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A Conjugate Augmented Approach to
Direction-of-Arrival Estimation

Zhilong Shan and Tak-Shing P. Yum, Senior Member, IEEE

Abstract—In this paper, we propose a new Direction-of-Arrival
(DOA) estimator called Conjugate Augmented MUSIC (CAM).
The basic idea of CAM is to use the second-order statistics of
the received signals to get the conjugate steering matrix. This,
together with the steering matrix, is used to find the fourth-order
cumulants. From that the source directions are obtained using the
MUSIC-like algorithm. CAM can resolve two times the number
of directions when compared to MUSIC-like estimator. Moreover,
simulation results show that the estimation capacity, angle reso-
lution, immunity to noise, and the number of required snapshots
are all better than MUSIC-like algorithm.

Index Terms—Array signal processing, DOA, fourth-order cu-
mulants, MUSIC-like estimator, non-Gaussian sources.

I. INTRODUCTION

I N recent years, the estimation of direction-of-arrival (DOA)
is a hot topic in array signal processing because of its

important applications in radar and wireless location. Among
the methods proposed, the signal subspace algorithms have
attracted a lot of interest due to the introduction of MUSIC
algorithm [1], [2]. However, MUSIC and modified versions
of MUSIC require the noise characteristics of the sensors be
known and the total number of signals impinging on the array
be less than the number of sensors [3].

If a non-Gaussian signal is received along with additive
Gaussian noise, the method proposed by Porat and Friedlander
[4] [which uses fourth-order (FO) cumulants] can be used to
eliminate the effect of Gaussian noise. For convenience, the
method in [4] is denoted as MUSIC-like estimator in this paper.
With FO cumulants, a physical array can be extended to a larger
size virtual array [5] and allows a greater number of signals to
be estimated. Thus, for the MUSIC-like estimator, an array of

identical physical sensors can be extended to a maximum
of virtual sensors [6]. For a uniform linear array
(ULA), the number of virtual sensors is showed in [6] to be

.
In this paper, we present a new estimator called Conjugate

Augmented MUSIC (CAM). The basic idea is to use temporal
information in addition to spatial information when estimating
directions. After computing the second-order statistics of the re-
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Fig. 1. Arbitrary array with five sensors.

ceived signals to get the conjugate steering matrix, a new conju-
gate augmented steering matrix is constructed. We then extract
the FO cumulants of this new matrix for estimating the source
directions. The estimation algorithm is presented in Section III.
Then, in Section IV, the estimation capacity of CAM is derived.
We show that CAM can estimate two times the number of direc-
tions when compared with the MUSIC-like estimator. We then
apply CAM to ULA and show in Section V that the complexity
of CAM/ULA is significantly smaller than CAM. In Section VI,
CAM is compared to MUSIC-like in run time, estimation ca-
pacity, angle resolution, immunity to noise, and the number of
required snapshots by computer simulation. Section VII con-
cludes the paper.

II. BACKGROUND

Consider narrowband plane wave signals impinging on
an array of identical omnidirectional sensors. Let the signal
from the th source be denoted as , where

is the carrier frequency, is a small frequency offset for
the th signal with , and is the amplitude of the th
signal [7]. After demodulation to IF, the signal due to the th
source becomes . We assume that source sig-
nals are mutually independent, that the noises are also statisti-
cally independent to the signals, and that the array is in the same
plane as the signals. We further assume that all sensors have the
same linear time-invariant response and, hence, the same radia-
tion patterns. Fig. 1 shows an example of sensor locations. Let

be the coordinates of sensor , and let the first sensor
be located at the origin, i.e., . We use , ,
and to denote the conjugate, the transpose, and the conju-
gate transpose, respectively. Let

• be the zero-mean non-Gaussian signal from
source of the form and

;
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• be the zero-mean Gaussian noise with variance
from sensor and ;

• be the wavelength of the carrier.
Then, the signal received at the th

sensor can be expressed as

(1)

In matrix form, it becomes

(2)

In (2), is the steering matrix, which is defined as

(3)

where is the steering vector associated with the th source

...
(4)

For ULA, is a Vandermonde matrix. Therefore, the
columns of are linear independent. For arbitrary array, is
known to be independent for MUSIC and MUSIC-like estima-
tors. For symmetrically distributed signals, the FO cumulants
of the sensor outputs for was
derived for the MUSIC-like estimator in [4] as

cum

(5)

These cumulants can be expressed in a matrix as

(6)

where denotes the Kronecker product, and cum
appears as the th row

and th column of . Similarly, the FO
cumulants matrix of can be written as

(7)

Since the FO cumulants of the Gaussian noise are identically
zero and is a diagonal matrix (the sources are independent),
we get

(8)

where cum are the FO cumulants of ,
is a diagonal matrix with the form

diag (9)

and

(10)

where is a matrix, and

(11)

From [6], we know that the number of sources that the array
can estimate is determined by the rank of . As in the case of
MUSIC algorithm, we can compute the eigen decomposition of

. Its eigenvectors are separated into the
signal and noise subspaces according to the eigenvalues. Let

be the noise subspace; then, the
“spatial spectrum” in the MUSIC-like estimator is defined as

(12)

The estimates of source directions can be obtained by
searching the peaks of .

An optimal array has its sensors located such that a maximum
number of virtual sensors is obtained. In MUSIC-like estimator,
this maximum is for physical sensors. For
example, a Uniform Circular Array (UCA) of odd identical
sensors is optimal [6].

III. CAM ESTIMATOR

In this section, we propose the conjugate augmented MUSIC
(CAM) estimator. For an array with physical sensors, the
crosscorrelation functions between signal outputs

and can be represented [8] as

(13)

The autocorrelation function in (13) can be evalu-
ated as

(14)

and is found to have same form as the source signals. The second
term in (13) is evaluated as

(15)

Noting that , (13) can be simplified to

(16)

Therefore, similar to (1) and (2), (16) can be put into a vector
form as

(17)

(18)
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where

...
(19)

and is the same as , except that the first element is
missing. Taking the conjugate of (18) and changing the argu-
ment to , we obtain

(20)

Combining (17) and (20), we obtain the conjugate augmented
correlation vector as

(21)

Following the approach in [9], we form the pseudo-data ma-
trix of for different lags

(22)

where is the pseudo sampling period, and is the number
of pseudo snapshots.

The corresponding FO cumulants matrix therefore becomes

(23)

Note that is generated through two expectation
operations. The first expectation is taken with respect to
the signals and . The second expectation is to
obtain the FO cumulants of the set of pseudo-data vectors with
different time lags.

Let be

Group
Group
Group
Group

(24)

where the grouping of elements will be elaborated in the next
section. Putting the set of in matrix form, we obtain

(25)

Similar to (8), after diagonalizing , we obtain

(26)

where is the diagonal matrix of .

Here, temporal information (delay) is used along with spa-
tial information of the signal. As in the case of the MUSIC-like
estimator, the eigenvectors denoted as
can be separated into the signal and noise subspaces according
to the eigenvalues. The “spatial spectrum” can be computed as in
(12). The source directions can be identified from the maxima
of the “spatial spectrum.”

IV. ESTIMATION CAPACITY OF CAM ESTIMATOR

The estimation capacity is defined as the number of signals
that can be estimated. It is numerically equal to the rank of .
For CAM, we can show that the columns of (generated by
CAM) are similar to that of (generated by MUSIC-like), ex-
cept they are longer. For ULA, we can obtain a Vandermonde
matrix by permuting the rows of the steering matrix of (21). As
mentioned in Section II, the columns of are linearly indepen-
dent. Therefore, the columns of are also linearly independent.
Hence, we only need to find the number of different elements in
any one column of to obtain the rank. Among the four groups
of elements in (24), we see that Group4 is a subset of Group1
and can be ignored as it does not contribute any new elements.
Further derivation requires the specification of the sensor loca-
tions. We consider two important cases here.

Case I: ULA
For (same for ), the largest index of the

exponential functions in is
. Therefore, there are

different elements in , including the ele-
ment “1” [10]. Comparing to the Group2
elements, we see that one of the is replaced by

, where the element “1” is missing. Therefore,
there are different elements in Group2. The
same argument applies to Group3 elements. Com-
paring Group1 to Group2, we see that only the ele-
ment “1” is new. The same is true when compared
with Group 3. Therefore, for CAM using ULA, the
rank of is .

Case II: Optimal array
In (same for ), the

th element and the th element
are both equal to . Hence, the number of
different elements for terms with is . For

, there are additional different elements.
Hence, the total is [10].
Similar to the argument in case I, the number of
different elements in Group2 and Group3 are each

. There are different
elements in Group1 according to [4]. Out of that,

elements are redundant when compared with
Group2 and Group3. Adding up the contributions
from the three groups, the rank of for the optimal
array is . Fig. 2 shows the number of
virtual sensors of CAM and MUSIC-like estimators
for optimal arrays.

To summarize, the number of virtual sensors for the ULA is
, and for the optimal array, it is .
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Fig. 2. Comparison of the number of virtual sensors that can be extended from
an optimal array withM physical sensors by different algorithms.

V. CAM/ULA ESTIMATOR FOR ULA

The FO cumulants matrix is a ma-
trix. To compute this matrix, for the arbitrary array,
operations are needed. In addition, a conventional eigendecom-
position for an matrix takes at least operations
[11]. For ULA, this complexity can be significantly reduced, as
shown below.

Let be the last row of matrix . From (16), the crosscor-
relation function between the first and the th sensor outputs
is obtained as

(27)

Taking the conjugate, and letting the argument be , we
obtain

(28)

Combining (27) and (28), a new correlation vector is
formed as

(29)

Then, a pseudo-data matrix is obtained as

(30)

From (22) and (30), the corresponding FO cumulants matrix
can be computed as

(31)

After diagonalizing , we get

(32)

TABLE I
AVERAGE RUNTIME (IN SECONDS)

where

(33)

(34)

Following the derivation in Section IV, the different elements
in vector is found to be (same as CAM for
ULA). We call this estimator CAM/ULA. Since the dimension
of is much small than that of ,
CAM/ULA can run much faster than CAM. A runtime compar-
ison will be presented in Section VI. In addition, for ULA, the
spatial function can be expressed in polynomial form, and the
DOA estimates can be obtained from the roots of the polyno-
mial rather than using the search procedure [12].

VI. CASE STUDIES

We now evaluate the DOA estimation performance of CAM
for a few cases by computer simulation. Specifically, the run-
time of the algorithm, estimation capacity, angle resolution, sen-
sitivity to noise, and the number of required snapshots of CAM
are compared with that of MUSIC-like algorithm.

Consider a three-element uniform linear array with sensor
separation (this choice is to avoid any ambiguity in DOA es-
timation). The signals are assumed to be mutually independent
and are of the form . For simplicity, let
for all . In the CAM algorithm, the pseudo sampling period
is set to satisfy the sampling theorem. The SNR at each sensor
is 10 dB. In addition, let and be the number of snapshots
and pseudo snapshots, respectively.

A. Case 1 (Runtime Comparison)

Case 1 is designed to compare the run time for the MUSIC-
like, CAM, and CAM/ULA estimator. Table I records the av-
erage elapsed time of ten trial runs for various values of .
Here, , , and . We use Matlab 6.1
to get the runtime on an AMD Athlon XP 1.8 GHz PC. Table I
shows that for the same , CAM has a much longer runtime
than MUSIC-like, but the runtime of CAM/ULA appears to be
of the same order of magnitude as MUSIC-like. The higher run
time complexity of CAM is due to its higher estimation capacity.
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Fig. 3. Estimate five sources using the CAM algorithm.N = 400 andN =

380. SNR = 10 dB.

Fig. 4. Estimate five sources using the MUSIC-like algorithm. N = 400.
SNR = 10 dB.

B. Case 2 (Estimation Capacity)

Suppose there were five sources impinging on the ULA with
directions [40 , 60 , 80 , 100 , 120 ]. Since virtual sensors can
be extended from three physical sensors for the CAM estimator,
these five source directions can be estimated correctly, as shown
in Fig. 3. The use of the MUSIC-like estimator cannot obtain the
correct source directions, as illustrated in Fig. 4.

C. Case 3 (SNR Requirement Comparison)

In this case, we compare the performance of CAM and
MUSIC-like in terms of SNR requirement. Let RMSE

be the root-mean-square error of the

direction estimations, where is the estimate value of .
Let there be four signals coming from directions [60 , 80 ,
100 , 120 ]. Two hundred trail runs are carried out for estima-
tors, and the average of 200 RMSE values are calculated and
shown in Fig. 5 as a function of SNR. It is seen that at the same

Fig. 5. Average RMSE of the MUSIC-like and CAM estimator versus SNR.
Three element ULA, 200 trials, N = 400, and N = 380.

Fig. 6. Estimate four sources using MUSIC-like and CAM algorithms with
SNR = 0 dB. Three element ULA, 20 trials, N = 400 and N = 380.
MUSIC-like (upper) and CAM (lower).

average RMSE value of 0.5 , CAM requires about 8 dB less
SNR than MUSIC-like.

At SNR dB, the average RMSE values are 0.5 and 7
for CAM and MUSIC-like estimators, respectively. The results
of 20 trial runs for both algorithms are shown in Fig. 6.

D. Case 4 (Snapshot Requirement Comparison)

Fig. 6 shows that an average RMSE value of 0.5 is sufficient
for estimating the directions for both MUSIC-like and CAM.
We therefore use this value to get the required number of snap-
shots. Moreover, we let and SNR dB. When
four signals are impinged on a three-element ULA, we find that

and 200 are required for CAM and MUSIC-like,
respectively, to make the average RMSE value less than 0.5 .
Four signal directions are also the maximum that can be esti-
mated by MUSIC-like. This shows that CAM does not require a
greater number of snapshots for the same number of directions



SHAN AND YUM: CONJUGATE AUGMENTED APPROACH TO DIRECTION-OF-ARRIVAL ESTIMATION 4109

Fig. 7. Estimate four sources using the MUSIC-like (upper) and the CAM
(lower) algorithms. Three element ULA, 20 trials, N = 2000, and N =

1500.

when compared with MUSIC-like. Using CAM, a maximum of
eight signal directions can be estimated. The required number
of snapshots is .

E. Case 5 (Angle Resolution)

In this simulation, we compare angle resolution for closely
spaced sources. Let there be four sources with directions [60 ,
65 , 100 , 120 ] impinging on the same array mentioned be-
fore. Twenty trial runs are carried out, and the results are shown
in Fig. 7. Here, , and . It is seen that the
CAM estimator can resolve the two close-by directions (60 and
65 ) whereas the MUSIC-like estimator presents difficulties.

F. Discussions

The above cases show that the CAM estimator outperforms
the MUSIC-like estimator in estimation capacity, SNR, snap-
shots, and angle resolution. These advantages are due to that
fact that CAM estimator uses temporal information in addition
to spatial information when estimating directions. Since CAM
allows more virtual sensors be extended from physical sensors,
the aperture of the CAM array is larger than that for MUSIC-like
array. As an example, to obtain nine virtual sensors, is
needed for the CAM estimator, whereas is needed for
MUSIC-like estimator.

VII. CONCLUSION

In this paper, we propose the CAM estimator for DOA esti-
mation. It makes use of temporal information as well as spatial
information when estimating directions. As a result, it can esti-
mate a maximum of directions, which is twice that
of the MUSIC-like estimator. When an ULA is used for CAM,
the runtime can be significantly reduced. Computer simulation
shows that CAM has higher estimation capacity, higher angle
resolution, less sensitivity to noise, and requires fewer snapshots
when compared with MUSIC-like.
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