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Abstract 
A collision resolution scheme is essential to the 

performance of a random-access wireless network. Most 
schemes employ exponential backoff (EB) to adjust the 
transmission attempt rate according to the changing traffic 
intensity. Previous work on exponential backoff was mostly 
based on the conventional single-packet-reception model 
where no more than one packet can be successfully received at 
any one time. In this paper, we analyze the performance of EB 
based on a Muti-packet Reception (MPR) model, in which 
multiple packets can be received successfully at once (i.e., 
collisions do not occur unless the number of packets 
transmitted exceeds a threshold that is more than 1). Using a 
Markov chain model, we derive the throughput expressions for 
both carrier-sensing and non-carrier-sensing networks with 
MPR capability under the saturated-traffic condition. We find 
that the two systems share a number of common performance 
results. In particular, the state of both systems can be 
characterized by the same Markov-chain model. The binary 
exponential backoff (BEB), in which the backoff factor r is set 
to 2, does not yield the optimum network throughput in both 
cases. In addition, in both cases, the asymptotic collision 
probability goes to 1/r and the maximum asymptotic 
throughput increases roughly linearly with M when the 
population size approaches infinity. We show how to adjust r 
to achieve the best throughput performance.  Our results show 
that the optimal r that maximizes the asymptotic throughput 
increases with M for non-carrier-sensing systems and BEB is 
close to optimal for carrier-sensing systems. Simulation 
results validate the accuracy of our theoretical analysis. 

 Index Terms – Multi-packet reception, exponential 
backoff, wireless networks, ALOHA, WLAN, 802.11, random 
access. 

1. Introduction 
The collision-resolution scheme used in a random-access 

wireless network is a significant factor affecting network 
performance. Core to a collision-resolution scheme is a 
backoff algorithm which determines how long a node should 
wait before retransmitting a packet after a packet collision. 
This is an integral part that determines how well the system 
adjusts to the ever changing traffic intensity in the network.  
Exponential backoff (EB), in which each collision causes the 
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backoff period to be multiplied by a constant factor, has been 
investigated in detail in the last few decades [1]. 

Most previous work was based on the traditional single-
packet-reception model. With advanced reception techniques 
at the physical layer, however, it is possible for the receiver to 
resolve multiple simultaneously transmitted packets. With 
Multi-packet Reception (MPR) [2], collisions occur only when 
the number of simultaneously transmitted packets exceeds the 
maximum number of simultaneous packets that the receiver 
can resolve. To date, there has been little work on the behavior 
and impact of EB under MPR. 

In this paper, we analyze the performance of EB with MPR 
capability under two common random-access models, namely 
models with and without carrier-sensing. We first derive the 
throughput expressions for both systems based on a common 
Markov-chain model assuming a finite population. Then, the 
asymptotic collision probability and transmission probability 
for the infinite-population case is studied. We find that the 
commonly deployed binary exponential backoff (BEB) is not 
optimal in terms of the overall network throughput. We show 
how to adjust the backoff factor r to achieve the best 
performance. In addition, we propose an infinite population 
model to investigate the asymptotic throughput of EB. Results 
show that the optimal r which maximizes the asymptotic 
throughput increases with M for non-carrier-sensing systems 
and BEB is close to optimal for carrier-sensing systems. 
Besides, the maximum asymptotic throughput increases 
roughly linearly with M for both carrier-sensing and non-
carrier-sensing systems. The accuracy of our analytical model 
is validated by extensive simulations. 

The rest of the paper is organized as follows. Section 2 
introduces the concepts of MPR and EB. Section 3 first 
describes the analytical model, and then derives the 
throughput of EB with MPR for the non-carrier-sensing 
model. Based on the throughput expression, we show how to 
adjust the backoff factor r for optimal throughput 
performance. An infinite population model is also presented to 
analyze the asymptotic behavior of EB when the number of 
users in the network is large. Section 4 analyzes the 
performance of an MPR MAC protocol with carrier-sensing. 
Finally, Section 5 concludes the paper. 

2. Background and Related Work 
2.1. Mutipacket Reception 

With the advent of CDMA [3] and multiple-antenna [4] 
techniques, it is no longer a physical constraint for the channel 
to accommodate only one ongoing transmission. For example, 
we previously proposed an 802.11-like protocol to support 



 

MPR in wireless local area networks, where the AP has 
multiple antennas and is capable of receiving multiple packets 
simultaneously [5]. 

Ghez, Verdu and Schwartz [6] were the first to analyze the 
stability properties of slotted Aloha with MPR capability in 
the late 1980s. By means of a drift analysis, they showed that 
the channel backlog Markov chain is ergodic if the packet 
arrival rate is less than the expected number of packets 
successfully received in a collision of n packets as n goes to 
infinity. Not until very recently did MPR resurface in research 
work again. Researchers from Cornell reopened the topic and 
have performed extensive studies on various aspects of MPR. 
In [2], L. Tong et al studied the impact of MPR-enabling 
signal-processing techniques on the throughput and design of 
random access protocols. In [7], Zhao and Tong proposed a 
centralized multiqueue service room MAC protocol (MQSR) 
which was designed especially for MPR. Later in [8], Zhao 
and Tong further proposed another centralized MAC protocol 
for MPR, the dynamic queue protocol, which offers a much 
simpler implementation and only marginal performance 
degradation. These medium access schemes all require a 
central controller to coordinate the transmissions of the client 
stations. Chan and Berger proposed a cross-layer designed 
CSMA protocol for MPR (XL-CSMA) in [9]. XL-CSMA is a 
decentralized random access scheme and may be applied in 
various situations when a central controller is not available. 
Work in [5] is the first attempt to implement MPR under the 
IEEE 802.11 DCF setting in wireless LAN. 

In this paper, we assume that the channel has the capability 
to accommodate up to M simultaneous transmissions. 
Hereafter, we refer to this as “MPR capability M”. More 
specifically, this means the packets can be received correctly 
whenever the number of simultaneous transmissions is no 
more than M. When more than M stations contend for the 
channel at the same time, no packet can be decoded. 

To focus on the effect of MPR on EB, we assume that the 
channel is error free in the sense that all packet losses are due 
to collisions (i.e., more than M packets are transmitted at the 
same time). This assumption is widely used in the literature to 
simplify analysis and at the same time provide reasonable 
results. Nonetheless, our work can be easily extended to 
include the effect of random channel error by adding a term of 
packet error rate in the throughput expression. 

2.2. Exponential Backoff 
As pointed out in the previous subsection, whenever the 

number of simultaneous transmissions exceeds the channel’s 
MPR capability, collision happens and the packets involved 
are garbled. Therefore, once a collision occurs, a collision 
resolution scheme is needed for the stations to optimally 
schedule the retransmission of the colliding packets.  

One of the most widely used collision resolution protocols 
is the binary exponential backoff (BEB) scheme, which is 
being included as part of the MAC specifications in Ethernet 
[10] and IEEE 802.11 [11] standards. The basic idea of BEB is 
as follows. In random access networks, a collision implies that 
the channel is likely to be overloaded. Hence, once a collision 
occurs, the colliding stations double their contention window 

size to reduce their transmission probability. In this way, the 
overall load on the channel is lightened. 

Most previous work in this area focuses on the stability 
issues of EB. Since stability is not the focus of our paper, 
interested readers are referred to [12] for a more detailed 
literature survey. In this paper, we assume that EB is “stable” 
in the sense which will become clear later, and based on that, 
we perform a careful study of the impact of MPR on the 
performance of EB. 

 In this paper, we consider the general form of exponential 
backoff (EB) in which the backoff factor r can be any value 
larger than one. The BEB is a special case of the general EB 
with 2r = . We also investigate the performance of EB under 
both carrier-sensing and non-carrier-sensing models. Most of 
our general conclusions hold for both systems, except that the 
throughput expressions are different. Although our focus is on 
the non-carrier-sensing model in Section 3, the Markov–chain 
model for the analysis of the collision probability and 
transmission probability also applies to the carrier-sensing 
case. The difference in the throughputs of the two systems is 
manifested through the different “time interval” parameters 
being used for collision event, successful-transmission event, 
etc. in the throughput expressions. 

3. Analysis of EB with Multipacket Reception 
3.1. Model 

In the following analysis, we use the so-called time-slotted 
model, which assumes that the time axis is divided into slots 
of equal duration. All packet transmissions are of the same 
length, equal to exactly one slot, and are synchronized. The 
model assumed here is without carrier-sensing, while the 
model assumed in Section 4 is with carrier-sensing. Our 
analysis of the non-carrier-sensing case in this section can be 
regarded as a generalization of [12] to the MPR framework. 

There are N stations, each operating in a saturated mode, 
which means the stations always have packets waiting for 
transmission. After each transmission, the transmitting stations 
will be informed of the outcome of the transmission, i.e., 
success or failure. We also assume that the feedback time is 
extremely short compared with the length of packet 
transmissions, therefore is negligible in our analysis. This 
assumption is to make sure that our model does not depend on 
any particular implementation. The throughput expression 
derived in the next subsection only need to be modified a little 
bit to account for the effect of any particular feedback 
mechanism. 

The EB algorithm works as follows. Initially, any station 
having packets to transmit randomly selects a backoff time 
from 0 to 0 1W −  slots, where the integer W0 denotes the 
minimum contention window size. After waiting for this 
amount of backoff time, the station transmits a packet in its 
queue. Every time the transmission is unsuccessful, the 
contention window for the station will be multiplied by the 
backoff factor r. After i successive failed retransmissions, the 
number of slots for which the station will wait before the 1i +  
retransmission attempt, Di, is generated according to the 
following distribution [10]: 
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where 0
i

iW r W =    and 0
i

i iF r W W= − . Once a transmission 

is successful the contention window of that station is reset to 
W0. 

We first assume that EB is used in each of the stations in 
the network, and that with the use of the EB, the stations will 
finally reach a steady state in which the distribution of the 
backoff stages of the stations becomes stationary. So we are 
informally defining the “stability” as the capability of the EB 
to adapt to the varying traffic condition and finally bring the 
system into a steady state. We use an infinite-state Markov 
chain, as in Fig. 1, to model the operation of EB with no retry 
limit at a station. The reason why no retry limit is introduced 
is that it is theoretically more interesting to look at the limiting 
case when m is infinitely large. Besides, by striking out m, we 
are at an advantage of having fewer variables so that clearer 
relationships between the more interesting parameters can be 
manifested. Having said that, the analysis in our paper can be 
easily extended to the case where there is a retry limit m. The 
state in the Markov chain in Fig. 1 is the backoff stage, which 
is also equal to the number of retransmissions experienced by 
the station. Therefore, the contention window size is 

0
i

iW r W =    when the station is in state i. In our model, we 

assume that the collision probability of each transmission 
attempt is equal to a constant pc, no matter which state the 
station is currently at. This assumption is accurate as long as 
W0 and N is large enough [13]. 

i = 0 i = 1 i = 2 i = 3
pcpc pcpc

1 - pc
1 - pc

1 - pc
1 - pc

1 - pc

. . .

 
Fig. 1 Markov chain model for the backoff stage. 

Let pt be the transmission probability of a station in an 
arbitrary slot. From this Markov chain, we can derive the 
expression for pt, 
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where 1<crp  is a necessary condition for the steady state to 
be reachable [12]. 

In the steady state, the probability that a transmitted packet 
is collided is equal to the probability that the number of 
simultaneous transmissions from the other 1N −  stations in 
the same slot is no less than the channel’s MPR capability. 
Thus, we have the following relation: 
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Fig. 2 Plots of pt as a function of pc when r = 2; dashed lines: pt in (2), dotted 

lines: pt in (3) with M = 1, r = 2, solid lines: pt in (3) with M = 2. 

From Eqns (2) and (3), we can solve for pc and pt, given N, 
M, r and W0. The curves determined by (2) and (3) are plotted 
in Fig. 2. As can be seen, the curves have a unique intersection 
which can always be calculated numerically. This unique 
intersection represents the roots pc and pt  to Eqns (2) and (3). 
From the figure, we can also see that as N increases, pt and pc 
converge to 0 and 0.5 (i.e., 1/r when 2r = ) respectively, 
regardless of M. This observation will be proved analytically 
in the next subsection. 

3.2. Performance Analysis 
Let Ptr be the probability that there is at least one 

transmission in the slot time. Then 
1 (1 )N

tr tP p= − − .                               (4) 
Let Psk denote the probability that k packets are transmitted 

simultaneously and the transmission is successful, 
conditioning on the fact that there is at least one transmission. 
Since each station transmits its packet independently in a 
given slot, the probability Psk is calculated as 
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Thus, the “normalized throughput” of the network is given 
by 
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Note that the throughput can be interpreted as the ratio of the 
expected number of packets successfully transmitted within 
one time slot to the maximum number of packets that can be 
transmitted in that time interval without MPR. Therefore, it 
has no unit. This definition conforms to the one used in [12] 
for 1M = , but slightly different from the throughput 
definition we use later in the carrier-sensing case. 

In the following discussion, we analyze the asymptotic 
behavior of pc and T in our MPR model. First we show that pc 
converges to 1/r regardless of the MPR capability M.  

It is not difficult to see that 0lim =
∞→ tN

p  is necessary for the 

system to reach steady state which is our initial assumption. 



 

Suppose pt converges to some nonzero value, then Npt, the 
number of average transmission attempts in a slot, approaches 
infinity as N goes to infinity. This implies that the collision 
probability 1cp = , which does not satisfy the necessary 

condition rpc /1<  for the system to be able to reach the 
steady state. Hence, pt converges to zero as N goes to infinity.  

From (2) we know 
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Taking the limit, we should have 
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From (7), we conclude that pc converges to 1/r regardless 
of M as N goes to infinity. We plot the analytical results of pc, 
obtained by calculating (2) and (3) numerically, as lines and 
the simulation results as markers in Fig. 3.  

To verify the analytical results, we developed a simulator 
to realize the EB algorithm described in the previous 
subsection along with those assumptions. The simulator is 
written in C++ and developed under Visual C++ 6.0 IDE. The 
data were collected by running 5,000,000 slots after 1,000,000 
slots of warming up, as in [12]. The backoff factor r we use in 
the simulation is equal to 2, so the general EB reduces to BEB 
and the minimum contention window sizes we choose are 

0 16W = , 32, and 64 which conform to the IEEE 802.11 
specification for different PHY layers. We only show the 
simulation results when 1M = and 2 as examples and the 
curves for other M can be inferred from these two special 
cases. 

In Fig. 3, both the curves for 1M =  and 2M =  converge 
to 0.5 (i.e., 1/r since 2r = ). We can also see from Fig. 3 that 
the simulation results match well with the analytical results, 
which supports our conclusion in (7). It is obvious in the 
figure that as N increases,  pc increases to 1/r more slowly for 

2M =  than for 1M = . This is self-evident since when the 
MPR capability is increased it is less likely for a station to 
collide with others. 
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Fig. 3 Plots of pc versus N when r = 2; lines are analytical results calculated 

from (2) and (3), markers are simulation results. 

We now look at the throughput results based on solving 
(2), (3) and (6). From Fig. 4, we can see that the throughputs 
with the same M converge to the same constant as N increases, 
regardless of W0. This phenomenon implies that no matter how 
crowded the network is, EB can guarantee a nonzero limiting 
throughput. This limiting throughput only depends on the 
MPR capability of the channel and is insensitive to the settings 
of the initial minimum contention window size. In the next 
subsection, we will show how to predict this “limiting 
throughput” from the infinite-population model. As shown in 
Fig. 4, however, this limiting throughput increases as M gets 
larger. This fact conforms to our intuition, since we would 
expect higher throughput with increased MPR capability. 
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Fig. 4 Plots of throughput versus N when r = 2; lines are analytical results 

obtained numerically, markers are simulation results. 

As a special case of our general MPR model when 1M = , 
Kwak et al [12] proved that, under the traditional collision 
model, the collision probability pc and network throughput T 
converge as the number of stations N goes to infinity as 
follows: 
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Another dimension to investigate the throughput is to see 
how the throughput behaves as M increases given a fixed 
number of stations N. The analytical results obtained when 

50N =  are plotted in Fig. 5. In this figure, the three curves go 
up to their maximum value as M increases. The maximum 
throughput decreases as W0 increases. The reason is as 
follows. First, it is obvious that the maximum throughput is 
reached when M N= . In this case, there is no collision and 
all transmissions are successful. Therefore, the contention 
window size is always equal to W0. It can be easily figured out 
that the maximum throughput is equal to 02 ( 1)N W + . This 
implies that the maximum throughput decreases 
monotonically with W0 when N is fixed. Another observation 
is that, when M is much smaller than N, throughput increases 
roughly linearly with M; when M approaches N, the 
throughput reaches the maximum. We will show in the next 
subsection that the asymptotic throughput (throughput when 
N → ∞ ) increases almost linearly with M irrespective of W0. 
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Fig. 5 Throughput versus M when r = 2 and N = 50. 

 In practice, MPR capability is achieved by increasing both 
the hardware and computational costs. It is therefore 
worthwhile investigating the achievable throughput per unit 
cost in our system. As shown in Fig. 5, the throughputs 
become almost flat as M becomes larger than some value. 
Therefore, the normalized throughput (normalized by M) 
actually increases as M increases at first and then goes down. 
The optimal point should be somewhere around the corner of 
the curve. While this is true for finite N, for infinite N the 
normalized throughput increases monotonically with M. 

Similarly, the relation between throughput and r given M 
can also be obtained from (2), (3) and (6). Fig. 6 shows the 
throughput variation with different settings of r. From this 
figure, we can see that, given M, there exists an optimal value 
of r which maximizes the network throughput. This fact can 
be interpreted as follows. When we increase r, the collision 
probability is reduced. However, we may tend to backoff too 
much, thus also reducing the transmission probability. Thus, to 
maximize the throughput by calibrating the backoff factor r, 
we are indeed balancing between letting the stations be more 
aggressive at the risk of higher collision probability and letting 
them be conservative at the risk of wasting precious air time 
when nobody transmits at all. Mathematically, the optimal 

value of r which maximizes the throughput can be obtained by 
solving the equation 

0dT dr = .                                         (10) 
As shown in (9), when 1M = , the asymptotic throughput 

is expressed as a function of r. The optimal r which 
maximizes the asymptotic throughput is given by [12] 

11 (1 )optr e−= − .                                    (11) 

However, when M is larger than 1, it is difficult to express 
T as a closed-form function of r, so numerical methods are 
needed to find the optimal r. Another observation from this 
figure is that the commonly deployed binary exponential 
backoff is not optimal in the sense that 2r =  does not achieve 
the maximum aggregate throughput.  
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Fig. 6 Throughput versus backoff factor r when N = 50. 

3.3. Infinite Population Model 
In the previous subsection, we studied EB and achievable 

throughput of wireless networks with MPR when the number 
of stations is finite and equal to N. The asymptotic 
performance when N approaches infinity can be obtained by 
setting N to be a very large number in our previously derived 
equations. However, this would make the numerical results 
difficult to obtain. In this subsection, we therefore adopt an 
alternative infinite-population model to analyze the asymptotic 
performance of MPR. In this model, it is assumed that the 
number of stations N in the network is infinitely large and 
each station independently transmits in a slot with probability 
pt. Recall that 0lim =

∞→ tN
p , while lim tN

Np
→∞

 is a constant. 

Therefore, the originally binomially distributed number of 
transmission attempts in a slot can be approximated by 
Poisson distribution: 
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where the random variable X denotes the number of attempts 
in a slot and λ  is the mean which can be expressed as 
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In (7), we have shown that 
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Meanwhile, from our infinite population model, we have 
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Thus from (7) and (14), we get the following equation 
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which relates λ  with the values of M and r. Hence, we can 
always calculate λ  numerically from (15) given M and r.  

Finally the asymptotic throughput is given by 
1
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Note that the asymptotic throughput is expressed by λ  and r. 
Since λ  is determined by M and r, the asymptotic throughput 
is indeed only a function of M and r. 

 Given r and M, we can calculate λ  from (15). The 
asymptotic throughput is then obtained by plugging the value 
of λ  into (16). Fig. 7 is a plot of the asymptotic throughput 
versus r for various M. From this figure, we can see that the 
optimal r which maximizes the asymptotic throughput 
increases with M. This result sounds counterintuitive, because 
we usually expect that with larger M we should decrease r to 
encourage the stations to be more aggressive. It is true that 
increasing r will reduce the number of attempts in a slot, but 
on the other hand this will increase the success probability of 
an attempt. It is the weighting of these two effects that decides 
the optimal operating point of r. From the results, we can 
conclude that as M increases, the second effect dominates and 
in the end moves r to the right to achieve the maximum 
asymptotic throughput. Another direct conclusion from this 
figure is that BEB ( 2r = ) is far from optimal. For example, 
when 10M =  BEB only achieves about 80 percent of the 
maximum asymptotic throughput. 
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Fig. 7 Asymptotic throughput versus r 

By tuning r to the optimal value for each M, we plot the 
maximum asymptotic throughput against M in Fig. 8. Unlike 
Fig. 5 in which N is finite, Fig. 8 shows that the asymptotic 
throughput increases almost linearly with M. In fact, the 
results are consistent with our observations from Fig. 5 in the 
sense that throughput increases roughly linearly with M when 
N (infinitely large here) is much larger than M.  A close 
observation of Fig. 8 indicates that the slope of the curve 

increases slowly with M. Consequently, throughput 
normalized by M also increases with M. This implies that as M 
increases, the achievable throughput per unit cost (i.e., 
bandwidth in CDMA systems or antenna in multi-antenna 
systems) also increases. 
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Fig. 8 Maximum asymptotic throughput by tuning r versus M. 

4.  Multipacket Reception in WLAN 
In this section, we analyze the performance of an MAC 

protocol for MPR with carrier-sensing. The reason why we are 
interested in this protocol is that this MPR MAC protocol 
closely follows the 802.11 DCF which employs the BEB as 
the backoff algorithm. Details of the MPR MAC protocol and 
the PHY implementation can be found in [5]. 

4.1. Protocol Description 
The proposed protocol follows the 802.11 DCF RTS/CTS 

(Request To Send/Clear To Send) access mechanism closely, 
with extension to support MPR. We briefly describe the 
protocol in this subsection. For simplicity, we consider a 
single isolated BSS with an AP and N associated client 
stations. We assume that the AP is the only station in the BSS 
with the capability to receive up to M ( 1≥M ) packets 
simultaneously. 

Figure 9 illustrates the protocol operation. A station with a 
packet to transmit first sends an RTS frame to the AP. In our 
MPR MAC model, when multiple stations transmit RTS 
frames at the same time, the AP can successfully detect all the 
RTS frames if and only if the number of RTSs is no more than 
M. When the number of transmitting stations exceeds M, 
collisions occur and the AP cannot decode any of the RTSs. 
The stations will retransmit their RTS frames after a backoff 
time period as the original 802.11 protocol. 



 

  
Fig. 9 Time line example for the MPR MAC. 

When the AP detects the RTSs successfully, it responds, 
after a SIFS period, with a CTS frame that grants transmission 
permissions to all the requesting stations. Then the 
transmitting stations will start transmitting DATA frames after 
a SIFS, and the AP will acknowledge the reception of the 
DATA frames by an ACK frame. 

4.2. Performance Analysis 
In the following analysis, we assume the number of 

contending stations is fixed and that all stations operate in 
saturated conditions (i.e., they always have packets available 
for transmission). We also assume that all stations can hear 
each other (i.e., there is no hidden terminals) and the channel 
is perfect in that there is no packet loss due to fading. 

We define “slot time” as the time interval between two 
consecutive backoff time counter decrements [13]. Note that 
the slot time we define here is not necessarily the constant slot 
time size .  In 802.11 DCF, the backoff counter will be frozen 
when the channel is sensed busy. We define our slot time to 
include the frozen time and it is variable. 

Although the MPR MAC is a carrier-sensing protocol, the 
analysis results we derive in Section 3 part 1 still apply. This 
is because the transmission probability, which is defined as the 
probability to transmit in an arbitrary slot, does not depend on 
the length of the slot. So (2) and (3) are true even in this 
carrier-sensing model. 

We define the throughput T to be the ratio of payload 
information bits being transmitted to the total amount of time 
spent to successfully transmit the payload. Therefore, 
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where Ptr and Psk are as defined in Section 3, E[L] is the 
average payload length in bits, Tsk is the average slot time 
spent when there are successful k-packet transmissions, Tc is 
the average slot time when there are collisions, and 

∑
=

=
M

k
sks PP

1

 is the conditional probability of successful 

transmissions in a busy time slot. The general throughput 

expression (17) derived for MPR also incorporates the 802.11 
case. In particular, when 1M = , the MPR throughput reduces 
to the 802.11 throughput. 

In our protocol, the RTS/CTS access scheme is employed. 
Therefore 
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          (18) 

where δ  is the propagation delay, hdrhdr MACPHYH +=  is 

the total overhead time to transmit the packet headers, ][ *
kLE  

is the average length (in bits) of the longest payload involved 
in a k-packet simultaneous transmission, and R  is the data 
rate for payload transmission. In the following numerical 
investigations, we assume all packets have the same fixed 

length, i.e., the average length )1(][][ * MkLLELE k ≤≤==  

and ssk TT = , where L and Ts are constants. 
 To have a clear picture of the asymptotic behavior of the 

MPR MAC, again we resort to the infinite population model 
proposed in Section 3. We give the expression for the 
asymptotic throughput of the MPR MAC directly 
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where all the symbols have already been defined previously in 
(17) except that Ptr and Psk should be changed to 

1 { 0} 1trP P X e λ−= − = = −                         (20) 
and 

{ }
!

k

sk tr trP P X k P e P
k

λλ −= = = ,                (21) 

respectively. 
 Parallel to the discussion in the non-carrier-sensing case, 

we plot the asymptotic throughput against r for various M in 
Fig. 10. The results shown here are from theoretical analysis 
and the parameter settings we used here are basically those 
from 802.11g with some modifications as stated in [5] except 
that there is no retry limit here. From this figure, we can see 
that there still exists an optimal r for each curve. The approach 
to achieve the best throughput performance by adjusting r in 
MPR MAC is analogous to the one we mentioned in Section 
3. However, from the engineering’s point of view, we argue 
that BEB (i.e., 2r = ) already achieves a close-to-optimal 
throughput for a large variety of M. Results show that about 
45% increase in the maximum asymptotic throughput can be 
achieved when 2M =  compared with 802.11g. Similar to the 
conclusions we made for the non-carrier-sensing system, Fig. 
11 shows that the maximum asymptotic throughput increases 
roughly linearly with M. 
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Fig. 10 Asymptotic throughput versus backoff factor r for the MPR MAC. 
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Fig. 11 Maximum asymptotic throughput versus M for the MPR MAC 

(ignoring the address increase in CTS and ACK). 

5.  Conclusion 
This paper has investigated the performance of EB in 

random-access networks with MPR capability that allows M 
packets to be simultaneously transmitted without collision. 
Both carrier-sensing and non-carrier-sensing systems have 
been studied. Insights gained from our analysis are useful for 
system design in terms of setting the correct operating 
parameters. Extensive simulations have also validated the 
accuracy of our theoretical analysis. 

We have derived the throughput expressions for both 
carrier-sensing and non-carrier-sensing systems under 
saturated-traffic condition, and have analyzed the asymptotic 
behavior of EB with MPR under infinite-population 
assumption. In both systems, the collision probability pc 
converges to 1/r regardless of M and the throughput given M 
converges to a constant as N increases (albeit different 
constants for the two systems). With the help of our 
throughput expression, we have also analyzed the variation of 
normalized throughput with respect to M and the variation of 
throughput with respect to r given M. Based on the infinite 

population model, we observed that the optimal r increases 
with M for non-carrier-sensing systems and BEB is close to 
optimal for carrier-sensing systems. We have presented 
numerical results showing the possible improvements with the 
MPR capability. Our results show that for carrier-sensing 
systems, throughput improvement of 45% can be achieved 
with our proposed MPR MAC protocol when 2M =  
compared with the conventional 802.11g protocol. For both 
carrier-sensing and non-carrier-sensing systems, network 
throughput increases almost linearly with M for the infinite-
user-population case. 
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