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Abstract— In a generic switching problem, a switching pattern
consists of a one-to-one mapping from a set of inputs to a set
of outputs (i.e., a permutation). We propose and investigate a
wireless switching framework in which a multi-antenna relay is
responsible for switching traffic among a set of N stations. We
refer to such a relay as a MIMO switch. With beamforming
and linear detection, the MIMO switch controls which stations
are connected to which stations. Each beamforming matrix
realizes a permutation pattern among the stations. We refer to
the corresponding permutation matrix as a switch matrix. By
scheduling a set of different switch matrices, full connectivity
among the stations can be established. In this paper, we focus
on “fair switching” in which equal amounts of traffic are to
be delivered for all the N(N − 1) ordered pairs of stations.
In particular, we investigate how the system throughput can
be maximized. In general, for large N the number of possible
switch matrices N ! is huge, making the scheduling problem
combinatorially challenging. We show that for N = 4 and 5,
only a subset of N − 1 of the N ! switch matrices need to be
considered in the scheduling problem to achieve good throughput.
We conjecture that this will be the case for large N as well.
This conjecture, if valid, implies that for practical purposes, fair-
switching scheduling is not an intractable problem.

Index Terms—Fairness, MIMO switching, physical-layer net-
work coding, relay, scheduling.

I. INTRODUCTION

Relaying in wireless networks plays a key role in various
communication applications [1]. The use of relays can extend
coverage as well as improve energy efficiency [2]. In this
paper, we study a set-up in which N stations communicate
with each other via a multi-antenna relay. With beamforming,
the relay controls which stations are connected to which
other stations. Each beamforming matrix realizes a permu-
tation among the stations represented by a switch matrix. By
scheduling a set of different switch matrices, full connectivity
among the stations can be established.

Prior work that investigated N stations exchanging data
via a relay includes [2]–[4]. Ref. [2] studied “pairwise data
exchange”. For pairwise data exchange, if station i transmits
to station j, then station j transmits to station i as well, and the
two stations communicate with each other only. In [2], MIMO
relays with different forwarding strategies were considered.
Ref. [3] also studied pairwise data exchange, but the relay
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adopts the decode-and-forward strategy only. The diversity-
multiplexing tradeoffs under reciprocal and non-reciprocal
channels were analyzed. Pairwise data exchange as studied
in [2], [3] assumes a station communicates with one other
station only. In a general setting, a station could have data for
more than one station. In this paper, we focus on a uniform
traffic setting in which the amounts of traffic from station i to
station j are the same for all i, j ∈ {1, · · · , N}, i 6= j. “Fair
switching” is used to meet the uniform traffic requirement.
Specifically, fair switching is realized by scheduling a set of
switch matrices. To the best of our knowledge, the framework
of fair switching has not been considered in the existing
literature.

Refs. [4] investigated the case of full data exchange, in
which all stations want to broadcast their data to all other
stations.1 Data transmissions in [4] can be summarized as
follows: in the first slot, all stations transmit to the relay
simultaneously; the first slot is followed by multiple slots
for downlink transmissions; in each downlink slot, the relay
multiplies the signal received in the first time slot by a different
beamforming matrix, such that at the end of all downlink slots,
all stations receive the broadcast data from all other stations.
By contrast, the framework investigated in this paper is more
general in that it can accommodate the pure unicast case, the
mixed unicast-multicast case, as well as the pure broadcast
case as in [4]. In particular, a station i can have Mi data
streams, and each station j 6= i is a target receiver of one of
the Mi streams.

In our framework, the MIMO relay serves as a general
switch that switches traffic among the stations. We use beam-
forming at the relay and linear detection to realize different
connectivity patterns among the stations. Each beamforming
matrix realizes a permutation among the stations represented
by a switch matrix. By scheduling a set of switch matrices, the
MIMO switching system can realize any general traffic-flow
pattern (unicast, multicast, broadcast, or a mixture of them)
among the stations.

Before delving into technical details, we provide a simple
example to illustrate the scenario of interest to us here.
Consider a network with three stations, 1, 2, and 3. The traffic
flows among them are shown in Fig. 1: station 1 wants to
deliver “a” to both stations 2 and 3; station 2 wants to deliver
“b” and “c” to stations 1 and 3, respectively; and station 3

1Note that full data exchange is also discussed in [2]. But only a single-
antenna relay was considered.
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Fig. 1. Traffic demand of a three stations example.
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Fig. 2. A transmission established by two slots of unicast connectivity
realizes the traffic demand in Fig. 1.

wants to deliver “d” and “e” to stations 1 and 2, respectively.
Pairwise data exchange as in [2] and [3] is not effective in
this case because when the number of stations is odd, one
station will always be left out when forming pairs. That is,
when the number of stations is odd, the connectivity pattern
realized by a switch/permutation matrix does not correspond to
pairwise communication. Full data exchange is not appropriate
either, since in our example, station 2 (as well as station 3)
wants to deliver different data to the other two stations. Under
our framework, the traffic flows among stations can be met
as shown in Fig. 2. In the first slot, station 1 transmits “a”
to station 3; station 2 transmits “b” to station 1; and station 3
transmits “e” to station 2. In the second slot, station 1 transmits
“a” to station 2; station 2 transmits “c” to station 3; and station
3 transmits “d” to station 1. In Section III.C, we will present
the details on how to realize the switch matrices. To limit the
scope, this paper focuses on the use of amplify-and-forward
relaying and zero forcing (ZF) to establish the permutations
among stations.

The rest of the paper is organized as follows: Section II
describes the framework of wireless MIMO switching and in-
troduces the ZF relaying method for establishing permutations
among stations. The fair switching framework is presented
in Section III. Section IV discusses our simulation results.
Section V concludes this paper.

II. SYSTEM DESCRIPTION

A. System Model

Consider N stations, S1, · · · , SN , each with one antenna,
as shown in Fig. 3. The stations communicate via a relay R
with K antennas and there is no direct link between any two
stations. In this paper, we assume K ≥ N so that the relay
has enough degree of freedom to switch N flows at a time.
Without loss of generality, we further assume K = N since
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12

3 N

N
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Fig. 3. Wireless MIMO switching.

the case of K > N can be dealt with in a similar way, with the
difference that instead of matrix inverses, sometimes pseudo
inverses are used in the signal processing of the K > N
case, as will be explained later. Each time slot is divided into
two subslots. The first subslot is for uplink transmissions from
the stations to the relay; the second subslot is for downlink
transmissions from the relay to the stations. We assume the
two subslots are of equal duration. Each time slot realizes a
switching permutation, as described below.

Consider one time slot. Let x = {x1, · · · , xN}T be the
vector representing the signals transmitted by the stations.
We assume all stations use the same transmit power, normal-
ized to one. Thus, E{x2i } = 1, ∀ i. We also assume that
E{xi} = 0, ∀ i, and that there is no cooperative coding
among the stations so that E{xixj} = 0, ∀ i 6= j. Let
y = {y1, · · · , yN}T be the received signals at the relay, and
v = {v1, · · · , vN}T be the noise vector with i.i.d. noise
samples following the complex Gaussian distribution, i.e.,
vn ∼ Nc(0, σ2

r). Then

y = Hux+ v, (1)

where Hu is the uplink channel gain matrix. The relay
multiplies y by a beamforming matrix G before relaying
the signals. We impose a power constraint on the signals
transmitted by the relay so that

E{‖Gy‖2} ≤ p. (2)

Combining (1) and (2), we have

Tr[HH
u GHGHu] + Tr[GHG]σ2

r ≤ p. (3)

Let Hd be the downlink channel matrix. Then, the received
signals at the stations in vector form are

r = HdGy +w = HdGHux+HdGv +w, (4)
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where w is the noise vector at the receiver, with the i.i.d.
noise samples following the complex Gaussian distribution,
i.e., wn ∼ Nc(0, σ2).

B. MIMO Switching

Suppose that the purposes of G are to realize a particular
permutation represented by the permutation matrix P , and to
amplify the signals coming from the stations. That is,

HdGHu = AP , (5)

where A = diag{a1, · · · , aN} is an “amplification” diagonal
matrix. Given A and P , when Hd and Hu are invertible, the
beamforming matrix G is calculated as2

G = H−1d APH−1u . (6)

Define r̂ = A−1r, i.e., station Sj divides its received signal
by aj . We can rewrite (4) as

r̂ =
[
xi1 , · · · , xij , · · · , xiN

]T
+ PH−1u v +A−1w, (7)

where Sij is the station transmitting to Sj under the per-
mutation P (i.e., in row j of P , element ij is one, and all
other elements are zero). Suppose that we require the received
signal-to-noise ratio (SNR) of each station to be the same. Let
h
(−1)
u,(i,j) be element (i, j) in H−1u . Then

σ2
r

∑
k

|h(−1)u,(ij ,k)
|2 + σ2

|aj |2
= σ2

e , ∀ j. (8)

σ2
e is the effective noise power for each station under unit

signal power. Note that we actually use a zero-forcing relaying
scheme in (5). For other schemes such as MMSE, it is difficult
to require the interference plus noise power of each station to
be the same.

Substituting (5) into (3), we have

q ,
∑
i,j

|h(−1)d,(i,j)|
2|aj |2 + σ2

r

∑
i,k

|
∑
j

h
(−1)
d,(i,j)ajh

(−1)
u,(ij ,k)

|2 ≤ p,

(9)
where h

(−1)
d,(i,j) is element (i, j) in H−1d . Let aj = |aj |eiθj ,

then combining (8) and (9) gives

q =
∑
i,j

|h(−1)d,(i,j)|
2σ2

σ2
e − σ2

r

∑
k

|h(−1)u,(ij ,k)
|2

+ σ2
r

∑
i,k

|
∑
j

h
(−1)
d,(i,j)h

(−1)
u,(ij ,k)

σeiθj√
σ2
e − σ2

r

∑
k

|h(−1)u,(ij ,k)
|2
|2 ≤ p.

(10)

Problem Definition 1: Given Hu,Hd, p, σ
2, σ2

r , and a de-
sired permutation P , solve for minimum σ2

e and the corre-
sponding G.

This problem is non-convex. We can use a well-known
global optimization algorithm, particle swarm optimization, to

2When K > N , we use pseudo inverse of Hd and Hu in (6).

solve this problem. However, the method of particle swarm op-
timization is generally computationally complex. We propose
a random-phase algorithm, as follows, to reduce complexity.

Random-phase Algorithm: For a given set of θj , j =
1, · · · , N , according to (10), lim

σ2
e→+∞

q = 0, and

lim
σ2
e→max

i,j,u
{σ2

r

∑
k

|h(−1)

u,(ij ,k)
|2}+

q = +∞. Furthermore, q is a con-

tinuous function of σe. Thus, there exists a σe such that q = p.
Denote such a σe by σe(θ1, · · · , θN ). The problem consists of
finding

σ∗e = arg min
θ1,··· ,θN

σe(θ1, · · · , θN ). (11)

We note that σe is a complicated nonlinear function of θj .
A time-consuming exhaustive search can be used to find the
solution to (11). We use a random-phase algorithm to reduce
the complexity. We quantize the interval of [0, 2π) equally into
M bins with the values of 0, 2πM , · · · , 2(M−1)πM respectively
and randomly pick among them to set the the value of θj
for each and every j = 1, · · · , N . After that, we compute
the corresponding σe(θ1, · · · , θN ) by solving (10) with the
inequality set to equality. We perform L trials of these random
phase assignments to obtain L different values of σe. We
choose the smallest among them as our estimate for σ∗e .
Substituting the estimated σ∗e into (8) yields |aj | for all j;
hence G. Note that the solution found is a feasible solution
and is in general larger than the actual optimal σ∗e . In Section
IV, we will show that large gains can be achieved with only
small M and L. Moreover, increasing M and L further yields
very little improvement, suggesting that the estimated σ∗e with
small M and L is near optimal.

III. FAIR SWITCHING

In this section, we study the fair switching scenario in
which each station has an equal amount of traffic for every
other station. The data from station i to station j could be
different for different j, so this is not restricted to the multicast
or broadcast setting. As has been described in the previous
section, in each time slot, the stations transmit to one another
according to a switch matrix. To achieve fair switching,
multiple transmissions using a succession of different switch
matrices over different time slots will be needed. We next
discuss the set of switch matrices.

A. Derangement

We assume a station does not deliver traffic flow to itself.
A derangement is a permutation in which i is not mapped to
itself [5]. While the number of distinct permutations with N
stations is N !, the number of derangements is given in [5] as

dN = N !

N∑
i=0

(−1)i

i!
. (12)

For example, d4 = 9 although the number of permutations
is 4! = 24. It can be shown that limN→∞

dN
N ! = e−1

and the limit is approached quite quickly. Thus, the number
of derangements is in general still very large for large N .
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TABLE I
DERANGEMENTS OF N = 4.

P 1 = P 2 = P 3 = 0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 ,

 0 0 0 1
0 0 1 0
1 0 0 0
0 1 0 0

 ,

 0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

 ,

P 4 = P 5 = P 6 = 0 0 1 0
0 0 0 1
0 1 0 0
1 0 0 0

 ,

 0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 ,

 0 0 1 0
1 0 0 0
0 0 0 1
0 1 0 0

 ,

P 7 = P 8 = P 9 = 0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

 ,

 0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0

 ,

 0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 .

Performing optimization over this large combinatorial set of
derangements is a formidable task. For example, in our fair
switching problem, we want to maximize the system through-
put by scheduling over a subset of derangements. It would
be nice if for our problem, the optimal solution is not very
sensitive to the particular selection of derangements. In Part
B, we will formalize the concept of “condensed derangement
sets”.

B. Condensed Derangement Set

Definition 1: A set of N − 1 derangements, D1, D2, · · · ,
DN−1, is said to be a condensed derangement set if

N−1∑
n=1

Dn = J − I, (13)

where J is a matrix with all “1” elements, and I is the identity
matrix.

The four condensed derangement sets for N = 4 are Q1 =
{P 1,P 5,P 9}, Q2 = {P 1,P 6,P 8}, Q3 = {P 2,P 4,P 9},
and Q4 = {P 3,P 5,P 7}, where Pn are listed in TABLE I.
There are d5 = 44 derangements for N = 5 and the number
of condensed derangement sets is 56.

In fair switching, we want to switch an equal amount of
traffic from any station i to any station j, i 6= j. This can
be achieved by scheduling the derangements in the condensed
derangement set in a weighted round-robin manner (as detailed
in “Approach to Problem 2” below). Given a condensed set, the
scheduling to achieve fair switching is rather simple, as elab-
orated in “Approach to Problem 2” below. However, different
condensed sets could potentially yield solutions of different
performance. And the number of condensed derangement sets
is huge for large N . We define a problem as follows.

Problem Definition 2: Suppose that we want to deliver equal
amounts of traffic from Si to Sj ∀ i 6= j. Which condensed
derangement sets should be used to schedule transmissions to
maximize throughput? Does it matter?

Approach to Problem 2: The derangements in a condensed
derangement set are the building blocks for scheduling. For

a condensed derangement set, we may schedule derangement
Dn for kn time slots. The length of a complete round of
transmissions for that condensed set will then be

∑N−1
n=1 kn.

Consider the case of N = 4. There are four condensed de-
rangement sets. The question is which condensed derangement
set will result in the highest throughput. We could approach
the problem as follows.

Let Qm = {Dm
1 ,D

m
2 , · · · ,D

m
N−1} be a particular con-

densed derangement set. For each Dm
n , we use random-phase

algorithm above to compute the corresponding σ2
e , denoted by

σ2
e,n,m. The Shannon rate is then

rn,m = log(1 +
1

σ2
e,n,m

). (14)

Because of the uniform traffic assumption, we require
kn,mrn,m = c, ∀ n ∈ [1, · · · , N − 1], for some c. That is, c
is the amount of traffic delivered from one station to another
station in one round of transmissions. The effective throughput
per station (i.e., the amount of traffic from a station to all other
stations) is

Tm =
(N − 1)c∑N−1
n=1 kn,m

=
N − 1∑N−1

n=1 1/rn,m
. (15)

Numerically, we could first solve for rn,m ∀ n. Then, we apply
(15) to find the throughput.

The question we want to answer is whether Tm for different
Qm are significantly different. For the case of N = 4 and 5, we
will show simulation results indicating that the throughputs of
different Qm are rather close, and therefore it does not matter
which Qm we use.

To summarize our discussion so far, recall that a central
proposal of this paper is a framework for MIMO switching.
In particular, to simplify the scheduling problem, we aim to
achieve equal SNR for all connections in each derangement.
Different derangements, however, may still have different
SNR. Thus, in principle, the throughput Tm as in (15) may
still be different for different condensed set m. Fortunately,
our simulation results indicate that Tm for different m are
roughly the same for N = 4 and N = 5.

C. Generalization

As mentioned in the introduction, most prior works for
multi-way relay networks focus on two traffic-flow patterns.
The first is pairwise unicast, in which stations form pairs,
and the two stations of a pair communicate with each other
only [2], [3]. The second is the full data exchange, in which
each station needs to broadcast to all the other stations [4].
In practice, however, the actual traffic-flow patterns could
be different from these two patterns. For example, for video
conferencing, a subset of stations within the network forms
a multicast group, and the traffic-flow pattern is somewhere
between the two extremes above.

More generally, broadcast sessions, multicast sessions, pair-
wise unicast sessions, and unidirectional unicast sessions could
co-exist in the same network. The MIMO switching framework
here is flexible and encompasses this generality. For easy
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explanation, our previous discussion in Part B has an implicit
assumption that each station i wants to deliver different data
to different stations j 6= i. If we examine the scheme carefully,
this assumption is not necessary. In the scheme, a station will
have chances to deliver the same data to all other stations. In
particular, a station i will have chances to deliver the same data
to two different stations j and k in two different derangements.
If so desired, station i could transmit the same data to stations
j and k in the two derangements. This observation implies
that the general traffic-flow pattern can be realized.

For illustration, let us examine how the traffic pattern of
Fig. 1 can be realized. This example is a pattern consisting
of the co-existence of unicast and broadcast. As has been
described, the data transmission can be realized by scheduling
a condensed derangement set, which is D1 = [e3, e1, e2] and
D2 = [e2, e3, e1], and en contains 1 in the nth position and
zeros elsewhere. The transmitted data of station 1, 2 and 3 are
respectively [a, b, e]T for D1 and [a, c, d]T for D2.

We remark that there is an alternative way to realize a mix
of unicast and broadcast sessions. The derangement/switch
matrix P discussed in Part A of this section can be generalized
to accommodate multicast sessions. In particular, to support
multicast sessions, instead of a permutation matrix, each
column of the switch matrix can contain more than one “1”
element. Each row, however, still has at most one “1” element.
To limit the scope of this paper, we defer the study of this
alternative method for the future.

Furthermore, the MIMO switch so far makes use of zero-
forcing relaying. In general, there is no need to force a diago-
nal element to zero because the self-interference is known by
the transmitter, and can be removed out by the transmitter. This
is the basic idea behind physical-layer network coding [6],
which underlies many other works, e.g., [7]–[9]. By removing
the constraint on the diagonals, there is extra potential in our
design to improve the system performance. In this case we
rewrite (5) as

HTGH = A(P +B), (16)

where B is a diagonal matrix B = diag{b1, · · · , bN}. More
details are available in [10].

IV. SIMULATION

In this section, we evaluate the throughputs achieved by
different condensed sets. We assume that the uplink channel
Hu and downlink channel Hd are reciprocal, i.e., Hd = HT

u ,
and that they both follow the complex Gaussian distribution
Nc(0, I). We assume the relay has the same transmit power
as all the stations, i.e., p = 1.

We will answer the question raised in Problem Definition
2. We analyze the scenarios where N = 4 and N = 5. The
four different condensed derangement sets of N = 4, Q1,
Q2, Q3 and Q4, are considered for fair switching. For each
channel realization, we evaluate the throughput per station Tm
as defined by (15). We simulated a total of 10000 channel
realizations and computed E{Tm} averaged over the channel
realizations. Recall that for the random-phase algorithm, there

are two associated parameters: number of trials L and number
of bins M (see Section II). We find that for a fixed L and a
fixed M , the four condensed derangement sets yield essentially
the same throughput (within 1% in the medium and high SNR
regimes and within 2% in the low SNR regime). Fig. 4 plots
the throughput for one of the condensed derangement set for
different L and M . For N = 5 there are 56 different condensed
derangement sets. As with the N = 4 case, all the sets have
roughly the same throughput (within 1%). Fig. 5 also plots
the results of one set. We also note that increasing L and
M beyond 10 and 8 respectively yields little throughput gain.
This implies that our heuristic yields near optimal result when
L = 10 and M = 8.

For N = 6 there are 265 derangements and with 9408
corresponding condensed derangement sets. The simulation
to evaluate different condensed sets is very time consuming.
Furthermore, as mentioned in Section III.A, the number of
derangements increases in the order of N !. It is a formidable
task to optimize the system throughput over the huge number
of different condensed sets.

We conjecture that different condensed derangement sets
achieve roughly the same throughput for N larger than 5
as well. A concrete proof remains an open problem. The
ramification of this result, if valid, is as follows. For large
N , the number of condensed derangement set is huge, and
choosing the optimal set is a complex combinatorial problem.
However, if their relative performances do not differ much,
choosing any one of them in our engineering design will do,
significantly simplifying the problem.

A scheme proposed in [11] investigates a similar problem
as ours. It simply uses a positive scalar weight to control the
relay power consumption instead of our diagonal A. As a
comparison, we also plot the throughputs of the scalar scheme
in [11]. Our scheme with diagonal A outperforms the scalar
scheme by 1 dB and 0.5 dB in Fig. 4 and Fig. 5. Besides the
advantage in throughput, our scheme has another advantage
over the scalar scheme in that our scheme guarantees fairness.
That is, in our scheme, each station has exactly the same
throughput, while the stations in the scheme in [11] could have
varying throughputs. The scalar scheme in [11] focuses on
optimizing the sum rate of all stations; the individual rates of
the stations may vary widely with only one degree of freedom
given by the scalar. It is worth emphasizing that how the
throughputs vary among the stations in [11] is not controllable,
whereas our fair switching scheme can be easily generalized to
the case where the relative throughputs among the stations are
specified. We also plot the throughputs of the computationally
intensive particle swarm optimization scheme in Fig. 4 and
Fig. 5 for benchmarking purposes. With 20 particles and 20
iterations, the particle swarm optimization scheme has roughly
the same throughput as our random-phase scheme, suggesting
that our random-phase scheme is near optimal while being less
complex.

The following general observation and conjecture sum up
our investigation:
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Fig. 4. Throughput per station under MIMO fair switching when N = 4.
In each case only the result of one condensed derangement set is presented
because the results of other derangement sets are within 2% of the results
shown here.

General Observation: In our framework of MIMO fair switch-
ing with 4 or 5 stations, any condensed derangement set can
be used because different condensed derangement sets achieve
roughly the same throughput. We conjecture that this will be
the case when the number of stations is large as well. If this
conjecture holds, then the issue of condensed set selection will
go away, and the complexity of the optimization problem will
be greatly reduced. This conjecture remains to be proven.

V. CONCLUSIONS

We have proposed a framework for wireless MIMO switch-
ing to facilitate communications among multiple wireless
stations. A salient feature of our MIMO switching framework
is that it can cater to general traffic patterns consisting of a
mixture of unicast traffic, multicast traffic, and broadcast traffic
flows among the stations.

There are many nuances and implementation variations
arising out of our MIMO switching framework. In this paper,
we have only studied the “fair switching” setting in which
each station wants to deliver equal amounts of traffic to all
other stations. In this setting, we aim to deliver the same
amount of data from each station i to each station j 6= i
by scheduling a set of switch matrices. In general, many sets
of switch matrices could be used for such scheduling. The
problem of finding the set that yields optimal throughput is
a very challenging problem combinatorially. Fortunately, for
number of stations N = 4 or 5, our simulation results indicate
that different sets of switch matrices achieve roughly the same
throughput, essentially rendering the selection of the optimal
set a non-issue. We conjecture this will be the case for larger
N as well. If this conjecture holds, then the complexity of the
optimization problem can be decreased significantly as far as
engineering design is concerned.

There are many future directions going forward. For exam-
ple, the beamforming matrices used in our simulation studies
could be further optimized. Physical-layer network coding
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Fig. 5. Throughput per station under MIMO fair switching when N = 5.
In each case only the result of one condensed derangement set is presented
because the results of other derangement sets are within 1% of the results
shown here.

could be considered to improve throughput performance [6].
In addition, the setting in which there are unequal amounts
of traffic between stations will be interesting to explore. Also,
this paper has only considered switch matrices that realize full
permutations in which all stations participate in transmission
and reception in each slot; it will be interesting to explore
switch matrices that realize connectivities among stations that
are not full permutations. Finally, future work could also
explore the case where the number of antenna at the relay
is not exactly N .
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