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An Algorithm for Detecting and Resolving
Store-and-Forward Deadlocks in Packet-
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Abstract—Freedom from store-and-forward (S/F) deadlocks in a
packet-switched network can be guaranteed with the use of deadlock
avoidance protocols. However, these protocols put so many restrictions
on the use of buffers that even under normal circumstances the buffer
utilization is small.

We propose instead a deadlock detection and resolution algorithm that
is completely invisible under normal circumstances. As soon as certain
channels in the network have trouble in accepting and transmitting
packets due to the lack of buffers, the deadlock detection phase of the
algorithm is invoked. When a deadlock is identified, the deadlock
resolving phase of the algorithm is executed. Once the deadlock is
resolved, the control is removed. The algorithm can be used in
conjunction with either the complete partitioning or the sharing with
maximum gqueue lengths output buffer allocation strategies. A proof on
the correctness of the algorithm is given. Simulation results show that the
network can maintain a relatively high throughput even when deadlocks
are being detected and resolved. In addition, several properties of
deadlocks are shown: i) deadlocks start to increase abruptly once the
network operates beyond its capacity; and ii) under heavy load condi-
tions, increasing the buffer pool size will not delay the occurrence of
deadlocks. t

I. INTRODUCTION

IRECT and indirect S/F deadlocks [1] in a

packet-switched network, if left unattended, can result in
the entire network becoming inoperative. Several techniques
have been developed to resolve this problem [2]-[7].

Merlin [2] proposed a structured buffer pool technique for
avoiding S/F deadlocks. This technique is easy to implement
and has an implicit hop-level flow control [8]. However, as the
network size grows, this technique requires a drastic increase
of buffers at each node. Recently, Wimmer [3] proposed the
use of “*barrier graph’’ on the structured buffer pool technique
and Gopal [4] proposed an improved version of the same
technique that has the advantage of requiring fewer reserved
buffers.

Another interesting solution by Gelernter [5] attempts to
prevent S/F deadlocks by a flow control procedure. This
procedure has the advantages of 1) no restriction in the routing
of packets, 2) no partitioning of the buffer pool, and 3) the size
of buffer pool at each node being independent of the network’s
size. Unfortunately, as network congestion increases, this
algorithm requires rerouting of packets and, in the worst case,
it may even lose some of them. Another deadlock-resistant
flow control procedure is proposed by Blazewicz [6].

An algorithm based on the detection and removal of
deadlocks was proposed by Gambosi [7]. Gambosi pointed out
two important criteria that a deadlock control algorithm should
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fulfill.

1) Deadlock detection should be performed in a distributed
fashion since any form of centralized control would certainly
result in unreliable and inefficient operation of the algorithm.

2) The algorithm should exhibit negligible overhead for
nodes not involved in a deadlock. In other words, normal
network operation should not be affected by any kind of
deadlock control traffic.

He then proposed a two-part algorithm: one for deadlock
detection and the other for deadlock recovery. Deadlocks can
be detected by constructing a site blocking graph (SBG). Once
a deadlock is detected, then based on the SBG, a distributed
deadlock recovery procedure is applied to resolve the dead-
lock. Nevertheless, the whole algorithm relies on a SGB
whose construction is quite time-consuming.

In this paper, a different deadlock detection and resolution
algorithm is proposed. The algorithm, first based on a
complete partitioning (CP) output buffer allocation strategy [9]
and later extended to the sharing with maximum queue lengths
(SMXQ) strategy, not only satisfies the Gambosi criteria, but
alse shares the three advantages of the Gelernter algorithm.
Moreover, packets will not get lost with this new algorithm.

In the following, we first introduce a network model
(Section II). We then describe the deadlock control algorithm
for the CP strategy (Section II[). This is followed by a
correctness proof of the algorithm (Section IV). A modified
deadlock centrol algorithm for the SMXQ strategy is then
introduced (Section V). Finally, using simulation, the per-
formance of the algorithm is determined and some interesting
properties of deadlocks are presented.

II. NETWORK MODEL

Consider a S/F packet-switched network with reliable
channels. Let all inputs to this network be fixed-size packets,
each occupying one unit of buffer space.

. A typical model of a S/F node with Complete Partitioning
buffer allocation strategy is depicted in Fig. 1. There is a nodal
processor to handle all internal transmission of packets. One
buffer is reserved for each input channel. Since the nodal
processor will process and move received packets immediately
upon their arrival, there is always room for another packets at
the input channels. All output channels are modeled as first-in-
first-out (FIFO) queues. A special output buffer called the
reserved buffer is permanently allocated at each output
channel for deadlock resolution purposes.

Static routing is used. This means that all packets from the
same source-destination pair follow the same path. For each
packet transmitted, a positive or negative acknowledgment
will be received depending on whether or not it is accepted.
Negative acknowledged packets are retransmitted and no new
packets are transmitted until the present one is successful.

The deadlock control algorithm is executed by the channel
processors, each of which works independently. An output
channel can be in one of the following three states: 1) Normal
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state (), 2) Test state (T'), and 3) Deadlock-resolving state
(DR). A state transition diagram is depicted in Fig. 2.

Depending on the channel state, outgoing packets are
attached with different headers:

1) Normal header. It has a normal header identification,
source and destination node addresses and a header check-
sum.

2) Test header. Besides a test header identification and all
the normal header information, it also includes 1) an x field
indicating the total number of DR packets (packets with DR
headers attached) to be transmitted and received upon detect-
ing a deadlock and ii) an 7 field recording a set of channel
identities in state 7.

3) DR header. It contains x, a DR header identification and
all the normal header information.

Upon receiving a packet from an adjacent node, the node
processor will check whether the packet is destined for the
present node or not. If it is, the processor will immediately
turn the packet over to the local host. Otherwise, the packet
will be routed to one of the output queues, say queue i If
queue i is full, then except for the DR packets which are put
into the reserved buffer associated with queue i, all other kinds
of packets are discarded after extracting the header informa-
tion and a negative acknowledgement is sent back.

Note that a packet, once stored in a buffer, does not have to
be physically moved. Movement of packets depicted in Fig. 1
may be accomplished by changing software pointers. Simi-
larly, packets from the local host are accepted if queue i is not
full.

ITI. THE DEADLOCK CONTROL ALGORITHM WITH CP STRATEGY

Conceptually, a S/F deadlock refers to the situation where
there is a cycle of buffer requests among a set of nodes, all of
which have no empty buffers left. Our algorithm is based on
detecting the presence of these cycles and then resolving them
cfficiently. We will neglect, in our model, those packets
destined for the local node as they will be turned over to the
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host immediately and will not impose a demand on the output
buffer pool.

In the following discussion, we focus on a typical one-way
channel, say channel #, that can transmit packets from node A4
to node B (Fig. 3). Let channels ny, 73, **, g be the set of
input channels to node A. Note that all these channels
identifiers are unique throughout the network.

Here for channel i, the algorithm requites three control
parameters: i) an integer y denoting the total number of DR
packets to be transmitted and received by each channel in state
DR before returning to state N,’ii) an array S, = [s:(1), s.(2),

-+, 5.(R)] where s.(r) records the integer x collected from
channel 7, and iii) a set of channel identities 5;. When channel
i is in state N, these parameters are set to

y=0 )
Se=[5:(1), $:(2), -, 5:(R)]

=[M, M, -, M] )
Si={} &)

where M is an integer larger than the output buffer pool size of
channel /.

Normally, channel i is in state N. It will change to state 7'if
a potential S/F deadlock is detected. If itis a false alarm, then
channel / will go back to state N. Otherwise it will change to
state DR which, after the deadlock is resolved, goes back to
state N. Therefore, the algorithm consists of three procedures,
one for each of the three states.

A. Procedure for State N

In state N, all normal and test packets received are placed in
the output buffer queue of channel i. But if the queue is full,
the received packets are discarded.

Channel i will change from state N to state T if two
conditions are satisfied: 1) the buffer queue of channel / is full
and 2) the head packet (the packet in the first position of the
output queue) has waited at the head of the queue for longer
than a timeout period, say Toy s.

Comments: We declare that a potential S/F deadlock
involving channel i is detected when channel i cannot receive
and transmit any packet in a finite time 7oy S.

B. Procedure for State T

In state 7, channel i will discard all normal packets
received. When a test packet is received from, say channel n,,
the channel i processor will discard the packet body and
extract the x and 7 fields from the packet header. It then checks
if its channel identity / is in the [ field. If so, channel § will
declare the detection of a deadlock, change its state to DR and
set ¥ to x. If i is not found in I, s,(r) and S; are updated as
follows:

S(r)<x
S]‘_S[ U {r}

The receipt of a DR packet indicates that channel i is

~already involved in a deadlock. The DR packet will be

accepted and placed in the reserved buffer of channel i. Also y
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is set to x which is obtained from the DR packet header.
Channel / then changes its state from 7 to DR.

When channel / is in state 7, only test packets are
transmitted. If the head packet is to be routed to channel j (Fig.
3), then the x and I fields in its header are set as

x=min [Ky, 5:(1), 5,(2), -+, 8(R)] )

where k;; denotes the total number of packets in the output
buffer of channel i to be routed to channel j. Once a new test
header is created, S, and S; are reset according to (2) and (3)
(i.e., all their entries are used once only).

On the other hand, when the head packet transmitted by
channel i is accepted by channel /j, channel / will change from
state 7 to NV,

Comments: As mentioned before, the sufficient conditions
for the existence of a deadlock are a) the presence of a cycle of
buffer requests and b) all buffers in that cycle being full. It is
equivalent to having a set of channels, all in state 7, forming a
loop as depicted in Fig. 4. All channels in that loop will
transmit test packets. The I field in the headers of these
packets will, according to (5), gradually accumulate the
identities of these channels. Sooner or later, one or more
channels in that loop will receive test packets with their own
identities included in I. If that happens, these channels realize
immediately that they are involved in a deadlock and change
their state from 7 to DR. Moreover, they will, in turn,
transmit DR packets to inform the other channels in the loop
that a deadlock is present.

C. Procedure for State DR

At state DR, all normal and test packets received are
discarded. When a DR packet is received, it is placed in the
reserved buffer of channel / and joins the end of the output
queue. When a copy of a DR packet from channel / is accepted
by the neighboring nede, the buffer storing the DR packet is
freed and treated as the reserved buffer for receiving other
incoming DR packets.

Note that only those packets having the same destination
channel as that of the head packet are selected as DR packets
to be transmitted and there are always y or more of these in the
output buffer. The x fields in these DR packet headers are all
set to y. Other packets remain in the queue until the deadlock
is resolved.

After y DR packets are transmitted and received, channel i
will change back to state M.

Comments: During the process of resolving a deadlock, the
number of DR packets to be forwarded and received is y
which is, after repeated use of (4), equal to min {kijs ks ks

*, ky i} where i, j, k, I, -+ -, n, are the channel identities of
the closed loop.

Meanwhile, since DR packets will only be transmitted to
those channels involved in a deadlock, channel j in state N will
not receive DR packets.

Figs. 5-7 show the flowcharts for the above procedures.

IV. PROOF OF THE DISTRIBUTED ALGORITHM

To prove the correctness of the distributed algorithm, we
first model the S/F network as a directed graph described as
follows.

Directed Graph (DG) Model: A transmission channel i, in
state T or in state DR, with the head packet to be routed for
another transmission channel j can be represented by vertex i/,
denoted as V;, with an outgoing edge directed towards V;. For
channel / in state N, it is represented as V; with no outgoing
edge. To illustrate, Fig. 8 shows three cascaded channels i, j,
and k in states DR, T and 7, respectively.

Based on the DG Model representation, we can, at any
moment, use a directed graph to model the state of a S/F

T -

Channel i Channel | Channel k Channel n,

Fig. 4. A closed loop of channels.
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network. Note that each vertex can have at most one outgoing
edge, but can have several incoming ones. Such a directed
graph shows only those packet transmissions that are relevant
to the deadlocks. Those not relevant are neglected.

Lemma 1: Different closed loops in a directed graph are
vertex disjointed.

Proof: Suppose the closed loops L, and L, have a
common vertex, say V;. Then V; must have two outgoing
edges: one belongs to loop L, while the others belongs to loop
L,. But it contradicts our DG model representation of a vertex
which has at most one outgoing edge. By a similar argument,
we can disprove the existence of two or more common
vertexes in three or more closed loops.

Lemma 2: An S/F deadlock exists in a network if and only
if a closed loop exists in the corresponding directed graph.

Proof: As mentioned in Section III, a deadlock exists
when there is a cycle of buffer requests. This condition is
revealed when a set of channels in state 7 have formed a
closed loop (refer to Fig. 4). Then by using the DG model
representation, it immediately yields the corresponding closed
loop in the directed graph. Q.E.D.

Based on the preceding lemmas, Fig. 9 depicts the general
situation for the presence of a deadlock in the directed graph.
Note that Vi, V;, V., =+, V;, Vi, -+, V, form a closed loop
L and that V,, V,, V;, ---, V, form a path P.

Theorem 1: Every vertex in the closed loop L can detect the
deadlock and enter into state DR while vertexes not in loop L
will not.

Proof:

1) Vertexes in the closed loop L. When the closed loop L is
formed, all its vertexes are in state 7. Let us assume that all
their states remain unchanged and consider the detection of a
deadlock by V. First V; forwards its test packets to ; and
receives test packets from V, and V,. After this interchange of
packets, the test packets sent by ¥ will have their headers’ [
field set to {---, n, z, -} U {i}. As the algorithm is
distributed, every vertex in loop L does the same and
eventually, V; will find its own identity in 7 of a test packet
received from V. By the procedure for state 7, V; will change
to state DR indicating the detection of a deadlock.

Next, let V; be the first vertex to detect the deadlock in the
path Q from V; to V; and consider V; for its deadlock
detection. According to the procedure for state DR, V; will
send DR packets to V. Upon receiving the first DR packet,
Vu will (by the procedure of state 7') change to state DR and
start transmitting DR packets. This transmission of DR
packets and change of state then propagate along the path O
and finally, V; will receive a DR packet from ¥V, to indicate the
detection of a deadlock.

2) Vertexes not in the closed loop L. Consider the vertex in
path P which is not in loop L but has a directed edge,
originated at V,,, toward loop L. All these vertexes must be in
state 7' when path P is first formed. By Lemma 1, all the loops
formed must be vertex disjointed. Therefore, path P cannot be
the segment of any loop. So even though all vertexes in path P
forward test packets with their own identities inserted in the 7
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A general closed loop.

Fig. 9.

field of the packet headers, they will not receive test packets
with their identities in 7. In addition, these vertexes will not
receive DR packets because none of them can enter into state
DR. Q.E.D.

Note that during the detection of a deadlock, there must be
at least one vertex which enters into state DR by the successful
search of their node identities in 7 of the receiving test packets.
These vertexes will forward DR packets to inform the next
vertexes for the existence of a deadlock.

Theorem 2: The transmission of DR packets is deadlock-
free.

Proof: When the vertexes of a closed loop detect a
deadlock, their associated reserved buffers are always ready
for receiving DR packets. Since in state DR, only DR packets
can propagate in loop L, the transmission of DR packets is
deadlock-free. Q.E.D.

Theorem 3: By the time a deadlock corresponding to loop L
is resolved, all test packets generated by the vertexes of a loop
L are discarded.

Proof: Consider V; in state T which forwards all its test
packets to V. Since V; must be either in state 7 or in state DR,
all test packets received are discarded. Moreover, V; in state
DR will make a possible change of state to /N only when a DR
packet is received from V;. But V; is in state DR and will not
generate test packets. Hence, when V) returns to state IV, all
test packets forwarded from V; to V; for the search of this
deadlock are discarded. Q.E.D.

We can conclude from Theorems 1, 2, and 3 that:

a) Only those output channels involved in a deadlock can
detect the deadlock.

b) This deadlock can be resolved.

c) By the time when the deadlock is resolved, all test packets
generated for the search of this deadlock are discarded; and so
will not interfere with the detection of other potential
deadlocks.

VI. THE DEADLOCK CONTROL ALGORITHM WITH SMXQ
STRATEGY

We now extend the algorithm so that the output buffers
allocation strategy is SMXQ. Let B; be the total number of
packets on channel / and b be the maximum queue size allowed
for each channel. Besides states N, 7, and DR, a new wait
state, W, is needed for the modified algorithm. The state
transition diagram for the modified algorithm is shown in Fig.
10. The following are the procedures of each state for a typical
channel, say channel i.



CHAN AND YUM: AN ALGORITHM FOR DETECTING AND RESOLVING STORE-AND-FORWARD DEADLOCKS

Deadtock is confirmed

Fig. 10. State transition diagram for SMXQ strategy.

A. Procedure for State N

At state IV, all normal and test packets received are placed in
the output buffers of channel i. If B, = b or there is no empty
buffer in the common buffer pool (CBP), the received packets
are discarded.

Channel / will change to state 7 if (1) B; = b and (2) the
head packet has waited in the cutput queue for 7, seconds.
Channel 7 will change to state Wi 1) B, < b,2)a request for
an empty buffer from the CBP fails, and 3) the head packet has
waited for T, seconds.

B. Procedure for State W

When channel i receives a packet and an empty buffer is
successfully allocated from the CBP, the packet is accepted
and channel / will change back to state N. If no empty buffer is
available, the received packet is discarded.

All outgoing packets in this state are attached with normal
headers.

Once channel / is in state W, it checks whether all other
outgoing channels in the same node are in states 7 or W. If
they are, channel i will change its state to T and trigger all
other channels in state W to change to state 7.

C. Procedures for State T and State DR

A channel in state 7 or DR is not allowed to request buffers
from the CBP for incoming packets. Besides that, the
procedures are the same as that for the CP strategy in Section
III.

Comments:

1) to account for the additional restriction in the proce-
dures for states 7 and DR, consider the deadlock loop in Fig.
4. Let us say there is no such restriction as described in
Subsection VI-C. Let channel /, in state 7 or DR, obtains an
empty buffer from the CBP. Then channel j may have a chance
of accepting a test packet from channel i. Doing so will allow
channel 7 to go back to state V, and thus a deadlock cannot be
detected.

2) Since all outgoing packets of channel 7 are still attached
with normal headers, a channel i in state W is represented,
similar to state N, by V; with no outgoing edge. Thus, the
directed graph created is the same as that for the CP case. The
correctness proof of the algorithm therefore is also the same.

VII. SIMULATION RESULTS

Fig. 11 shows an eight-node network connected by eleven
homogeneous full-duplex links. Each link is modeled as a
FIFO M/D/1 queue with one reserved buffer permanently
allocated and other buffers allocated according to the CP or
SMXQ strategy. Let the processing time, the packet transmis-
sion time and the timeout period T, be 0.01, 1, and 3 time
units, respectively. The shortest path routing rule is used. The
input traffic is homogeneous with all r; (traffic rate from node
i to node ;) equal to constant r. Each simulation run lasts for
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11 000 time units with the data from the first 1000 time units
discarded.

In Fig. 12, we plot the number of deadlocks that occurred
against input load r with output buffer size pool equal to four.
The CP strategy is used. It is observed that deadlocks rarely
occur under normal traffic condition (r < 0.45). But once
beyond the network capacity (» > 0.58), the average number
of deadlocks detected increases abruptly to about 200. In
between (0.45 < r < 0.58) the number of deadlocks that
occurred has a very large variance. Fig. 13 shows the case
with buffer size equal to five. We observe that the curve is
similar except that the high variance region is shifted to 0.59
<r < 0.75.

Fig. 14 shows the network throughput under normal traffic
condition (# < 0.45). The output buffer for each channel is
four. Here we show three curves: Curve C shows the network
throughput with no deadlock control algorithm implemented
while Curves 4 and B represent the throughput with the
deadlock control algorithms implemented with the SMXQ and
CP strategies, respectively. It is readily seen that very high
network throughput can be maintained when the network is not
saturated. But for Curve C, the network breaks down. In
addition, the SMXQ starts to give slightly higher throughput
than the CP at r > 0.4, When one-third of the channels are
loaded with twice the amount of input (i.e., under asymmetric
traffic condition), similar results are found as shown in Fig.
15.

Fig. 16 shows the time for the first occurrence of a deadlock
(starting from an empty system) versus the input load using the
CP strategy. Under heavy loading, we see that the first
deadlock occurrence time is nearly a constant, independent of
the number of buffers available at each channel. On the other
hand, under moderate traffic condition, increasing the buffer
size pool can indeed delay the occurrence of deadlock. When
the traffic is very light, deadlock is still very unlikely to occur
even with a very small buffer pool size.
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2 Figs. 17 and 18 show the case for another eight-node
]
£
=

0.21 VII. CONCLUSION

Deadlocks can render a communication network inopera-
tive. They can occur even when the network is not heavily
loaded. This paper proposes a distributed deadlock detection
and resolution algorithm that introduce negligible overhead on

network resources. The correctness of the algorithm is proven.
0 T 02 7 04 " Simulation results are provided to verify the properties we
claimed for this algorithm and in addition, some interesting
deadlock phenomena are observed.
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Fig. 15. Network throughput versus the input load r (asymmetric load
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