a hot spot. We define the load percentage of the hot spot to be the 

percentage of users that are located in the hot spot. The users that are not located in the hot spot are 

randomly distributed in the other cells. We vary the load percentage of the hot spot from 6.25% (i.e., 

1/16, which corresponds to uniform STA distribution) to 100%. 

A high STA density in the hot spot inevitably results in high outage probability. Fig. 6 shows that PF 

can mitigate this destructive effect. In particular, unlike the other schemes, its outage probability 

increases by 3.50% only when the traffic distribution varies from uniform to extremely non-uniform. 

Fig. 7 illustrates the throughput degradation in the presence of non-uniform traffic distribution. From 

Fig. 6 and Fig. 7, we can see that PF achieves both higher throughput and lower outage probability 

compared with SS-TF. Moreover, PF outperforms SS-AF in terms of throughput when the load 

percentage of the hot spots exceeds 80%. 

VI. CONCLUSIONS 

This paper has (i) provided physical/economic interpretations for the use the proportional-fairness 

(PF) utility function for capacity allocation in multi-channel multi-rate wireless networks; (ii) derived 

characteristics of PF optimal solutions and presented several PF algorithms; and (iii) investigated the 

use of PF and other utility functions for capacity allocation and AP assignment in large-scale WiFi 

networks.  
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With regard to (i), we have shown by general mathematical arguments that PF optimization leads to 

equal airtime allocation to individual users for the single-channel case; and equal equivalent airtime 

allocation to individual users for the multi-channel case, where the equivalent airtime enjoyed by a user 

is defined to be a weighted sum of the airtimes enjoyed by the user on all channels, with the weight of a 

channel being the price or value of that channel. We have also established the Pareto efficiency of PF-

optimal solutions. In addition, we have derived several characteristics of PF-optimal solutions that are 

useful for the construction of PF-optimization algorithms. 

With regard to (ii), we show that a PF solution typically consists of many zero airtime assignments 

when the difference between the number of users U and the number of channels S, SU − , is large. We 

have applied this property to construct fast algorithms for the 2-user-S-channel and U-user-2-channel 

cases. In addition, we have presented a fast algorithm amenable to parallel implementation for the 

general U-user-S-channel case. 

With regard to (iii), we have found that using the PF utility function achieves a good balance between 

system throughput and fairness compared with using the other utility functions. In particular, PF 

simultaneously achieves higher system throughput, better fairness, and lower outage probability with 

respect to the default 802.11 AP association and MAC scheduling scheme in today’s commercial 

products. This is the case for uniform as well as non-uniform, and dense as well as sparse, user 

distributions in the wireless network.  
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Fig 1: Illustrating examples of trade-off between throughput and fairness in (b) a wired network, and (b) a 
wireless network. 

1,kib

2,kib
1, 2 +kib

1, 1+kib

 
 

Fig. 2: Assigning APs to wireless stations in a wireless LAN 

),( ,, 11 kiki bP

),( ,, 22 kiki bP

 
Fig. 3: Assigning subcarriers to users in an OFDM system 

 

Table 1: Minimum SNR required for different data transmission rates 
 

Data Rate (Mbps) Minimum required SNR 
(dB) 

0 −∞ 
1 6 
6 10 
9 11 
12 12 
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18 13 
24 16 
36 19 
48 26 
54 29 

 

 

 

0 20 40 60 80 100 120 140 160
0

100

200

300

400

500

600

700

800

900

Number of mobile stations

T
ot

al
 th

ro
ug

hp
ut

 (
M

bp
s)

PF

MT

SS−TF

SS−AF

 
Fig. 4: Total Throughput for uniform STA distribution. 
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Fig. 5: Probability of outage for uniform STA distribution. 

 

 

 

 

Table 2: Jain’s Fairness index 

 U=32 U=48 U=64 
PF 0.759 0.779 0.797 
MT 0.432 0.291 0.277 

SS-TF 0.612 0.604 0.635 
SS-AF 0.649 0.639 0.661 
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Fig. 6: Probability of outage for non-uniform STA distribution. The minimum data-rate requirement is 1Mbps 
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Fig. 7: Probability of outage for non-uniform STA distribution 

 
 


