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A main distinguishing feature of a wireless network compared with a wired network is its broadcast nature, in which the signal
transmitted by a node may reach several other nodes, and a node may receive signals from several other nodes, simultaneously.
Rather than a blessing, this feature is treated more as an interference-inducing nuisance in most wireless networks today (e.g.,
IEEE 802.11). This paper shows that the concept of network coding can be applied at the physical layer to turn the broadcast
property into a capacity-boosting advantage in wireless ad hoc networks. Specifically, we propose a physical-layer network coding
(PNC) scheme to coordinate transmissions among nodes. In contrast to “straightforward” network coding which performs coding
arithmetic on digital bit streams after they have been received, PNC makes use of the additive nature of simultaneously arriving
electromagnetic (EM) waves for equivalent coding operation. And in doing so, PNC can potentially achieve 100% and 50%
throughput increases compared with traditional transmission and straightforward network coding, respectively, in 1D regular
linear networks with multiple random flows. The throughput improvements are even larger in 2D regular networks: 200% and
100%, respectively.

1. Introduction

One of the biggest challenges in wireless communication
is how to deal with the interference at the receiver when
signals from multiple sources arrive simultaneously. In the
radio channel of the physical-layer of wireless networks, data
are transmitted through electromagnetic (EM) waves in a
broadcast manner. The interference between these EM waves
causes the data to be scrambled.

To overcome its negative impact, most schemes attempt
to find ways to either reduce or avoid interference through
receiver design or transmission scheduling [1]. For example,
in 802.11 networks, the carrier-sensing mechanism allows at
most one source to transmit or receive at any time within
a carrier-sensing range. This is obviously inefficient when
multiple nodes have data to transmit.

While interference causes throughput degradation on
wireless networks in general, its negative effect for multihop
ad hoc networks is particularly significant. For example, in
802.11 networks, the theoretical throughput of a multihop
flow in a linear network is less than 1/4 of the single-hop case

due to the “self-interference” effect, in which packets of the
same flow but at different hops collide with each other [2, 3].

Instead of treating interference as a nuisance to be
avoided, we can actually embrace interference to improve
throughput performance with the “right mechanism”. To do
so in a multihop network, the following goals must be met.

(1) A relay node must be able to convert simultaneously
received signals into interpretable output signals to be
relayed to their final destinations.

(2) A destination must be able to extract the information
addressed to it from the relayed signals.

The capability of network coding to combine and extract
information through simple Galois field GF(2n) additions
[4, 5] provides a potential approach to meet such goals. How-
ever, network coding arithmetic is generally only applied on
bits that have already been correctly received. That is, when
the EM waves from multiple sources overlap and mutually
interfere, network coding cannot be used to resolve the data
at the receiver. So, criterion 1 above cannot be met.
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This paper proposes the application of network coding
directly within the radio channel at the physical-layer. We
call this scheme Physical-layer Network Coding (PNC). The
main idea of PNC is to create an apparatus similar to that
of network coding, but at the physical-layer that deals with
EM signal reception and modulation. Through a proper
modulation-and-demodulation technique at the relay nodes,
additions of EM signals can be mapped to GF(2n) additions
of digital bit streams, so that the interference becomes part of
the arithmetic operation in network coding. The basic idea
of PNC was first put forth in our conference paper in [6].
Going beyond [6], this paper addresses a number of practical
issues of applying PNC in wireless networks. In particular,
we evaluate the performance of PNC based on specific
scheduling algorithms for 1D and 2D regular networks that
make use of PNC (The PNC scheduling schemes in this
paper can be easily extended to more general networks as
in [6]) . Compared to the traditional transmission and the
straightforward network coding, our analytical results show
that PNC can improve the network throughput by a factor of
2 and 1.5, respectively, for the 1D network, and by a factor of
3 and 2 respectively for the 2D network.

1.1. Related Work. In 2006, we proposed PNC in [6] as
demodulation mappings based on different modulation
schemes. A similar idea was also published independently in
[7] at the same time by another group. After that, a large body
of work from other researchers on PNC began to appear. The
work can be roughly divided into three categories.

In the first category, PNC is regarded as a modulation-
demodulation technique. Many new PNC mapping schemes
have been proposed since [6]. For example, [8] proposed
a scheme based on Tomlinson-Harashima precoding. Fol-
lowing [6], [9] proposed a simple relay strategy called
analog network coding (ANC), in which the relay amplifies
and forwards the received superimposed signal without
any processing. Analog network coding turns out to be
similar to a scheme earlier by researchers in the satellite
communication society [10]. In [11], a number of memo-
ryless relay functions, including PNC mapping and the BER
optimal function, were identified and analyzed assuming
phase synchronization between signals of the transmitters. In
[12], we observed that there is a one-to-one correspondence
between a relay function and a specific PNC scheme under
the general definition of memoryless PNC. Besides the
precise definition of memoryless PNC which distinguishes it
from the traditional straightforward network coding (SNC),
[12] also gave a number of new PNC schemes. Reference [13]
proposed a new PNC scheme where the relay maps a group
constellation points to one signal according to the phase
difference of the two end nodes’ signals. The mechanism also
takes care of the phase difference between the two end nodes
implicitly.

In the second category, PNC and channel coding are
studied jointly. In [14–16], PNC was combined with Lattice
code or LDPC code. It was proved that the capacity of
the two-way relay channel can be approached in high
SNR and low SNR. In [14–16], channel coding and PNC
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Figure 1: A three-node linear network.

mapping are performed independently (i.e., successively).
In [17], we proposed a novel scheme which treats channel
coding and PNC in an integrated manner. We show that
joint channel-PNC decoding can outperform the previous
schemes significantly.

In the third category, the focus is on the performance
impact and significance of PNC in large-scale wireless net-
works. For one-dimensional wireless networks, [18] showed
that PNC can improve the capacity by a fixed factor, although
it does not change the scaling law. For two-dimensional
wireless networks, [19] showed that PNC can increase
capacity by a factor of 2.5 for the rectangular networks and
a factor 2 for the hexagonal networks. However, the result
in [18] is obtained based on a rough scheduling scheme
which is established traditional network coding rather than
physical-layer network coding (the special properties of PNC
are ignored). Our paper here also discusses the application
of PNC in large-scale wireless networks. It is different from
[18] in that we provide the construction of an explicit PNC-
scheduling algorithm (specially designed for PNC), upon
which all our results are established. Compared with [19], we
consider the many-to-many scenario with multiple sources
and destinations, while [19] only considered the one-to-
many scenario with one source.

The rest of this paper is organized as follows. Section 2
overviews the basic idea of PNC with a linear 3-node multi-
hop network. Sections 3 and 4 investigate the application of
PNC in the 1D regular linear network and 2D regular grid
network, respectively. Section A concludes the paper.

2. Illustrating Example: A Three-Node Wireless
Linear Network

Consider the three-node linear network in Figure 1. N1

(Node 1) and N3 (Node 3) are nodes that exchange
information, but they are out of each other’s transmission
range. N2 (Node 2) is the relay node between them.

This three-node wireless network is a basic unit for
cooperative transmission and it has previously been inves-
tigated extensively [20–25]. In cooperative transmission, the
relay node N2 can choose different transmission strategies,
such as Amplify-and-Forward or Decode-and-Forward [22],
according to different Signal-to-Noise (SNR) situations.
This paper focuses on the Decode-and-Forward strategy.
We consider frame-based communication in which a time
slot is defined as the time required for the transmission
of one fixed-size frame. Each node is equipped with an
omnidirectional antenna, and the channel is half duplex
so that transmission and reception at a particular node
must occur in different time slots. Slow fading is assumed
throughout this paper for the ease of synchronization.

Before introducing the PNC transmission scheme,
we first describe the traditional transmission scheduling
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Figure 2: Traditional scheduling scheme.
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Figure 3: Straightforward network coding scheme.

scheme and the “straightforward” network-coding scheme
for mutual exchange of a frame in the three-node network
[20, 25].

2.1. Traditional Transmission Scheduling Scheme. In tradi-
tional networks, interference is usually avoided by prohibit-
ing the overlapping of signals from N1 and N3 to N2 in the
same time slot. A possible transmission schedule is given in
Figure 2. Let Si denote the frame initiated byNi.N1 first sends
S1 to N2, and then N2 relays S1 to N3. After that, N3 sends S3

in the reverse direction. A total of four time slots are needed
for the exchange of two frames in opposite directions.

2.2. Straightforward Network Coding Scheme. References [20,
25] outline the straightforward way of applying network cod-
ing in the three-node wireless network. Figure 3 illustrates
the idea. First, N1 sends S1 to N2 and then N3 sends frame
S3 to N2. After receiving S1 and S3, N2 encodes frame S2 as
follows:

S2 = S1 ⊕ S3, (1)

where ⊕ denotes bitwise exclusive OR operation being
applied over the entire frames of S1 and S3. N2 then
broadcasts S2 to both N1 and N3. When N1 receives S2, it
extracts S3 from S2 using the local information S1, as follows:

S1 ⊕ S2 = S1 ⊕ (S1 ⊕ S3) = S3. (2)

Similarly, N2 can extract S1. A total of three time slots
are needed, for a throughput improvement of 33% over the
traditional transmission scheduling scheme.

2.3. Physical-Layer Network Coding (PNC). We now intro-
duce PNC as shown in Figure 4. Let us assume that the use
of BPSK modulation at all the nodes. We further assume
symbol-level time and carrier-phase synchronization, and
the use of power control, so that the frames from N1 and
N3 arrive at N2 with the same phase and amplitude (Power
control can be achieved in a slow fading channel with current
techniques. Additional discussion about carrier-phase and
symbol time synchronization can be found in [26]) . The
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Figure 4: Physical-layer network coding.

combined bandpass signal received byN2 during one symbol
period is

r2(t) = s1(t) + s3(t)

= a1 cos(ωt) + a3 cos(ωt)

= (a1 + a3) cos(ωt),

(3)

where si(t), i = 1 or 3, is the bandpass signal transmitted by
Ni, r2(t) is the bandpass signal received by N2 during one
symbol period, ai is the BPSK modulated information bit
of Ni, and ω is the carrier frequency. Then, N2 will obtain
a baseband signal a1 + a3.

Note that N2 cannot extract the individual information
transmitted by N1 and N3, that is, a1 and a3, from the
combined signal in a1 + a3. However, N2 is just a relay node.
As long as N2 can transmit the necessary information to
N1 and N3 for extraction of a1 and a3 over there, the end-
to-end delivery of information will be successful. For this,
all we need is a special modulation/demodulation mapping
scheme, referred to as PNC mapping in this paper, to obtain
the equivalence of GF(2) summation of bits from N1 and N3

at the physical-layer.
Table 1 illustrates the idea of PNC mapping. In Table 1,

s j ∈ {0, 1} is a variable representing the data bit of Nj and
aj ∈ {−1, 1} is a variable representing the BPSK modulated
bit of s j such that aj = 2s j − 1.

With reference to Table 1, N2 obtains the information
bits:

s2 = s1 ⊕ s3. (4)

It then transmits

s2(t) = a2 cos(ωt). (5)

The BER analysis in [6] shows that the end-to-end BER
for the three schemes is similar when the per-hop BER is
low (the BER is less than 10−5 for 10 dB). Ignoring the
slight BER difference, we have the following conclusion.
For a frame exchange, PNC requires two time slots, 802.11
requires four, while straightforward network coding requires
three. Therefore, PNC can improve the system throughput
of the three-node wireless network by a factor of 100%
and 50% relative to traditional transmission scheduling and
straightforward network coding, respectively.

3. Applying PNC in Regular 1D Networks

Our discussions so far has only focused on the simple 3-
node network with one bidirectional flow. In this section,
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Table 1: PNC Mapping: modulation mapping at N1, N2; demodulation and modulation mappings at N3.

Modulation mapping at N1 and N3 Demodulation mapping at N2

Input Output

Input Output Modulation mapping at N2

Input Output

s1 s3 a1 a3 a1 + a3 s2 a2

1 1 1 1 2 0 −1

0 1 −1 1 0 1 1

1 0 1 −1 0 1 1

0 0 −1 −1 −2 0 −1

we discuss the application of PNC in 1D regular networks.
There are two reasons for this discussion. First, the schemes
proposed in regular network still work in random networks.
And the analytical results in regular networks also provide
some insights about applying PNC in random networks.
Second, the regular network can also find applications in real
world. For example, APs (access points) positioned along a
highway form a regular linear chain in a vehicular network.

3.1. Regular Linear Network with One Bidirectional Flow.
Consider a regular linear network with N nodes with equal
spacing between adjacent nodes. Label the nodes as node 1,
node 2, . . ., node N , successively with nodes 1 and N being
the two source and destination nodes, respectively. Figure 5
shows a network with N = 5. Suppose that node 1 is to
transmit frames X1, X2, . . . . to node N , and node N is to
transmit frames Y1, Y2, . . . . to node 1.

We could divide the time slots into two types: odd slots
and even slots. In the odd time slots, the odd-numbered
nodes transmit and the even-numbered nodes receive. In the
even time slots, the even-numbered nodes transmit and the
odd-numbered nodes receive.

Figure 5 shows the sequence of frames being transmitted
by the nodes in a 5-node network. In slot 1, node 1 transmits
X1 to node 2 and node 5 transmits Y1 to node 4 at the same
time. In slot 2, node 2 and node 4 transmit X1 and Y1 to node
3 simultaneously; both node 2 and node 4 also store a copy
of X1 and Y1 in their buffer, respectively. In slot 3, node 1
transmits X2 to node 2, node 5 transmits Y2 to node 4, and
node 3 broadcasts X1 ⊕ Y1 simultaneously; node 3 stores a
copy ofX1⊕Y1 in its buffer. Adding the storedX1 toX2⊕X1⊕
Y1 received with PNC detection, node 2 can obtain Y1 ⊕ X2.
Node 4 can obtain Y2 ⊕ X1 similarly. In slot 4, node 2 and
node 4 broadcast Y1 ⊕ X2 and Y2 ⊕ X1, respectively. In this
way, node 5 receives a copy of X1 and node 1 receives Y1 in
slot 4. Also, in slot 4, node 3 obtains Y2⊕X2 by adding stored
packet X1 ⊕ Y1 to the received packet X1 ⊕ Y2 ⊕ X2 ⊕ Y1.

With reference to Figure 5, we see that a relay node
forwards two frames, one in each direction, every two time
slots. So, the throughput is 0.5 frame/time slot in each
direction. Due to the half duplex assumption, this is the
maximum possible throughput we can achieve.

As detailed above, when applying PNC on the linear
network, each node transmits and receives alternately in
successive time slots; and when a node transmits, its adjacent
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Figure 5: Bidirection PNC transmission in linear network.

nodes receive, and vice versa (see Figure 5). Let us investigate
the signal-to-inference ratio (SIR) given this transmission
pattern to make sure that it is not excessive. Consider
the worst-case scenario of an infinite chain. We note the
following characteristics of PNC from a receiving node’s
point of view.

(a) The interfering nodes are symmetric on both sides.

(b) The simultaneous signals received from the two
adjacent nodes do not interfere due to the nature of
PNC.

(c) The nodes that are two hops away are also receiving
at the same time, and therefore will not interfere with
the node.

Therefore, the two nearest interfering nodes are three
hops away. We have the following SIR:

SIR = P0/dα

2∗∑∞
l=1 P0/[(2l + 1)d]α

, (6)

where P0 is the common (In a regular network, a trivial
result of power control is that every node uses the same
transmission power if the distances between adjacent nodes
are constant) transmitting power of the nodes and α is the
path-loss exponent. According to [27], α = 2 for free space,
α = 2.7∼3.5 for urban cellular networks, and α = 4∼6 for in-
building transmission. We calculate the SIR for different α
and the results are shown in Table 2. As can be seen, when
α ≥ 3 (this is typical in wireless networks), the SIR is no
less than 10 dB and the impact of the interference on BER is
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Table 2: Signal to Noise Ratio with different path loss exponent

α 2 3 4 5 6

SIR (dB) 3.3 9.8 15.3 20.4 25.4

negligible for BPSK based on [28] (the capture threshold is
often set to 10 db in wireless networks [3]). More generally,
a thorough treatment should take into account the actual
modulation scheme used, the difference between the effects
of interference and noise, and whether or not channel coding
is used. However, we can conclude that as far as the SIR is
concerned, PNC is not worse than traditional scheduling (see
Section 4) when generalized to the n-node linear network (In
this paper, we assume that channel coding [17] is properly
used at all the nodes and the packets can be correctly
decoded to avoid error propagation once the targeted SIR is
achieved. Reference [17] provides and investigates a hop-to-
hop channel coding scheme for PNC) .

3.2. Regular Linear Network with Multiple Flows. Part A
considers only one bidirectional flow. Here we consider a
general setting in which there are K unidirectional flows
in the N-node linear network. Note that this generalization
includes the scenario in which there is a combination
of unidirectional and bidirectional flows in the network,
since each bidirectional flow can be considered as two
unidirectional flows.

To allow PNC to be applied, we compose bidirectional
flows out of the K unidirectional flows by matching pairs of
unidirectional flows in opposite directions. The bidirectional
flows can then make use of PNC for transmission, while the
remaining unmatched unidirectional flows make use of the
traditional strategy of multihop data transmission.

The optimal way to compose the bidirectional flows
and schedule the transmission of the links in the flows
is a tough problem. Here we consider a simple heuristic
which is asymptotically optimal for the regularN-node linear
network when N goes to infinity as shown in Part C. For
simplicity, we assume that all flows have equal traffic.

We define the following terms with respect to the linear
network. Let us label the nodes from left to right by 1 to N
sequentially. Let (si,di) denote the source-destination pair of
flow i. For a right-bound flow, si < di; for a left-bound flow,
si > di. Let F denote the overall set of flows, and FR ⊆ F be the
set of right-bound flows and FL ⊆ F be the set of left-found
flows.

Two right-bound (left-bound) flows i and j are said to be
nonoverlapping if di < sj or dj < si (si < dj or s j < di). A
right packing (left packing) is a set of nonoverlapping right-
bound flows (left-bound flows). A dual packing consists of a
right packing and a left packing. Figure 6 shows an example
of a dual packing. Flows 2 and 3 form a right packing,
and Flow 1 forms a left packing. Note that some of the
nodes are traversed by both a right-bound flow and a left-
bound flow. Let us call these nodes the common nodes,
and the other nodes the noncommon nodes. A sequence
of adjacent common nodes, flanked by but not including

Flow 1
Flow 2 Flow 3

Figure 6: An example of a dual packing formed by a right packing
and a left packing. An ellipse corresponds to a PNC unit. The nodes
between two adjacent ellipses (including the terminal nodes of the
ellipses) are grouped together by a rectangle.

two noncommon nodes at two ends (an ellipse in Figure 6),
forms a PNC unit, and we can use the PNC mechanism for
transporting the bidirectional traffic over it. A sequence of
adjacent noncommon nodes, together with the two common
nodes flanking them (a rectangle in Figure 6), may or may
not have traffic flowing over them. When there is traffic,
the traffic is in one direction only, and the traditional
multihop communication technique can be used to carry
the unidirectional traffic. Essentially, by forming a dual
packing, we also form many “virtual” bidirectional flows
(each corresponding to a PNC unit) on which PNC can be
applied.

Our heuristic as showing in Algorithm 1 consists of a
method of forming dual packings from the K unidirectional
flows.

The dual packings yield a set of “virtual” bidirectional
flows, each corresponding to a PNC unit. Scheduling can
then be performed as follows. Let us refer to the time needed
for all the K unidirectional flows to transfer one packet from
source to destination as one frame. Each link (hop) of a flow
is allocated one time slot for transmission within a frame. A
frame is further divided into two intervals, as follows.

(1) The first interval is dedicated to the PNC units (i.e.,
ellipses). Note that if there are M dual packings, 2M
time slots are needed in the worst case; in the worst
case, different dual packings use different time slots
to transmit, and 2 time slots are needed for each
dual packing (Two caveats are in order. The first
is that according to our construction, there could
be “trivial” PNC units with two nodes only. In this
case, the PNC mechanism is not needed, and each
node gets to transmit directly to the other node.
Regardless of whether the PNC unit is trivial or not,
two time slots are needed for the bidirectional flows.
The second caveat is that there could be two PNC
units in the same dual packing next to each other. For
example, suppose nodes 1, 2, and 3 form a PNC unit,
and nodes 4, 5, 6 form another. To avoid conflict, the
scheduling of the transmissions on these two PNC
units should be such that nodes 1, 3, 4, and 6 transmit
in one time slot while nodes 2 and 5 transmit in
another time slot. Again, two time slots are needed.).

(2) The second interval is dedicated to the nonPNC units
(i.e., rectangles). The nodes of all rectangles of all
dual packings are scheduled to transmit using the
conventional scheme.
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while (F /=∅) { /∗ Each iteration in the while loop forms a dual packing. ∗/
while (FR /=∅) { /∗ Each iteration in the while loop tries to find a “tight” right packing ∗/

largestDest=0;
while (true) {

/∗ Each iteration in the while loop includes one more flow into the right packing being assembled. ∗/
i = arg min j∈FR :s j >largestDests j

/∗ Select a flow with the smallest source larger than LargestDest; assume “null” is returned if there is no more flow
left in FR with s j > largestDest. ∗/

if (i /=null) {
include flow i into the current right packing being assembled;
largestDest = di;
remove flow i from F;

} else
break;

/∗ Break out of the while(true) loop. ∗/
}

}
while (FL /=∅) {
/∗ Each iteration in the while loop tries to find a “tight” left packing. ∗/
/∗ Comment: details omitted here; the procedure is similar to the “while (FR /=∅)” loop above
except that largestDest is replaced by smallestDest; s j > largestDest is replaced by s j < smallestDest etc. ∗/
}

/∗ Combine the right packings and left packings one by one to obtain dual packings ∗/
}

Algorithm 1

The number of time slots needed in the second interval
depends on both the number and the lengths of the rec-
tangles. As will be shown in Part C, it can be ignored
compared to the time slots needed in the first interval as N
goes to infinity.

3.3. Throughput of 1D Network with PNC. We now show
that the packing and scheduling strategies presented in
Part B can allow the upper-bound capacity of 1D network
to be approached when the number of nodes N goes
to infinity. Furthermore, compared with the conventional
schemes discussed in [29], PNC can achieve a constant factor
of throughput improvement.

We first detail the system model. To avoid edge effects,
we consider a “large” circle instead of a line. The N nodes are
uniformly distributed over the circle with a constant distance
between adjacent nodes. Without loss of generality, let the
distance between two adjacent nodes be a unit distance. Each
transmission is over only one unit distance (i.e., a node only
transmits to its two adjacent nodes). Consider the receiver
of a link. We assume that simultaneous transmission by
another link whose transmitter is two or more hops away
from the receiver of the first link will not cause a collision
to the first link. In our model, N/2 nodes are randomly
chosen as the source nodes. The remaining N/2 nodes are
the potential destination nodes. For each source node, a
unique destination node is chosen among the N/2 poten-
tial destination nodes with equal probability. We assume
matching without replacement in that the destination node
chosen for a source node will not be put back to the pool
before the destination node of another source is chosen. The

route for a source-destination pair is also predetermined in a
random way (note: there are two routes from a source to its
destination, one in the clockwise direction and the other in
the counterclockwise direction).

The analytical results for the traditional transmission
scheme and straightforward network coding scheme in our
circular model are similar to those in the 1D linear network
in [29] when N goes to infinity. Using similar approach, it is
not difficult to obtain the respective per-flow throughputs in
our circular network as

λT(N) = 2
N

, λS(N) = 8
3N

, (7)

where unit link bandwidth is assumed.
Let us now focus on the PNC throughput. We will show

that PNC can achieve the per-flow throughput 4/N − ε for
any small positive value ε as N goes to infinity. Let us first
provide further details to the scheduling strategy presented
in Part B.

The packing and scheduling are as follows. For packing,
we first unwrap the circle to a noncircular linear network
by randomly selecting the source node of a clockwise flow,
labelled s, on the circle as the start point of the linear
network. The adjacent node of the selected source node
in the counterclockwise direction in the circle, labeled e,
will serve as the end point of the linear network. Next,
we obtain one packing of the clockwise flows according to
the packing algorithm in Part B. It is possible that the last
selected flow crosses the start point. In that case, we cut the
flow into two subflows by performing the cut between the
start point and the end point, and only consider the first
subflow in the aforementioned packing. After forming the
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above clockwise unidirectional packing, we form a matching
counterclockwise unidirectional packing at choosing e as the
start point and s as the end point. If there is an existing
counterclockwise flow with e as its source node, we will start
with this flow in the unidirectional packing. If not, we will
choose the next flow with source node closest to e in the
counterclockwise direction in our packing.

For “traffic balance”, after getting the first dual packing as
above, for the next dual packing, we will start with forming
the counterclockwise unidirectional packing first (i.e., s and e
will be defined with respect to the counterclockwise packing)
before constructing the matching clockwise packing. Repeat-
ing the above procedure allows us to form a series of dual
packings.

The scheduling of transmissions is the same as that
in Part B except that here we also have to consider the
transmission across the two subflows cut as above, if any.
We assume the traffic from the destination of a preceding
subflow to the source of its corresponding subflow is
transmitted using the conventional scheme in the second
interval.

With the above packing and scheduling strategies, we
have the following theorem on the per-flow throughput of
the 1D circular network when N goes to infinity.

Theorem 1. With PNC, we can approach the upper bound of
the per-flow throughput of the 1D network:

λP(N) = 4
N
. (8)

Sketch of Proof. A sketch of the proof for Theorem 1 is
provided here and a detailed proof is given in the Appendix.
With the help of the max-flow min-cut theorem, the upper
bound of the per-flow throughput for our 1D circular
network can be shown to be 4/N . That this upper bound can
be approached with the application of the aforementioned
PNC packing and scheduling strategies is argued as follows.
Consider the original N/4 unidirectional flows. With PNC
packing and scheduling, these flows have been decomposed
into PNC units and nonPNC units for transmission in the
first and second intervals. For each round of first and second
intervals (i.e., for each frame), one packet is transported from
the source to the destination of each flow. We can show that
the number of time slots needed in the first interval for all
the flows is at most (1 + ε1)N/4, where the small positive
quantity ε1 goes to zero as N goes to infinity. The number of
time slots needed in the second interval, on the other hand,
is ε2N , where the small positive quantity ε2 goes to zero as N
goes to infinity. Then we can obtain the per-flow throughput
with PNC: 1/(N/4 + ε1N/4 + ε2N/4) = (1− ε)N/4.

A corollary of Theorem 1 is that PNC can improve the
throughput of the 1D network by a factor of 2 and 1.5 relative
to the traditional transmission scheme and the SNC scheme
(7), respectively.

A notable fact is that PNC can approach the capacity with
minimum energy. Recall that PNC exchanges one packet
between the two end nodes within two time slots, during
which each of the n nodes on the chain transmits once with

energy Et and receives once with energy Er . And a total
energy n(Et+Er) is used. In fact, n(Et+Er) is the lower bound
of energy to exchange one packet. For one exchange, the two
end nodes must transmit once to send their message and
must receive once to obtain their needed message; the n − 2
relay nodes must receive once and transmit once to finish one
relay. Therefore, the energy of n(Et + Er) is necessary.

4. Applying PNC in 2D Grid Network

Section 3 focused on the 1D regular network. This section
investigates the application of PNC in a 2D regular gird
network. We assume the same transmission protocol as in
Section 3.

4.1. 2D Grid Network with One Bidirectional Flow in Each
Line. Figure 7 shows the grid network under consideration,
in which N nodes are uniformly located at the cross points
as shown. In this part, we first consider the case in which
each line (horizontal or vertical) on the grid has one and only
one bidirectional flow. Specifically, the two end nodes in each
line, node 1 and node

√
N , exchange information through

the relay nodes in between.
The flows transmit with the following PNC schedule.

Consider the horizontal lines (similar schedule applies for
the vertical lines). The first two time slots are dedicated to
transmissions on lines 1, J + 1, 2J + 1, . . .; the next two time
slots are dedicated to transmissions on lines nodes on the
lines 2, J + 2, 2J + 2, . . .; and so on. The separation J must be
large enough for acceptable SIR. In the example of Figure 7,
J = 4.

For a group of simultaneous active lines, to reduce SIR,
when the odd nodes transmit on one active line, then the
even nodes will transmit on its two adjacent active lines, as
shown in Figure 7.

Let us investigate the SIR of this transmission pattern
given a J . Consider the worst-case scenario in which N
goes to infinity. For a given receiver, the interference from
the nodes within the same line is I1 = 2 ∗ ∑∞

l=1 P0/[(2l +
1)d]α, where P0, l, d = 1, and α are defined similarly
as in Section 3.1. Without loss of generality, suppose that
the receiver is an even node. The interference from the
other active lines whose odd nodes are transmitting is
I2 = 4

∑∞
k=0

∑∞
l=0 P0/[(2l)2d2 + J2(2k + 2)2d2]α/2, and the

interference from the other active lines whose even nodes are
transmitting is I3 = 4

∑∞
k=0

∑∞
l=0 P0/[(2l + 1)2d2 + J2(2k +

1)2d2]α/2. Thus, the overall SIR is given by

SIR = P0/dα

I1 + I2 + I3
. (9)

For a typical value of α = 4, the SIR in (9) is about 13.5 dB,
12.3 dB, and 10.0 dB for J equals 5, 4, and 3, respectively.
With an assumed 10 dB target, J = 3 is enough to guarantee
successful transmission.

4.2. 2D Grid Network with Multiple Random Flows. Let us
now investigate the application of PNC in the 2D grid
network with a more general traffic pattern. With respect to
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Figure 7: Subfigure (a) shows 2D grid network with one bidirectional flow in each line. The lines separated by J − 1 = 3 lines, that is, the
lines with the same color, are allowed to transmit simultaneously. Subfigure (b) shows a scheduling for one group active lines (red lines) in
a specific time slot

Figure 7, we now randomly choose N/2 of the nodes as the
source nodes. The remaining N/2 nodes are the destination
nodes.

Here we apply a simple routing scheme, as in [29]. For a
source-destination pair at positions (xs, ys) and (xd, yd), the
data will first be forwarded vertically to the node at (xs, yd)
before being forwarded horizontally to the destination. The
horizontal and vertical transmissions are separated into
two different time intervals. For horizontal (or vertical)
transmissions, the scheduling within each line (column) is
the same as that in the Section 3.2 and the scheduling among
different lines (columns) is the same as in part A.

When N goes to infinity, the number of nodes in each
line or column,

√
N , also goes to infinity, and the per-flow

PNC throughput in each line or column will approach 4/
√
N ,

as argued in Section 3. Since the horizontal transmission
and vertical transmission are scheduled in different time
interval and in each interval every J lines (columns) transmit
simultaneously, the per-flow transmission of PNC in the 2D
grid network can approach

λP(N) = 4√
N
· 1
J
· 1

2
= 2
J
√
N
. (10)

For comparison purposes, let us look at the per-
flow throughput under the traditional transmission strategy
and under the straightforward network coding strategy.
With the routing/scheduling strategy and the corresponding
throughput analysis in [29], we can show that the traditional
transmission scheme and SNC scheme can achieve the
following throughputs, respectively:

λT(N) = 4
(1 + Δ)

√
N
· 1

3
· 1

2
= 2

9
√
N

,

λC(N) = 4
(1 + Δ/2)

√
N
· 1

3
· 1

2
= 1

3
√
N
.

(11)

In the 2D grid network, the nodes are tightly packed than
in the 1D network, and the interfering nodes must be kept

at least 3 hops away, that is, Δ = 2, to obtain an SIR of
no less than 10 dB (note: in the 1D network, Δ could be 1
for SIR of about 10 dB). When Δ = 2, we can verify that
throughputs better than (11) cannot be achieved. In other
words, the throughput in (11) is also the upper bound for
traditional transmission scheme and SNC scheme under all
possible schedulings.

Therefore, setting J = 3 in (10), we conclude that
PNC can achieve a throughput improvement factor of 3 and
2 relative to the traditional transmission scheme and the
SNC scheme, respectively. Note that the improvement factors
under the 2D network are larger than those under the 1D
network, which are 2 and 1.5, respectively (see Section 3).

5. Conclusion

This paper has introduced a novel scheme called Physical-
layer Network Coding (PNC) that significantly enhances
the throughput performance of multihop wireless networks.
Instead of avoiding interference caused by simultaneous elec-
tromagnetic waves transmitted from multiple sources, PNC
embraces interference to effect network-coding operation
directly from physical-layer signal modulation and demod-
ulation. With PNC, signal scrambling due to interference,
which causes packet collisions in the MAC layer protocol
of traditional wireless networks (e.g., IEEE 802.11), can be
eliminated.

We have proposed explicit scheduling algorithms for
PNC in 1D and 2D regular networks with multiple random
flows. It is shown that PNC can potentially achieve 100%
and 50% throughput increases compared with traditional
transmission and straightforward network coding, respec-
tively, in the 1D regular linear network. The throughput
improvements are even larger in the 2D regular network:
200% and 100%, respectively. In particular, PNC can allow
the upper-bound throughput of the 1D regular network to
be approached as the number of nodes goes to infinity.
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Appendix

A. Proof of Theorem 1

This appendix proves Theorem 1 in three steps. First, the
fact that 4/N is the upper bound for the throughput of
the 1D circular linear network can be argued as follows.
Let us consider the number of time slots needed so that
each flow can transport one packet from its source to its
destination. Due to half-duplexity, there can be at most
N/2 transmitting nodes in a time slot. In general, each
transmitting node can transmit to at most two of its adjacent
nodes simultaneously. Hence, in total, there can be at most
N one-hop transmissions being successfully completed in
each time slot. The number of hops between the source
and destination of a flow is on average N/2. There are
altogether N/2 flows. Using Chernoff bound, we can show
that the total number of one-hop transmissions required
(aggregated over all flows) is N2/4 w.h.p. as N goes to
infinity. Thus, the time slots needed are lower bounded
by (N2/4)/N = N/4. Within this number of time slots,
each flow transports a packet from source to destina-
tion. Thus, the per-flow throughput is upper bounded by
λ ≤ 1/(N/4) = 4/N .

Next, we prove that the number of time slots needed in
the second interval is negligible compared to N , denoted
by ε2N where ε2 is a small positive quantity that goes to
zero as N goes to infinity. The total one-hop transmissions
in the second interval can be divided into two parts, the
one-hop transmissions in the rectangles and the one-hop
transmissions between subflows (created when we unwrap
the circular network into a linear network).

Let us first consider the rectangles. As shown in Figure 8,
within a dual packing, the rectangles do not overlap.
Furthermore, the two end nodes in a rectangle must be
either a source or destination node of some flow. As a
proof technique, let us artificially divide the rectangles
into two groups according to the dual packings containing
them. Recall that the dual packings are formed successively
in our packing algorithm. Consider the first (1 − ε3)
fraction of all flows (including the original flows and the
generated subflows) that are included successively into the
dual packings. The first group of rectangles arises from
these flows. The second group of rectangles belongs to the
remaining ε3 fraction of the flows. We set ε3 such that

ε3 = 1/
√

logN .
As discussed in Section 3.2, when we perform packing on

the circular network by unwrapping it to a linear network,
it is possible for a flow to be cut into two subflows. Each
clockwise unidirectional packing contains at least one flow
that does not generate subflows (a flow cannot have more
than N hops). As a corollary, if the clockwise packing
contains a flow that has been cut into two subflows, then
the packing must contain at least two flows to start with.
One of these subflows will be relegated to a future packing
exercise. So, each clockwise packing reduces the number
of remaining flows to be packed by at least one. For the
matching counterclockwise packing, at most one flow will be
cut into two subflows. Thus, the matching counterclockwise

packing does not increase the number of remaining counter-
clockwise flow. Recall from the discussion in Section 3.2
that for “traffic balance” successive dual packings will start
with clockwise and counterclockwise packings in an alternate
manner. Thus, successive dual packings will reduce the
numbers of remaining clockwise and counterclockwise flows
by at least one alternately.

In the beginning, there are N/2 original flows (N/4 of
which are clockwise and N/4 of which are counterclockwise
flows). From the argument in the previous paragraph, there
are altogether at most N/2 dual packings. Each dual packing
will at most generate at most two extra flows to the flow
pool (because of cut between s and e). Thus, altogether there
could be at most N extra flows being generated. Hence, the
total number of flows (including the original flows and the
subflows) is 3N/2.

In general, since the two end nodes of a rectangle must be
either a source or a destination of some flow, the number of
rectangles in a dual packing is no more than the number of
flows in that dual packing (note: some nonend nodes within
a rectangle could also be sources or destinations; thus the “no
more than” rather than “equal to”). Therefore, the number
of rectangles in the first group is no more than (1 − ε3)N .
For these rectangles, as shown in Lemma 2 at the end of this
appendix, the number of nodes in each group-1 rectangle is
no more than (1−ε4) log(N)+ε4N w.h.p., where ε4 is a small
positive quantity that goes to zero when N goes to infinity.
Similarly, the number of rectangles in the second group is
upper bounded by ε3N . As a trivial bound, we will upper-
bound the number of nodes in each group-2 rectangle by
N . Note that each node will at most transmit once within a
rectangle (group-1 or group-2) for traffic forwarding. Thus,
the total number of one-hop transmissions needed for the
rectangles is upper bounded by

T1 = (1− ε3)N · [(1− ε4) log(N) + ε4N
]

+ ε3N ·N.
(A.1)

Now, consider the transmissions across subflows. A
one-hop transmission is needed for two adjacent subflows
generated by the cut when we unwrap the circular network
to a corresponding linear network. In other words, there is
a one-hop transmission whenever there is an extra subflow,
which is upper bounded by N/2 according to the above
argument. Thus, the total number of one-hop transmis-
sions between all adjacent subflows is upper bounded by
T2 = N/2.

Putting things together, the total one-hop transmissions
in the second interval is upper bounded by T1 + T2. Since we
determine the start and end nodes of each dual packing in a
uniformly random way and pack each unidirectional packing
in a uniformly random way, the one-hop transmissions in
the rectangles are also uniformly distributed among all the
N nodes along the circle. With the traditional transmission
scheme, there are N/2 one-hop transmissions in each time
slot. Therefore, the time slots needed in the second interval
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are upper bounded by

k2 = T1 + T2

N/2

= (1− ε3)N · [(1− ε4) log(N) + ε4N
]

+ ε3N ·N +N/2
N/2

= 2(1− ε3)(1− ε4) log(N) + 2(1− ε3)ε4N + ε3N + 1

= Nε2,
(A.2)

where ε2 is determined by ε3, ε4, andN . It is easy to show that
ε2 will go to zero as N goes to infinity.

Finally, we prove that the number of time slots needed in
the first interval is less than (1 + ε1)N/4. In a unidirectional
packing, a residual node is an idle node that through
which no packet passes (i.e., none of the flows of the
unidirectional packing passes through the node). Thus, the
number of nodes through which one packet passes in one
unidirectional packing is N , minus the number of residual
nodes. Consider a dual packing to which group-1 rectangles
belong. According to Lemma 1 immediately after the proof
of Theorem 1 here, the number of residual nodes in each of
the unidirectional packings of the dual packings is less than
log(N) w.h.p.. That is, the number of nonresidual nodes in
a unidirectional packing is more than N-log(N) w.h.p., and
the number of nonresidual nodes in both the unidirectional
packings of the dual packing is more than 2(N − logN).
That is, the traffic handled by each dual packing (in terms
of packet flows across all nodes in the dual packing) is more
than 2(N − logN).

Now, consider an arbitrary node in the network. Accord-
ing to our model, it is either the source or destination
of some flow. The packet of that flow passes through it
with probability 1. For the other N/2 − 1 original flows, a
packet passes through the node with probability 1/2. By the
Chernoff-Hoeffding theorem, the number of packets that go
through each node is 1/2 · (N/2− 1) + 1 w.h.p.. Considering
all N nodes, the number of packets passing through them is
(1/2(N/2−1) +1)N . Note that this is the total traffic which is
more than the traffic in the dual packings to which group-1
rectangles belong.

Therefore, the number of dual packings to which the
group-1 rectangles belong is upper bounded by

(1/2(N/2− 1) + 1)N
(
2
(
N − log(N)

)) w.h.p. (A.3)

Similar to the argument for group-1 rectangles, for the
flows containing the group-2 rectangles, there are at most
ε3N flows which will generate at most ε3N unidirectional
packings, that is, ε3N/2 dual packings. Then we can obtain
that the total number of dual packings is no more than

(1/2(N/2− 1) + 1)N
(
2
(
N − log(N)

)) +
ε3N

2
= (1 + ε1)N

8
, (A.4)

with high probability, where ε1 is determined by ε3 and N .
It is easy to verify that ε1 goes to zero as N goes to infinity.

Since each packing needs at most two times slots, the time
slots needed for the first interval are at most k1 = (1+ε1)N/4.

With the help of k1 and k2, we can obtain the lower bound
of the per-flow throughput as

λP(N) = 1
k1 + k2

= 1
(1 + ε1)N/4 + 2 log(N) + 2Nε2 + 1

= 4
N

1
1 + ε1 + 2 log(N)/N + 2ε2 + 1/N

= 4
N

(1− ε),

(A.5)

where ε can be obtained from ε1, ε2, and N , and it goes to
zero as N goes to infinity. Then Theorem 1 is proved.

Lemma 1. For any clockwise (counterclockwise) unidirectional
packing contained in the dual packings to which group-1
rectangles belong, the number of residual nodes is less than
log(N) w.h.p.

Proof. Let P denote the set of dual packings to which group-1
rectangles belong. Let us focus on one clockwise unidirec-
tional packing p in P. The proof for the counterclockwise
case is similar. Let Pc be the clockwise packings in P. Let m
denote the number of clockwise flows in Pc. According to
our way of partitioning the rectangles into the two groups,
we have m ≤ (1 − ε3)N1, where N1 is the total number of
clockwise flows.

Recall that in our traffic model, we randomly select N/2
nodes to be sources and N/2 nodes to be destinations. In
other words, any node among the N nodes is either a source
or a destination. This applies to any residual node in p as well.
In particular, a residual node in p is either (1) a destination
node (of a clockwise or counter-clockwise flow), (2) a source
node of a counter-clockwise flow, or (3) a source node of a
clockwise flow. In case 3, since the residual node is a residual
node in p, it must be a source node of a clockwise flow
already packed (i.e., already belong to Pc) prior to packing
p.

For a unidirectional packing, consider the first flow from
the start point s. Suppose this flow ends at node i. Let us
consider the probability of node (i + 1) being a residual
node with respect to this unidirectional packing. Due to
the randomness of our packing procedure and our random
selection of sources and destinations for flows, node (i + 1)
is a destination node with probability p1 = 1/2; it is a source
node of a counter-clockwise flow with probability p2 = 1/4
w.h.p, and it is a source node of a prepacked clockwise flow
with probability p3 ≤ (1− ε3)/4 w.h.p. Then the probability
that node (i + 1) is a residual node given that node i is not a
residual node is

P(1 | 0) = p1 + p2 + p3 ≤ 1− ε3

4
. (A.6)

In out notation above, the 1 in P(1 | 0) refers to the fact
that we have found one residual thus far, and the 0 refers
to the fact that we have not found any residual node so far.
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Flow 1 Flow 2

Flow 3 Flow 4

Figure 8: An example of a dual packing, where flow 1 and flow 2
belong to the clockwise unidirectional packing, flow 3 and flow 4
belong to the counterclockwise unidirectional packing. The white
nodes are nonresidual nodes, the red nodes are the residual nodes
of the clockwise unidirectional packing, the green nodes are the
residual nodes of the counterclockwise packing, and the blue nodes
are the residual nodes of both the two unidirectional packings. The
nodes in the rectangles are the uncommon nodes.

Given node (i + 1) is a residual node, the probability that the
node (i + 2) is also a residual node is P(2 | 1) ≤ P(1 | 0)
(due to sampling without replacement). The probability of a
sequence of l or more residual nodes is given by

P(1 | 0)P(2 | 1)P(3 | 2) · · ·P(l | l − 1) ≤ [P(1 | 0)]l

≤
[

1− ε3

4

]l
.

(A.7)

When l = log(N), as N-goes to infinity, the above

probability is exp(−
√

log(N)/4), which will approach zero.
Thus, Lemma 1 is proved.

Lemma 2. For group-1 rectangles, the number of nodes in each
rectangle is no more than 2log(N) with probability 1−ε4, where
ε4 is a small positive quantity that goes to zero when N goes to
infinity.

Proof. With respect to Figure 8 and the explanation in its
caption, let Nr ,Ng ,Nb denote the number of red, green, and
blue nodes in a dual packing, respectively. By Lemma 1,
Nr + Nb ≤ log(N), and Ng + Nb ≤ log(N) w.h.p. Thus,
Nr +Ng +Nb ≤ Nr +Ng + 2Nb ≤ 2 log(N).
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Preliminary call for papers

The 2011 European Signal Processing Conference (EUSIPCO 2011) is the
nineteenth in a series of conferences promoted by the European Association for
Signal Processing (EURASIP, www.eurasip.org). This year edition will take place
in Barcelona, capital city of Catalonia (Spain), and will be jointly organized by the
Centre Tecnològic de Telecomunicacions de Catalunya (CTTC) and the
Universitat Politècnica de Catalunya (UPC).
EUSIPCO 2011 will focus on key aspects of signal processing theory and
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Organizing Committee

Honorary Chair
Miguel A. Lagunas (CTTC)

General Chair
Ana I. Pérez Neira (UPC)

General Vice Chair
Carles Antón Haro (CTTC)

Technical Program Chair
Xavier Mestre (CTTC)

Technical Program Co Chairsapplications as listed below. Acceptance of submissions will be based on quality,
relevance and originality. Accepted papers will be published in the EUSIPCO
proceedings and presented during the conference. Paper submissions, proposals
for tutorials and proposals for special sessions are invited in, but not limited to,
the following areas of interest.

Areas of Interest

• Audio and electro acoustics.
• Design, implementation, and applications of signal processing systems.

l d l d d

Technical Program Co Chairs
Javier Hernando (UPC)
Montserrat Pardàs (UPC)

Plenary Talks
Ferran Marqués (UPC)
Yonina Eldar (Technion)

Special Sessions
Ignacio Santamaría (Unversidad
de Cantabria)
Mats Bengtsson (KTH)

Finances
Montserrat Nájar (UPC)• Multimedia signal processing and coding.

• Image and multidimensional signal processing.
• Signal detection and estimation.
• Sensor array and multi channel signal processing.
• Sensor fusion in networked systems.
• Signal processing for communications.
• Medical imaging and image analysis.
• Non stationary, non linear and non Gaussian signal processing.

Submissions

Montserrat Nájar (UPC)

Tutorials
Daniel P. Palomar
(Hong Kong UST)
Beatrice Pesquet Popescu (ENST)

Publicity
Stephan Pfletschinger (CTTC)
Mònica Navarro (CTTC)

Publications
Antonio Pascual (UPC)
Carles Fernández (CTTC)

I d i l Li i & E hibiSubmissions

Procedures to submit a paper and proposals for special sessions and tutorials will
be detailed at www.eusipco2011.org. Submitted papers must be camera ready, no
more than 5 pages long, and conforming to the standard specified on the
EUSIPCO 2011 web site. First authors who are registered students can participate
in the best student paper competition.

Important Deadlines:

P l f i l i 15 D 2010

Industrial Liaison & Exhibits
Angeliki Alexiou
(University of Piraeus)
Albert Sitjà (CTTC)

International Liaison
Ju Liu (Shandong University China)
Jinhong Yuan (UNSW Australia)
Tamas Sziranyi (SZTAKI Hungary)
Rich Stern (CMU USA)
Ricardo L. de Queiroz (UNB Brazil)

Webpage: www.eusipco2011.org

Proposals for special sessions 15 Dec 2010
Proposals for tutorials 18 Feb 2011
Electronic submission of full papers 21 Feb 2011
Notification of acceptance 23 May 2011
Submission of camera ready papers 6 Jun 2011


