
How Does Multiple-Packet Reception
Capability Scale the Performance of

Wireless Local Area Networks?
Ying Jun (Angela) Zhang, Member, IEEE, Peng Xuan Zheng, Student Member, IEEE, and

Soung Chang Liew, Senior Member, IEEE

Abstract—Due to its simplicity and cost efficiency, wireless local area network (WLAN) enjoys unique advantages in providing high-

speed and low-cost wireless services in hot spots and indoor environments. Traditional WLAN medium-access-control (MAC)

protocols assume that only one station can transmit at a time: simultaneous transmissions of more than one station cause the

destruction of all packets involved. By exploiting recent advances in PHY-layer multiuser detection (MUD) techniques, it is possible for

a receiver to receive multiple packets simultaneously. This paper argues that such multipacket reception (MPR) capability can greatly

enhance the capacity of future WLANs. In addition, the paper provides the MAC-layer and PHY-layer designs needed to achieve the

improved capacity. First, to demonstrate MPR as a powerful capacity-enhancement technique, we prove a “superlinearity” result,

which states that the system throughput per unit cost increases as the MPR capability increases. Second, we show that the commonly

deployed binary exponential backoff (BEB) algorithm in today’s WLAN MAC may not be optimal in an MPR system, and the optimal

backoff factor increases with the MPR capability, the number of packets that can be received simultaneously. Third, based on the

above insights, we design a joint MAC-PHY layer protocol for an IEEE 802.11-like WLAN that incorporates advanced PHY-layer signal

processing techniques to implement MPR.

Index Terms—Wireless local area network, exponential backoff, multipacket reception.

Ç

1 INTRODUCTION

1.1 Motivation

THE last decade has witnessed a surge of interest in wireless
local area networks (WLANs), where mobile stations

share a common wireless medium through contention-based
medium access control (MAC). In WLANs, collision of
packets occurs when more than one station transmits at the
same time, causing a waste of bandwidth. Recent advances in
multiuser detection (MUD) techniques [1] open up new
opportunities for resolving collisions in the physical (PHY)
layer. For example, in CDMA [2] or multiple-antenna [3]
systems, multiple packets can be received simultaneously
using MUD techniques without collisions. It is expected that
with improved multipacket reception (MPR) capability from
the PHY layer, the MAC layer will behave differently from
what is commonly believed. In particular, to fully utilize the
MPR capability for capacity enhancement in WLAN, it is
essential to understand the fundamental impact of MPR on
the MAC-layer design. As such, this paper is an attempt to
study the MAC-layer throughput performance and the
collision resolution schemes for WLANs with MPR.

1.2 Key Contributions

The key contributions of this paper are as follows:

. To demonstrate MPR as a powerful capacity-
enhancement technique at the system level, we
analyze the MAC-layer throughput of WLANs with
MPR capability under both finite-node and infinite-
node assumptions. Our model is sufficiently general
to cover both carrier-sensing and noncarrier-sensing
networks. We prove that in random-access WLANs,
network throughput increases superlinearly with
the MPR capability of the channel. That is,
throughput divided by M increases as M increases,
where M is the number of packets that can be
resolved simultaneously. The superlinear through-
put scaling implies that the achievable throughput
per unit cost increases with MPR capability of the
channel. This provides a strong incentive to deploy
MPR in next generation wireless networks.

. We study the effect of MPR on the MAC-layer collision
resolution scheme, namely exponential backoff (EB).
When packets collide in WLANs, an EB scheme is
used to schedule the retransmissions, in which the
waiting time of the next retransmission will get
multiplicatively longer for each collision incurred. In
the commonly adopted binary exponential backoff
(BEB) scheme (e.g., used in Ethernet [15], WiFi [16],
etc.), the multiplicative (a backoff factor) is equal to 2.
We show in this paper that the widely used BEB does
not necessarily yield the close-to-optimal network
throughput with the improved MPR capability from
the PHY layer. As a matter of fact, BEB is far from
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optimum for both noncarrier-sensing networks and
carrier-sensing networks operated in basic access
mode. The optimal backoff factor increases with the
MPR capability. Meanwhile, BEB is close to optimum
for carrier-sensing networks when RTS/CTS access
mode is adopted.

. Built on the theoretical underpinnings established
above, we propose a practical protocol to fully exploit
the MPR capability in IEEE 802.11-like WLANs. In
contrast to [7], [8], we consider not only the MAC-
layer protocol design, but also the PHY-layer signal
processing to enable MPR in distributed random-
access WLANs. As a result, the proposed protocol can
be implemented in a fully distributed manner with
marginal modification of current IEEE 802.11 MAC.

1.3 Related Work on MPR and Collision Resolution
Schemes

The first attempt to model a general MPR channel in random-
access wireless networks was made by Ghez et al. [4], [5] in
1988 and 1989, respectively, in which stability properties of
conventional slotted ALOHA with MPR were studied under
a simple infinite-user and single-buffer assumption. No
collision resolution scheme (such as EB) was considered
therein. This work was extended to CSMA systems by Chan
et al. in [26] and to finite-user ALOHA systems by Naware
et al. in [6]. It has been shown in [4], [5], [6] that MPR
improves the stable throughput of ALOHA only when the
MPR capability is comparable to the number of users in the
system. In practical networks where the MPR capability is
much smaller than the number of users, the stable through-
put of conventional ALOHA is equal to 0, same as the case
without MPR. To date, little work has been done to
investigate the throughput enhancing capability of MPR in
practical WLANs with collision resolution schemes. Our
paper here is an attempt along this direction.

Protocols that exploit the MPR capability of networks
have been studied by Zhao and Tong [7], [8]. In [7], a
multiqueue service room (MQSR) MAC protocol was
proposed for networks with heterogeneous users. The
drawback of the MQSR protocol is its high computational
cost due to updates of the joint distribution of all users’
states. To reduce complexity, a suboptimal dynamic queue
protocol was proposed in [8]. In both protocols, access to the
common wireless channel is controlled by a central con-
troller, which grants access to the channel to an appropriate
subset of users at the beginning of each slot. In [27], Chan
et al. proposed adding a MUD layer to facilitate MPR in
IEEE 802.11 WLAN. To implement the MUD techniques
mentioned in [27], the AP is assumed to have knowledge of
the number of concurrent transmissions, the identities of the
transmitting stations, and the channel coefficients. This
information, while easy to get in a network with centralized
scheduling (e.g., cellular systems), is unkown to the AP
a priori in random access networks. Moreover, the pre-
ambles of concurrent packets overlap and, hence, it is
difficult for the AP to have a good estimation of the channel
coefficients with the current protocol. By contrast, this paper
provides a solution to this issue by incorporating blind
signal processing in the proposed protocol.

EB as a collision resolution technique has been extensively
studied in different contexts [10], [11], [12], [13]. Stability
upper bound of BEB has been given by Goodman et al. under

a finite-node model in [10] and recently improved by Al-
Ammal et al. [11]. The throughput and delay characteristics
of a slightly modified EB scheme have been studied in [12] in
the context of slotted ALOHA. The characteristics of EB in
steady state is further investigated in [13] in time-slotted
wireless networks with equal slot length. All the existing
work on EB has assumed that the wireless channel can only
accommodate one ongoing transmission at a time. This
paper is a first attempt to look at EB for an MPR system.

The remainder of this paper is organized as follows: In
Section 2, we describe the system model and introduce the
background knowledge on MUD and EB. In Section 3, we
prove that the maximum achievable throughput of MPR
WLAN scales superlinearly with the MPR capability of the
channel. In Section 4, the effect of MPR on EB is investigated.
We show that the widely used BEB scheme is no longer
close-to-optimal in MPR networks. To realize MPR in IEEE
802.11 WLANs, an MAC-PHY protocol is presented in
Section 5. In Section 6, we discuss some practical issues
related to MPR. Finally, Section 7 concludes this paper.

2 PRELIMINARY AND SYSTEM MODEL

2.1 System Description

We consider a fully connected infrastructure WLAN where
N infinitely backlogged mobile stations communicate with
an access point (AP). We assume that the time axis is
divided into slots and packet transmissions start only at the
beginning of a slot. In addition, after each transmission, the
transmitting stations have a means to discover the result of
the transmission, i.e., success or failure. If the transmission
fails due to collision, the colliding stations will schedule
retransmissions according to a collision resolution scheme
(e.g., EB). We assume that the channel has the capability to
accommodate up to M simultaneous transmissions. In
other words, packets can be received correctly whenever
the number of simultaneous transmissions is no larger than
M. When more than M stations contend for the channel at
the same time, collision occurs and no packet can be
decoded. We refer to M as MPR capability.

In our model, the length of a time slot is not necessarily
fixed and may vary under different contexts [9]. We refer to
this variable-length slot as backoff slot hereafter. In WLANs,
the length of a backoff slot depends on the contention
outcome (hereafter, referred to as channel status). Let Ti
denote the length of an idle time slot when nobody
transmits, Tc denote the length of a collision time slot when
more thanM stations contend for the channel, and Ts denote
the length of a time slot due to successful transmission when
the number of transmitting stations is anywhere from 1 to
M. The durations of Ti, Tc, and Ts depend on the underlying
WLAN configuration. For noncarrier-sensing networks such
as slotted ALOHA, the stations are not aware of the channel
status, and the duration of all backoff slots is equal to the
transmission time of a packet. That is,

Tslot ¼ Ti ¼ Tc ¼ Ts ¼ L=R; ð1Þ

where L is the packet size andR is the data transmission rate
of a station. On the other hand, for carrier-sensing networks,
stations can distinguish between various types of channel
status and the durations of different types of slots may not be
the same. For example, in IEEE 802.11 DCF basic-access mode
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Ti ¼ �;
Ts ¼ H þ L=Rþ SIFS þ � þACK þDIFS þ �;
Tc ¼ H þ L=RþDIFS þ �;

ð2Þ

where � is the time needed for a station to detect the packet
transmission from any other station and is typically much
smaller than Tc and Ts; H is the transmission time of both
PHY header and MAC header; ACK is the transmission time
of an ACK packet; � is the propagation delay; and SIFS and
DIFS are the interframe space durations [16]. Similarly, in
IEEE 802.11 DCF request-to-send/clear-to-send (RTS/CTS)
access scheme, the slot durations are given by

Ti ¼ �;
Ts ¼ RTS þ SIFS þ � þ CTS þ SIFS þ � þH þ L=R

þ SIFS þ � þACK þDIFS þ �;
Tc ¼ RTS þDIFS þ �;

ð3Þ

where RTS and CTS denote the transmission time of RTS
and CTS packets, respectively. By allowing the durations of
Ti, Tc, and Ts to vary according to the underlying system,
the analysis of this paper applies to a wide spectrum of
various WLANs, including both noncarrier-sensing and
carrier-sensing networks.

2.2 Multiuser Detection

This section briefly introduces the PHY-layer MUD techni-
ques used to decode multiple packets at the receiver. Let
xkðnÞ denote the data symbol transmitted by user k in
symbol duration n. If there are K stations transmitting
together, then the received signal at a receiver is given by

yðnÞ ¼
XK
k¼1

hkðnÞxkðnÞ þwðnÞ

¼ HðnÞxðnÞ þwðnÞ;
ð4Þ

where wðnÞ denotes the additive noise, HðnÞ ¼ ½h1ðnÞ;
h2ðnÞ; . . . ;hKðnÞ�, and xðnÞ ¼ ½x1ðnÞ; . . . ; xKðnÞ�T . In multi-

ple antenna systems, hk is the channel vector, with the

mth element being the channel coefficient from user k to

the mth receive antenna.1 In CDMA systems, vector hk is

the multiplication of the spreading sequence of user k and

the channel coefficient from user k to the AP.
The receiver attempts to obtain an estimate of the

transmitted symbols xðnÞ from the received vector yðnÞ.
To this end, various MUD techniques have been proposed
in the literature. For example, the zero-forcing (ZF) receiver
is one of the most popular linear detectors. It multiplies the
received vector by the pseudoinverse of matrix HðnÞ,
denoted by HþðnÞ, and the decision statistics becomes

rZF ðnÞ ¼ HþðnÞyðnÞ
¼ xðnÞ þHþðnÞwðnÞ: ð5Þ

The minimum-mean-square-error (MMSE) receiver is the
optimal linear detector in the sense of maximizing the
signal-to-interference-and-noise ratio (SINR). The decision
statistics is calculated as

rMMSEðnÞ ¼ ðHðnÞHHðnÞ þ �IÞ�1HHðnÞyðnÞ; ð6Þ

where I is the identity matrix and � is the variance of the
additive noise. Given the decision statistics, an estimate of
xkðnÞ can be obtained by feeding the kth element of rZF ðnÞ
or rMMSEðnÞ into a quantizer.

Other MUD techniques include maximum-likelihood
(ML), parallel interference cancellation (PIC), successive
interference cancellation (SIC), etc. Interested readers are
referred to [1] for more details.

2.3 Exponential Backoff

EB adaptively tunes the transmission probability of a
station according to the traffic intensity of the network. It
works as follows: A backlogged station sets its backoff timer
by randomly choosing an integer within the range
½0;W � 1�, where W denotes the size of the contention
window. The backoff timer is decreased by one following
each backoff slot. The station transmits a packet in its queue
once the backoff timer reaches zero. At the first transmis-
sion attempt of a packet, W ¼W0, referred to as the
minimum contention window. Each time the transmission
is unsuccessful, W is multiplied by a backoff factor r. That
is, the contention window size Wi ¼ riW0 after i successive
transmission failures.

3 SUPERLINEAR THROUGHPUT SCALING IN WLANS

WITH MPR

This section investigates the impact of MPR on the
throughput of random-access WLANs. In particular, we
prove that the maximum achievable throughput scales
superlinearly with the MPR capability M. In practical
systems, M is directly related to the cost (e.g., bandwidth
in CDMA systems or antenna in multiantenna systems).
Superlinear scaling of throughput implies that the achievable
throughput per unit cost increases with M. This provides a
strong incentive to consider MPR in next-generation wireless
networks. As mentioned earlier, the transmission of stations
is dictated by the underlying EB scheme. To capture the
fundamentally achievable throughput of the system, the
following analysis assumes that each station transmits with
probability pt in an arbitrary slot, without caring how pt is
achieved. The assumption will be made more rigorous in
Section 4, which relates pt to EB parameters such as r andW0.

3.1 Throughput of WLANs with MPR

Define throughput to be the average number of information
bits transmitted successfully per second. Let SNðM;ptÞ
denote the throughput of a WLAN with N stations when
each station transmits at probability pt and the MPR
capability is M. Then, SNðM;ptÞ can be calculated as the
ratio between the average payload information bits trans-
mitted per backoff slot to the average length of a backoff
slot as follows:

SNðM;ptÞ ¼
PM

k¼1 kPrfX ¼ kgL
PidleTi þ PcollTc þ PsuccTs

: ð7Þ

In the above, X is a random variable denoting the number
of attempts in a slot

PrfX ¼ kg ¼ N

k

� �
pkt ð1� ptÞ

N�k: ð8Þ
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Let

Pidle ¼ ð1� ptÞN ð9Þ

be the probability that a backoff slot is idle,

Psucc ¼
XM
k¼1

PrfX ¼ kg ¼
XM
k¼1

N

k

� �
pkt ð1� ptÞ

N�k ð10Þ

be the probability that a backoff slot is busy due to
successful packet transmissions, and

Pcoll ¼
XN

k¼Mþ1

PrfX ¼ kg ¼
XN

k¼Mþ1

N

k

� �
pkt ð1� ptÞ

N�k ð11Þ

be the probability that a backoff slot is busy due to collision
of packets.

The throughput of noncarrier-sensing networks, such as
slotted ALOHA, can be obtained by substituting (1) into (7),
which leads to following expression:

SNðM;ptÞ ¼
PM

k¼1 kPrfX ¼ kgL
Tslot

¼ R
XM
k¼1

k
N

k

� �
pkt ð1� ptÞ

N�k:

ð12Þ

Similarly, the throughput of carrier-sensing networks, such
as IEEE 802.11 DCF basic-access mode and RTS/CTS access
mode, can be obtained by substituting (2) and (3) into (7),
respectively.

We now derive the asymptotic throughput when the
population size N approaches infinity. In this case, we
assume that 1) the system has a nonzero asymptotic
throughput and 2) the number of attempts in a backoff slot
is approximated by a Poisson distribution with an average
attempt rate � ¼ Npt [24, p. 258]. Both of these assumptions
are valid under an appropriate EB scheme, which will be
elaborated in Section 4. Let S1ðM;�Þ be the asymptotic
throughput when MPR capability is M and average attempt
rate is �. Then, we derive from (7) that

S1ðM;�Þ ¼ lim
N!1

SN

¼ L
PM

k¼1 kPrfX ¼ kg
PidleTi þ PcollTc þ PsuccTs

¼
L
PM

k¼1 k
�k

k! e
��

PidleTi þ PcollTc þ PsuccTs

¼
L�
PM�1

k¼0
�k

k! e
��

PidleTi þ PcollTc þ PsuccTs

¼ L�PrfX �M � 1g
PidleTi þ PcollTc þ PsuccTs

;

ð13Þ

where the third equality is due to the Poisson approxima-
tion. In particular, when Tslot ¼ Ti ¼ Tc ¼ Ts ¼ L=R,

S1ðM;�Þ ¼ R
XM�1

k¼0

�kþ1

k!
e�� ¼ R�PrfX �M � 1g: ð14Þ

3.2 Superlinear Throughput Scaling

Having derived the throughput expressions for both finite-
population and infinite-population models, we now address
the question: how does throughput scale as M increases. In

particular, we are interested in the behavior of the maximum
throughput when the channel has a MPR capability of M.
This directly relates to the channel-access efficiency that is
achievable in MPR networks.

Given M, the maximum throughput can be achieved by
optimizing the transmission probability pt (or, equiva-
lently, � in the infinite-population model). The optimal
transmission probability can, in turn, be obtained by
adjusting the backoff factor r in practical WLANs, as will
be discussed in Section 4. Let S�NðMÞ ¼ SNðM;p�t ðMÞÞ and
S�1ðMÞ ¼ S1ðM;��ðMÞÞ denote the maximum achievable
throughputs, where p�t ðMÞ and ��ðMÞ denote the optimal
pt and � when the MPR capability is M, respectively. In
Theorem 1, we prove that the throughput scales super-
linearly with M in noncarrier-sensing network with infinite
population. In other words, S�1ðMÞ=M is an increasing
function of M. In Theorem 2, we further prove that
S�1ðMÞ=MR approaches 1 when M !1. This implies that
the throughput penalty due to distributed random access
diminishes when M is very large. In Theorem 3 in
Appendix A, we prove that the same superlinearity holds
for WLANs with finite population.

Theorem 1 (Superlinearity). S�1ðMÞ=M is an increasing
function of M.

It is obvious that, at the optimal ��ðMÞ,

@S1ðM;�Þ
@�

����
�¼��ðMÞ

¼ R
XM�1

k¼0

ðkþ 1Þð��ðMÞÞk

k!
e��

�ðMÞ

�R
XM�1

k¼0

ð��ðMÞÞðkþ1Þ

k!
e��

�ðMÞ

¼ 0:

ð15Þ

Consequently,

XM�1

k¼0

ð��ðMÞÞk

k!
e��

�ðMÞ ¼ ð�
�ðMÞÞM

ðM � 1Þ! e
���ðMÞ ð16Þ

or

PrfX �M � 1gj�¼��ðMÞ ¼M PrfX ¼Mgj�¼��ðMÞ: ð17Þ

To prove Theorem 1, we show that S�1ðM þ 1Þ=ðM þ 1Þ �
S�1ðMÞ=M for all M in the following:

S�1ðM þ 1Þ ¼ S1ðM þ 1; ��ðM þ 1ÞÞ
� S1ðM þ 1; ��ðMÞÞ

¼ R
XM�1

k¼0

��ðMÞkþ1

k!
e��

�ðMÞ

þR�
�ðMÞMþ1

M!
e��

�ðMÞ

¼ S1ðM;��ðMÞÞ þR��ðMÞPrfX ¼Mgj�¼��ðMÞ

¼M þ 1

M
S�1ðMÞ;

ð18Þ

where the last equality is due to (14) and (17). Therefore, we
have

S1ðM þ 1Þ
M þ 1

� S1ðMÞ
M

8M:

ut
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It is obvious that in a WLAN with MPR capability of M,
the maximum possible throughput is MR when there exists
a perfect scheduling. In practical random-access WLANs,
the actual throughput is always smaller than MR, due to
the throughput penalty resulting from packet collisions and
idle slots. For example, the maximum throughput is well
known to be Re�1 when M ¼ 1. Theorem 2 proves that the
throughput penalty diminishes as M becomes large. That is,
the maximum throughput approaches MR even though the
channel access is based on random contentions.

Theorem 2 (Asymptotic channel-access efficiency).
limM!1 S

�
1 ðMÞ

�
MR ¼ 1.

Before proving Theorem 2, we present the following
two lemmas:

Lemma 1.

a. limM!1 S1ðMÞ
�
�R ¼ 1 for any attempt rate � < M.

b. limM!1 S1ðMÞ
�
�R ¼ 0 for any attempt rate � > M.

c. limM!1 S1ðMÞ
�
�R ¼ 0:5 for attempt rate � ¼M.

Proof of Lemma 1a.

S1ðM;�Þ ¼ R�PrfX �M � 1g

¼ R� 1�
X1
k¼M

�k

k!
e��

 !

� R� 1� z�M
X1
k¼M

ð�zÞk

k!
e��

 !

� R�
�
1� z�Me�ðz�1Þ� 8z > 1:

ð19Þ

Let fðzÞ ¼ R�
�
1� z�Me�ðz�1Þ� be the lower bound of

S1ðMÞ. By solving

@fðxÞ
@z

¼ R�
�
Mz�M�1e�ðz�1Þ � �z�Me�ðz�1Þ� ¼ 0; ð20Þ

it can be easily found that z� ¼M
�
� maximizes fðzÞ and

fðz�Þ
�R

¼ 1�
�
�

M

�M
eMð1�

�
MÞ: ð21Þ

Since z� > 1, � < M. Let � ¼ cM, where c < 1. Equa-
tion (21) can be written as

fðz�Þ
�R

¼ 1�
�
ce1�c�M: ð22Þ

It is obvious that

ce1�c < 1 8c 6¼ 1: ð23Þ

Therefore,

lim
M!1

S1ðM;�Þ
�R

� lim
M!1

f�ðzÞ
�R

¼ lim
M!1

ð1�
�
ce1�c�MÞ

¼ 1:

ð24Þ

On the other hand, the first equality of (19) implies

S1ðM;�Þ
�R

� 1: ð25Þ

Combining (24) and (25), we have

lim
M!1

S1ðM;�Þ
�R

¼ 1 8� < M; ð26Þ

and Lemma 1a follows. tu
Proof of Lemma 1b.

S1ðMÞ ¼ R�PrfX �M � 1g ¼ R�
XM�1

k¼0

�k

k!
e��

� R�z�M
XM�1

k¼0

ð�zÞk

k!
e��

� R�z�M
X1
k¼0

ð�zÞk

k!
e��

¼ R�z�Me�ðz�1Þ 8z < 1:

ð27Þ

Let gðzÞ ¼ R�z�Me�ðz�1Þ be the upper bound of S1ðMÞ.
By solving

@gðzÞ
@z
¼ R�

�
�Mz�M�1e�ðz�1Þ þ �z�Me�ðz�1Þ� ¼ 0; ð28Þ

it can be easily found that z� ¼M=� minimizes gðzÞ and

gðz�Þ
R�
¼
�
�

M

�M
eMð1�

�
MÞ: ð29Þ

Since z� < 1, � > M. Let � ¼ cM, where c > 1. Equa-
tion (29) can be written as

gðz�Þ
R�
¼
�
ce1�c

�M
: ð30Þ

Due to (23),

lim
M!1

S1ðMÞ
R�

� lim
M!1

g�ðzÞ
R�

¼ lim
M!1

�
ce1�c�M ¼ 0:

ð31Þ

On the other hand, it is obvious that

S1ðMÞ
R�

� 0: ð32Þ

Combining (31) and (32), we have

lim
M!1

S1ðMÞ
R�

¼ 0 8� > M; ð33Þ

and Lemma 1b follows.

Proof of Lemma 1c. To prove Lemma 1c, we note that
the median of Poisson distribution is bounded as
follows [20], [21]:

�� log 2 � median � �þ 1=3: ð34Þ

When � ¼M and M !1, the median approaches M.
According to the first equality of (14),

lim
M!1

S1ðMÞ
R�

¼ lim
M!1

PrfX �M � 1g

� lim
M!1

PrfX �Mg ¼ 0:5:
ð35Þ

tu
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Lemma 2. The optimal attempt rate ��ðMÞ < M and

limM!1 �
�ðMÞ

�
M ¼ 1.

Proof of Lemma 2. The mode of Poisson distribution is

equal to b�c, where b�c denotes the largest integer that is

smaller than or equal to the argument. When � �M,

PrfX ¼Mg > PrfX ¼ ig 80 � i �M � 1; ð36Þ

which conflicts with (17). Therefore, the optimal attempt

rate is

��ðMÞ < M: ð37Þ

Combining (14), (17), (37), and Lemma 1, we have

lim
M!1

M PrfX ¼Mg
��
�¼��ðMÞ ¼ 1: ð38Þ

Let �� ¼ cM, where c < 1. Thus, (38) can be written as

lim
M!1

ðcMÞM

ðM � 1Þ! e
�cM ¼ 1 ð39Þ

and

c ¼ lim
M!1

�
ðM � 1Þ!

�1=M

M
ec

� lim
M!1

ðM!Þ1=M

M
ec

¼ e�ð1�cÞ;

ð40Þ

where the last equality is due to the Stirling’s formula

[14]. Solving (40), we have

lim
M!1

��

M
¼ lim

M!1
c ¼ 1: ð41Þ

tu
Proof of Theorem 2. From Lemmas 1 and 2, it is obvious

that limM!1 S
�
1ðMÞ

�
MR ¼ 1. tu

The above results are illustrated in Fig. 1, where

S�1ðMÞ
�
MR is plotted as a function of M in noncarrier-

sensing slotted ALOHA systems.

Theorem 3 (Superlinearity with finite population).

S�NðM þ 1Þ
�
M þ 1 � S�NðMÞ

�
M for all M < N .

Proof of Theorem 3. See Appendix A.

In Theorems 1, 2, and 3, superlinearity is proved

assuming that the network is noncarrier-sensing. In Figs. 2

and 3, the optimal throughputs S�1ðMÞ and S�1ðMÞ
�
M are

plotted for carrier-sensing networks, respectively, with

system parameters listed in Table 1. The figures show that

system throughput is greatly enhanced due to the MPR

enhancement in the PHY layer. Moreover, the superlinear

throughput scaling holds for carrier-sensing networks when

M is relatively large.

4 IMPACT OF MPR ON EB IN WLAN MAC

In this section, we study the characteristic behaviors of

WLAN MAC and EB when the channel has MPR capability.

We first establish the relationship between transmission

probability pt (or �) and EB parameters including backoff

factor r and minimum contention window W0. Based on the
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Fig. 1. Superlinear scalability of the throughput of noncarrier-sensing

slotted ALOHA networks.

Fig. 2. Optimal throughput of carrier-sensing networks.

Fig. 3. Superlinear scalability of the throughput of carrier-sensing

networks.
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analysis, we will then study how the optimal backoff
strategy changes with the MPR capability M.

4.1 Transmission Probability

We use an infinite-state Markov chain, as shown in Fig. 4, to
model of operation of EB with no retry limit. The reason for
the lack of a retry limit is that it is theoretically more
interesting to look at the limiting case when the retry limit is
infinitely large. Having said this, we note that the analysis
in our paper can be easily extended to the case where there
is a retry limit. The state in the Markov chain in Fig. 4 is the
backoff stage, which is also equal to the number of
retransmissions experienced by the station. As mentioned
in Section 2, the contention window size is Wi ¼ riW0 when
a station is in state i. In the figure, pc denotes the conditional
collision probability, which is the probability of a collision
seen by a packet being transmitted on the channel. Note
that pc depends on the transmission probabilities of stations
other than the transmitting one. In our model, pc is assumed
to be independent of the backoff stage of the transmitting
station. In our numerical results, we show that the
analytical results obtained under this assumption are very
accurate when N is reasonably large.

With EB, transmission probability pt is equal to the
probability that the backoff timer of a station reaches zero in
a slot. Note that the Markov process of MPR networks is
similar to the ones in [9], [13], except that the conditional
collision probability pc is different for M > 1. Therefore, (42)
can be derived in a similar way as [9], [13]

pt ¼
2ð1� rpcÞ

W0ð1� pcÞ þ 1� rpc
; ð42Þ

where rpc < 1 is a necessary condition for the steady state to
be reachable. The detailed derivation of (42) is omitted due
to page limit. Interested readers are referred to [9], [13].

Likewise, the conditional collision probability pc is equal to

the probability that there are M or more stations out of the

remaining N � 1 stations contending for the channel. We

thus have the following relationship:

pc ¼ 1�
XM�1

k¼0

N � 1

k

� �
pkt ð1� ptÞ

N�k�1: ð43Þ

It can be easily shown that pt is a decreasing function of pc for

any r > 1 in (42). Meanwhile, pc is an increasing function of pt
in (43). Therefore, the curves determined by (42) and (43)

have a unique intersection corresponding to the root of the

nonlinear system. By solving the nonlinear system (42) and

(43) numerically for differentN , we plot the analytical results

of Npt in Fig. 5. In the figures, BEB is adopted. That is, r ¼ 2.

The minimum contention window size W0 ¼ 16 or 32. To

validate the analysis, the simulation results are plotted as

markers in the figures. In the simulation, the data are

collected by running 5,000,000 rounds after 1,000,000 rounds

of warm up. From the figures, we can see that the analytical

results match the simulations very well. Moreover, it shows

that Npt converges to a constant quantity when N becomes

large. This is a basic assumption in the previous section when

we calculated the asymptotic throughput. The constant

quantity that Npt converges to can be calculated as follows.
For large N , the number of attempts in a slot can be

modeled as a Poisson process [24, p. 258]. That is,

PrfX ¼ kg ¼ �
k

k!
e��; ð44Þ

where

� ¼ lim
N!1

Npt: ð45Þ

The conditional collision probability in this limiting case is

given by

lim
N!1

pc ¼ PrfX �Mg ¼ 1�
XM�1

k¼0

�k

k!
e��: ð46Þ
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TABLE 1
System Parameters Used in Carrier-Sensing Networks

(Adopted from IEEE 802.11g)

Fig. 4. Markov chain model for the backoff stage.

Fig. 5. Plots of Npt versus N when r ¼ 2; lines are analytical results

calculated from (2) and (3), markers are simulation results.
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When the system is steady, the total attempt rate � ¼
limN!1Npt should be finite. Therefore,

lim
N!1

pt ¼ lim
N!1

2ð1� rpcÞ
W0ð1� pcÞ þ 1� rpc

¼ 0; ð47Þ

which implies

lim
N!1

pc ¼
1

r
: ð48Þ

Combining (46) and (48), we get the following equation:

XM�1

k¼0

�k

k!
e�� ¼ 1� 1

r
; ð49Þ

where � can be calculated numerically from (49) given M

and r. Fig. 5 shows that Npt calculated from (42) and (43)
does converge to � when N is large.

Note that the relationship between pt, �, and EB
established above does not depend on the duration of the
underlying backoff slots, and therefore can be applied in
both noncarrier-sensing and carrier-sensing networks.

Before leaving this section, we validate another assump-
tion adopted in Section 3. That is, EB guarantees a nonzero
throughput when N approaches infinity. To this end, the
throughput of slotted ALOHA is plotted as a function of N
in Fig. 6 when BEB is adopted. It can be seen that the
throughputs with the sameM converge to the same constant
as N increases, regardless of the minimum contention
window W0. Similar phenomenon can also be observed in
carrier-sensing networks, as illustrated in Fig. 7, where the
throughput of IEEE 802.11 WLAN with basic-access mode is
plotted with detailed system parameters listed in Table 1.
The asymptotic throughput when N is very large depends
only on the MPR capability M and the backoff factor r.

4.2 Optimal Backoff Factor

In Section 3, we have investigated the maximum network
throughput that is achieved by optimal transmission
probability p�t ðMÞ and ��ðMÞ. The previous section shows
that transmission probability is a function of backoff factor
r. Mathematically, the optimal r that maximizes throughput
can be obtained by solving the equation @SðMÞ

�
@r ¼ 0.

In this section, we investigate how the optimal backoff
factor r changes with the MPR capability M. In Figs. 8 and
9, we plot the throughput as a function of r for both
noncarrier sensing networks and carrier-sensing networks
in basic-access mode. From the figure, we can see that the
optimal r that maximizes throughput increases with M for
moderate to large M. This observation can be intuitively
explained for noncarrier-sensing networks by (14), (49), and
Lemma 1 as follows. Equations (14) and (49) indicate that

S1ðM;�Þ
R�

¼ PrfX �M � 1g ¼ 1� 1

r
: ð50Þ

As Lemma 1 indicates, when M is large, S1ðM;�Þ
�
R�

increases with M and eventually approaches 1. Conse-
quently, r increases with M.

As the figures show, the throughput decreases sharply
when rmoves from the optimal r� to 1. On the other hand, it is
much less sensitive to rwhen r is larger than the r�. Therefore,
in order to avoid dramatic throughput degradation, it is not
wise to operate r in the region between 1 and r�. Note that
when M is large, r� is larger than 2. This implies that the
widely used BEB might be far from optimal in MPR WLANs.
To further see how well BEB works, we plot the ratio of the
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Fig. 6. Normalized throughput of noncarrier-sensing-slotted ALOHA

networks when r ¼ 2.
Fig. 7. Throughput of carrier-sensing basic-access networks when r ¼ 2.

Fig. 8. Throughput versus r for noncarrier-sensing slotted ALOHA

networks.
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throughput obtained by BEB to the maximum achievable

throughput in Fig. 10. The optimal r that achieves the

maximum throughput is plotted versus M in Fig. 11. In the

figures, we can see that BEB only achieves a small fraction of

the maximum achievable throughput when M is large in

noncarrier-sensing and IEEE 802.11 basic-access mode. For

example, whenM ¼ 10 BEB only achieves about 80 percent of

the maximum throughput in noncarrier-sensing networks. In

RTS/CTS mode, in contrast, the performance of BEB is close

to optimal for a large range ofM. Therefore, we argue from an

engineering point of view that BEB (i.e., r ¼ 2) is a good

choice for RTS/CTS access scheme, while on the other hand,

tuning r to the optimal is important for noncarrier-sensing

and basic-access schemes.
Having demonstrated the significant capacity improve-

ment that MPR brings to WLANs, we are highly motivated

to present practical protocols to implement MPR in the

widely used IEEE 802.11 WiFi. In particular, we will propose

protocols that consist of both MAC-layer mechanisms and

PHY-layer signal processing schemes in the next section.

5 MPR PROTOCOL FOR IEEE 802.11 WLAN

In this section, we present an MPR protocol for IEEE 802.11
WLAN with RTS/CTS mechanism. The proposed protocol
requires minimum amendment at mobile stations, and
hence will be easy to implement in practical systems.
Throughout this section, we assume that the MPR capability
is brought by the multiple antennas mounted at the AP. This
assumption complies with the hardware request of the latest
MIMO-based WLAN standards. However, the proposed
MAC-PHY protocol can be easily extended to CDMA
networks, as the received signal structures in multiantenna
and CDMA systems are almost the same (refer to Section 2.3).

5.1 MAC Protocol Design

The MAC protocol closely follows the IEEE 802.11 RTS/CTS
access mechanism, as illustrated in Fig. 12. A station with a
packet to transmit first sends an RTS frame to the AP. In our
MPR-MAC model, when multiple stations transmit RTS
frames at the same time, the AP can successfully detect all
the RTS frames if and only if the number of RTSs is no
larger than M. When the number of transmitting stations
exceeds M, collisions occur and the AP cannot decode any
of the RTSs. The stations will retransmit their RTS frames
after a backoff time period according to the original IEEE
802.11 protocol. When the AP detects the RTSs successfully,
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Fig. 9. Throughput versus r for carrier-sensing networks with basic-

access mode.

Fig. 10. Ratio of BEB throughput to the maximal throughput versus M.

Fig. 11. Optimal r versus M.

Fig. 12. Time line example for the MPR MAC.
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it responds after an SIFS period, with a CTS frame that
grants transmission permissions to all the requesting
stations. Then, the transmitting stations will start transmit-
ting DATA frames after an SIFS, and the AP will acknowl-
edge the reception of the DATA frames by an ACK frame.

The formats of the RTS and Data frames are the same as
those defined in 802.11, while the CTS and ACK frames
have been modified to accommodate multiple transmitting
stations for MPR. In particular, there are M receiver
address fields in the CTS and ACK frames to identify up
to M intended recipients.

As described above, our MPR MAC is very similar to the
original IEEE 802.11 MAC. In fact, to maintain this
similarity in the MAC layer, the challenge is pushed down
to the physical layer. For example, in the proposed MPR
MAC, the AP is responsible to decode all the RTSs
transmitted simultaneously. However, due to the random-
access nature of WLAN, the AP has no priori knowledge of
who the senders are and the channel state information (CSI)
on the corresponding links. This imposes a major challenge
on the PHY layer, as the MUD techniques introduced in
Section 2, such as ZF and MMSE cannot be directly applied.
To tackle these problems, we introduce the physical layer
techniques in the next section.

5.2 PHY-Layer Signal Processing Mechanism

In this section, we propose a PHY mechanism to implement
MPR in IEEE 802.11. The basic idea is as follows: RTS
packets are typically transmitted at a lower data rate than
the data packets in IEEE 802.11. This setting is particularly
suitable for blind detection schemes which can separate the
RTS packets without knowing the prior knowledge of the
senders’ identities and CSI [17], [18]. Upon successfully
decoding the RTS packets, the AP can then identify the
senders of the packets. Training sequences, to be transmitted
in the preamble of the data packets, are then allocated to
these users to facilitate channel estimation during the data
transmission phase. Since the multiple stations transmit
their data packets at the same time, their training sequences
should be mutually orthogonal. In our system, no more than
M simultaneous transmissions are allowed. Therefore, a
total of M orthogonal sequences are required to be
predefined and made known to all stations. The sequence
allocation decision is sent to the users via the CTS packet.

During the data transmission phase, CSI is estimated from
the orthogonal training sequences that are transmitted in the
preamble of the data packets. With the estimated CSI, various
MUD techniques can be applied to separate the multiple data
packets at the AP. Using coherent detection, data packets can
be transmitted at a much higher rate than the RTS packets
without involving excessive computational complexity.

As MUD techniques have been introduced in Section 2, we
focus on the blind separation of RTS packets in this section.
Assume that there are K stations transmitting RTS packets
together. Then, the received signal in symbol duration n is
given by (4), where the ðm; kÞth element of H denotes the
channel coefficient from user k to the mth antenna at the AP.
Assuming that the channel is constant over an RTS packet,
which is composed of N symbol periods, we obtain the
following block formulation of the data:

Y ¼ HXþW; ð51Þ

where Y ¼ ½yð1Þ;yð2Þ; . . . ;yðNÞ�, X ¼ ½xð1Þ;xð2Þ; . . . ;xðNÞ�,
and W ¼ ½wð1Þ;wð2Þ; . . . ;wðNÞ�. The problem to be ad-
dressed here is the estimation of the number of sources K,
the channel matrix H, and the symbol matrix X, given the
array output Y.

5.2.1 Estimation of the Number of Sources K

For an easy start, we ignore the white noise for the moment
and have Y ¼ HX. The rank of H is equal to K if K < M.
Likewise, X is full-row-rank when N is much larger than K.
Consequently, we have rankðYÞ ¼ K and K is equal to the
number of nonzero singular values of Y. With white noise
added to the data, K can be estimated from the number of
singular values of Y that are significantly larger than zero.

5.2.2 Estimation of X and H

In this paper, we adopt the Finite Alphabet (FA)-based
blind detection algorithm to estimate X and H, assuming
that K is known. The ML estimator yields the following
separable least-squares minimization problem [17]:

min
H;X2�

kY�HXk2
F ; ð52Þ

where � is the finite alphabet to which the elements of X
belong and k � k2

F is the Frobenius norm. The minimization
of (52) can be carried out in two steps. First, we minimize
(52) with respect to H and obtain

Ĥ ¼ YXþ ¼ YXHðXXHÞ�1; ð53Þ

where ð�Þþ is the pseudoinverse of a matrix. Substituting Ĥ
back into (52), we obtain a new criterion, which is a function
of X only

min
X2�
kYP?

XHk2
F ; ð54Þ

where P?
XH ¼ I�XHðXXHÞ�1X and I is the identity

matrix. The global minimum of (54) can be obtained by

enumerating over all possible choices of X. Reduced-

complexity iterative algorithms that solve (54) iteratively,

such as ILSP and ILSE, were introduced in [18]. Not being

one of the foci of this paper, the details of ILSP and ILSE are

not covered here. Interested readers are referred to [19] and

the references therein.
Note that the scheme proposed in this section is only one

way of implementing MPR in WLANs. It ensures that the
orthogonal training sequences are transmitted in the
preambles of data packets. This leads to highly reliable
channel estimation that facilitates the user of MUD
techniques. Moreover, the modification to the original
protocol is mainly restrained within the AP. Minimum
amendment is needed at mobile stations.

6 DISCUSSIONS

6.1 Random Channel Error

In our analysis so far, we have assumed that packet error
rate due to random fading effect is negligible when the
number of simultaneous transmission is smaller than M
and is close to 1 otherwise. This assumption is quite
accurate when data packets are well protected by error
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correction codes (e.g., convolutional codes in IEEE 802.11
protocol) and linear MUD is deployed at the receiver. The
simplification allows us to focus on the effect of MPR on
WLAN without the need to consider signal processing
details such as coding and detection schemes.

In this section, we relax the assumption and investigate
how random channel errors would affect our analysis.
Fortunately, we can prove that superlinear throughput
scaling still holds even when random channel error is taken
into account, as detailed in the following. Denote by Perr

M ðkÞ
the packet error rate due to wireless channel fading when
k packets are transmitted at the same time in a network with
MPR capability M. Then, PMðkÞ ¼ 1� Perr

M ðkÞ is the packet
success rate, which is the probability that a packet survives
random channel fading [25]. Typically, PMðkÞ � PMðk0Þ for
k � k0 and PMðkÞ � PM 0 ðkÞ for M �M 0. Assuming linear
detectors, we have PMðkÞ � 0 if k > M and PMðMÞ �
PM 0 ðM 0Þ for M 6¼M 0 [22].

For simplicity, assume that Tslot ¼ Ts ¼ Ti ¼ Tc ¼ L=R.
Then, asymptotic throughput is given by

S1ðM;�Þ ¼ R
XM
k¼1

k
�k

k!
e��PMðkÞ

¼ R
XM�1

k¼0

�kþ1

k!
e��PMðkþ 1Þ:

ð55Þ

At the optimal ��ðMÞ, @S1ðM;�Þ
@� ¼ 0. Consequently,

XM�1

k¼0

ð��ðMÞÞk

k!
e��

�ðMÞPMðkþ 1Þ

¼
XM�2

k¼0

ð��ðMÞÞkþ1

k!
e��

�ðMÞðPMðkþ 1Þ � PMðkþ 2ÞÞ

þ ð�
�ðMÞÞM

ðM � 1Þ! e
���ðMÞPMðMÞ

� ð�
�ðMÞÞM

ðM � 1Þ! e
���ðMÞPMðMÞ:

ð56Þ

We are now ready to prove superlinear throughput scaling
S�1ðMþ1Þ
Mþ1 � S�1ðMÞ

M in the following:

S�1ðM þ 1Þ � S1ðM þ 1; ��ðMÞÞ

¼ R
XM�1

k¼0

��ðMÞkþ1

k!
e��

�ðMÞPMþ1ðkþ 1Þ

þR�
�ðMÞMþ1

M!
e��

�ðMÞPMþ1ðM þ 1Þ

� S1ðM;��ðMÞÞ þR�
�ðMÞMþ1

M!
e��

�ðMÞPMðMÞ

�M þ 1

M
S�1ðMÞ;

ð57Þ

where the last inequality is due to (56).

6.2 Near-Far Effect

One implicit assumption in our analysis is that each
station transmits at the same data rate R. In practice,
stations experience different channel attenuation to the AP
due to their random locations. If stations transmit at the
same power level, then the data rate sustainable on each

link would differ. In this case, the airtime occupied by a
busy period is dominated the lowest data rate involved.
Hence, the effective throughput enjoyed by high-rate
stations would degenerate to the level of the lowest rate.
Such problem, known as “performance anomaly,” is not
unique to MPR. It exists in all multirate IEEE 802.11
networks. Fortunately, performance anomaly only causes
the data rate R in our throughput expression to degrade
to Rmin, where Rmin is the lowest possible data rate.
Therefore, it will not affect the scaling law of throughput
in MPR networks.

6.3 Comparison with Multiuser SIMO Systems

In this paper, we have demonstrated the drastic increase in
spectrum efficiency brought by MPR. To implement MPR,
modification is needed in both MAC and PHY layers, as
discussed in Section 5. With the same hardware enhance-
ment (e.g., having M antennas at the AP), an alternative is
to let each link transmit at a higher data rate, but keep the
single-packet reception restriction unchanged. This essen-
tially becomes a traditional WLAN with single-input-
multiple-output (SIMO) links.

The capacity of an SIMO link increases logarithmically
with the number of antennas at the receiver [23], that is,

RSIMO � RSISO þ logðMÞ; ð58Þ

where RSISO is the data rate of a single-input-single-output
(SISO) link. In contrast, the data rate R of each link in MPR
WLAN is set to RSISO, for antenna, diversity is used to
separate multiple data streams instead of increasing the rate
of one stream therein.

With (58), the throughput of WLAN with SIMO links is

SSIMO
N ¼ L

PM
k¼1 kPrfX ¼ kg

PSIMO
idle TSIMO

i þ PSIMO
coll TSIMO

c þ PSIMO
succ TSIMO

s

;

ð59Þ

where the expressions for PSIMO
idle , PSIMO

coll , and PSIMO
succ are

the same as (9), (10), and (11) with M ¼ 1, respectively.

Likewise, TSIMO
i , TSIMO

c , and TSIMO
s are the same as (1), (2),

or (3) except that R is replaced by RSIMO. Specifically,

throughput in the ALOHA case becomes

SSIMO
N ¼ ðRþ logðMÞÞNptð1� ptÞN�1; ð60Þ

and the optimal pt that maximizes the throughput is equal
to 1=N . In particular, the maximum achievable throughput
when N is large is

SSIMO�
1 ðMÞ ¼ ðRþ logðMÞÞe�1: ð61Þ

It is obvious that the normalized throughput
SSIMO�
1 ðMÞ

M

decreases with M in SIMO networks. This, in contrast to the
superlinear throughput scaling in MPR networks, suggests
that multiple antennas at the AP should be used to resolve
simultaneous transmissions instead of increasing per-link
data rate in random access WLANs.

7 CONCLUSION

With the recent advances in PHY-layer MUD techniques, it
is no longer a physical constraint for the WLAN channel to
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accommodate only one packet transmission at one time. To
fully utilize the MPR capability of the PHY channel, it is
essential to understand the fundamental impact of MPR on
the MAC layer. This paper has studied the characteristic
behavior of random-access WLANs with MPR. Our
analysis provides a theoretical foundation for the perfor-
mance evaluation of WLANs with MPR, and it is useful for
system design in terms of setting operating parameters of
MAC protocols.

Our analytical framework is general and applies to
various WLANs including non-carrier-sensing and carrier-
sensing networks. In Theorems 1 and 3, we have proved
that the throughput increases superlinearly with M for both
finite and infinite-population cases. This is the case in
noncarrier-sensing networks for all M and in carrier-
sensing networks for moderate to large M. Moreover,
Theorem 2 shows that the throughput penalty due to
distributed random access diminishes when M approaches
infinity. Such scalability provides strong incentives for
further investigations on engineering and implementation
details of MPR systems. Based on the analysis, we found
that the commonly deployed BEB scheme is far from
optimum in most systems except the carrier-sensing
systems with RTS/CTS four-way handshake. In particular,
the optimum backoff factor r increases with M for large M.
We further note that the throughput degrades sharply when
r is smaller than the optimum value, while it is much less
sensitive to r when r exceeds the optimum.

Having understood the fundamental behavior of MPR,

we propose practical protocols to exploit the advantage of

MPR in IEEE 802.11-like WLANs. By incorporating ad-

vanced PHY-layer blind detection and MUD techniques, the

protocol can implement MPR in a fully distributed manner

with marginal modification of MAC layer.

APPENDIX A

SUPERLINEAR THROUGHPUT SCALING IN WLANS WITH

FINITE POPULATION

Theorem 4 (Superlinearity with finite population).

S�NðM þ 1Þ
�
ðM þ 1Þ � S�NðMÞ

�
M for all M < N .

From (12), we have

SNðM;ptÞ ¼ R
XM
k¼1

k
N

k

� �
pkt ð1� ptÞ

N�k

¼ R Npt
1� pt

XM�1

k¼0

N

k

� �
pkt ð1� ptÞ

N�k

�R pt
1� pt

XM�1

k¼0

k
N

k

� �
pkt ð1� ptÞ

N�k

¼ R Npt
1� pt

PrfX �M � 1g

� pt
1� pt

SNðM � 1; ptÞ;

ð62Þ

and

SNðMþ1; ptÞ¼R
Npt

1� pt
PrfX�Mg � pt

1� pt
SNðM;ptÞ: ð63Þ

Meanwhile,

SNðMþ1; ptÞ ¼ R
XMþ1

k¼1

k
N

k

� �
pkt ð1�ptÞ

N�k

¼ SNðM;ptÞþRðMþ1ÞPrfX¼Mþ1g:
ð64Þ

Substituting (64) to (63), we get

SNðM;ptÞ ¼ RNpt PrfX �Mg
�Rð1� ptÞðM þ 1ÞPrfX ¼M þ 1g
8M < N; pt:

ð65Þ

At the optimal p�t ðMÞ, the derivative @SNðM;ptÞ=@pt ¼ 0.
Thus,

@SNðM;ptÞ
@pt

����
pt¼p�t ðMÞ

¼RN PrfX�Mg
��
pt¼p�t ðMÞ

þRðMþ1Þ 1�Mþ1

pt

� �
PrfX¼Mþ1g

��
pt¼p�t ðMÞ

¼0:

ð66Þ

Combining (65) and (66), we have

SNðM;p�t ðMÞÞ ¼ p�t ðMÞ
@SNðM;ptÞ

@pt

����
pt¼p�t ðMÞ

�RðMþ1Þ
�
p�t ðMÞ�ðM þ 1Þ

�
PrfX¼Mþ1g

��
pt¼p�t ðMÞ

�RðM þ 1Þ
�
1� p�t ðMÞ

�
PrfX ¼M þ 1g

¼ RMðM þ 1ÞPrfX ¼M þ 1g
��
pt¼p�t ðMÞ:

ð67Þ

It is obvious that

SNðMþ1; p�t ðMþ1ÞÞ�SNðMþ1; p�t ðMÞÞ
¼ SNðM;p�t ðMÞÞþRðMþ1ÞPrfX¼Mþ1g

��
p�t ðMÞ

:
ð68Þ

Substituting (67) to (68), we have

SNðM þ 1; p�t ðM þ 1ÞÞ

� SNðM; p�t ðMÞÞ þ
SNðM;p�t ðMÞÞ

M

¼ SNðM; p�t ðMÞÞ
M þ 1

M
:

ð69Þ

Hence, S�NðM þ 1Þ
�
ðM þ 1Þ � S�NðMÞ

�
M for all M < N . tu
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