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Cell Group Decoupling Analysis of a Dynamic Channel Assignment
Strategy in Linear Microcellular Radio Systems

Kwan L. Yeung and Tak-Shing P. Yum

Abstract— In this paper, we develop a simple but very ac-
curate analytical model for a channel borrowing based dy-
namic channel assignment strategy in linear microcellular
systems. Our approach is to decouple a particular cell to-
gether with its neighbors, i.e., those cells under its interfer-
ence range, from the rest of the system for finding the block-
ing probability of that cell. We call this the cell group decou-
pling analysis. This analysis is applicable to both homoge-
neous and heterogeneous traffic distributions. We show that
the effect of this decoupling causes the blocking probability
so obtained to be an upper bound. The bound is found to
be very tight when compared with simulation results. Be-
sides, this analysis gives accurate results to boundary cells
as well as inner cells, and is therefore quite different from
the other approaches which neglect boundary effects.

I. INTRODUCTION

Efficient use of the limited radio spectrum is important in
cellular mobile systems. At present, the demand of radio
channels has already far exceeded the capacity in many
metropolitan areas. A promising way to meet this demand
is to use microcells [1-3]. Linear microcellular networks
can be used, for example, to cover the traffic on a highway
or a long street while planar microcells can be used to
cover busy metropolitan areas. The decrease of cell size
however exacerbates the spatial variability of mobile traffic,
and makes frequency planning infeasible. An important
feature of dynamic channel assignment (DCA) is that it
can adapt to the spatial as well as temporal variations of
traffic load [4]. DCA, therefore, will play a prominent role
in microcellular systems.

There are many studies of DCA algorithms based on
computer simulation {2,5-7]. An exception is an idealized
strategy called “maximum packing” (MP) [4]. The MP
strategy is not practical because it requires system-wide
information. However, MP is analytically tractable and it
provides a lower bound on the overall blocking probability
for all other DCAs. The modeling of MP in any realis-
tic size network would result in a state space too large
for direct computation and again computer simulation is
used for performance evaluation. Many approximate mod-
els were developed and this includes Raymond [8], Xu and
Mirchandani [9], Bakry and Ackroyd [10] and Yue [11]. For
cellular engineering using DCA schemes, a way to obtain a
tight upper bound on blocking probabilities will be of great
interest when exact solution is not available.
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In this paper, we develop a simple but very accurate
analytical model for a very powerful dynamic channel as-
signment strategy called the Borrowing with Directional
Channel Locking (BDCL) in linear microcellular systems.
Our approach is to decouple a particular cell together with
its neighbors, i.e., those under its interference range, from
the rest of the system for finding the blocking probability of
that cell. We call our approach the cell group decoupling
analysis. Similar clustering approaches were used in [12]
and [13] for the Equivalent Erlang-B Approximation and
the light traffic approximation of DCA analysis. Cell group
decoupling analysis is applicable to both homogeneous and
heterogeneous traffic distributions. We will show that the
effect of this decoupling causes the blocking probability so
obtained to be an upper bound. The bound is found to
be very tight when compared with simulation results. Be-
sides, this analysis gives accurate results to boundary cells
as well as inner cells, and is therefore quite different from
the other approaches which neglect boundary effects. An-
other use of the analysis is that a very efficient cell group
decoupling simulation algorithm can be readily developed
along the same line for very large size networks.

II. BORROWING WITH DIRECTIONAL
CHANNEL LOCKING STRATEGY

In channel borrowing based DCA strategies, channels
are allocated to each cell on a nominal basis. When a
call request arrives and finds all nominal channels busy, a
channel is borrowed from a neighboring cell if the borrow-
ing will not violate the cochannel interference constraints.
By incorporating channel reassignment (or intra-cell hand-
off), the channel borrowing based DCA strategies can give
a superior performance over the fixed channel assignment
even at overload conditions by keeping the channel reuse
distance between cochannel cells a minimum. Among the
different channel borrowing based DCAs, the BDCL [6]
strategy gives the lowest blocking probability. Our analyt-
ical model is therefore developed based on this strategy.

Two important features of the BDCL strategy are chan-
nel ordering and immediate channel reallocation. Channel
ordering means that all nominal channels are ordered such
that the first channel has the highest priority to be as-
signed to the next local call, and the last channel is given
the highest priority to be borrowed by the neighboring cells.
Immediate channel reallocation means that a channel is re-
allocated whenever possible to keep the active local calls
to be packed towards front end of the nominal channel list.
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Fig. 1. A linear microcellular system with nominal channel sets A and B.

III. LINEAR MICROCELLULAR SYSTEMS
A. Problem Formulation

Consider a linear array of microcells shown in Fig. 1.
Suppose there are a total 2m distinct frequency channels
available to this microcellular system and the same fre-
quency channel can be reused at every other cell. Then
these channels can be divided into two nominal channel
sets A and B with m channels in each set and consecutive
cells can be allocated with channel sets A, B, A4, B, ... etc.
Let S; denote the set of active channels, or channels in use,
in cell i and |S;| denote the number of elements in S;. A
call attempt arrives at cell ¢ will be blocked if and only if
|Si—1 U S; U S;41| = 2m because otherwise there will ei-
ther be an idle channel in cell ¢ or an idle channel can be
borrowed from the neighboring cells to carry the call.

The two neighboring cells of cell i are cochannel cells
using the same set of nominal channels. Therefore, it is
easy to see that the following two statements about channel
borrowing initiated by cell 7 are equivalent:

1. Cell ¢ borrows a channel, say channel k, from cell ¢ — 1
and locks channel k in cell 7 + 1.

2. Cell ¢ borrows channel k from cell 41 and locks chan-
nel k in cell 7 — 1.

By making use of the property that the two neighboring
cells of a cell are cochannel cells, we obtain the following
proposition.

Proposition 1. If a cell has one or more channels lent
to its neighboring cells, it cannot borrow channels from
its neighboring cells to accommodate new calls. In other
words, channel borrowing is not a chain reaction.

Proof: Without loss of generality, assume the channels
in set A is numbered from 1 to m and that in set B is
numbered from m + 1 to 2m. Let cell i lend k channels
numbered m—k+1to m to cell i+ 1. Then, |S;y1]| = m+k
and [S;| < m — k. If a new call arrives at cell ¢ and finds
that |S;| = a < m — k, the idle nominal channel a + 1 is
assigned to the new call. If, instead, it finds |S;| = m — k,
the call will have to be blocked because borrowing from
cell i + 1 is forbidden by the fact |S; U S;y1| = 2m and
borrowing from cell ¢ — 1 is equivalent to borrowing from
cell i+ 1. Q.E.D.

To determine the blocking probability at cell i by apply-
ing the cell group decoupling analysis, we form the three
consecutive cells i — 1, 7 and ¢+ 1 into a group and assume
this group to be decoupled from the rest of the network. In
other words the blocking probability at cell 7 is assumed to
depend only on its two neighboring cells. This assumption
is justified by the non-propagative borrowing property of
Proposition 1.
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Fig. 2. A three-dimensional Markov chain formed by cells ,i +1 and i — 1.

B. Calculation of Blocking Probability

Let the call arrivals at cell ¢ be a Poisson process with
rate A; and channel holding time be exponentially dis-
tributed with mean 1/p. Let B; be the call blocking prob-
ability at cell <. As a call in cell ¢ is blocked if and only if
|Si—1 U S; US;y1] = 2m, we have

B; = PT’Ob{|Si_1 US; US| = 2m}. (1)

The channel usage in cells ¢ — 1, 7 and ¢ + 1 can be de-
scribed by a three-dimensional ergodic Markov chain whose
state space is shown in Fig. 2. This three-dimensional
model is sufficient because with channel ordering and im-
mediate channel reallocation, channels within a cell are in-
distinguishable and so the states of the three cell group
can be described by the channel occupancies in the three
cells. With (1) as the constraint, the total number of
states is S rri ' k% = (8m3 + 18m? + 13m + 3)/3. Let
P(z1, 29, 23) be the probability that |S;| = 21,|Si41| = =2
and lSi—ll = I3.

Theorem 1. For a linear microcellular system with single
cell buffering, the call blocking probability B; of an arbi-
trary cell 7 obtained by the cell group decoupling analysis
is an upper bound on the true blocking probability at cell
i.

Proof: From (1), the channel occupancy S; of cell i de-
pends on both S;_; and S;y;. The maximum number
of channels that can be used in cell i is therefore 2m —
max|[[S;—1],|Si+1]]. In a decoupled three-cell system, if cell
i has occupied |S;| channels, then the maximum number
of channels that can be occupied by cells i — 1 and i + 1
is 2m — |S;]. On the other hand, if these three cells are
not decoupled from the rest of the network, the channel
occupancies of cells i — 1 and ¢ + 1 are also affected by
that of cells 7 — 2 and 7 + 2 respectively. As an example,
if nominal channel k of cell ¢ + 1 is lent to cell i + 2, then
cell ¢4 1 cannot use channel k. But cell i can use channel
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Fig. 3. A typical state transition diagram at state (21, z2,23).

k because cell 7 is the cochannel cell of cell 5 + 2. Thus in
the non-decoupled model the blocking probability of cell i
would be lower as more channels are available for use in
certain states.

More formally, let Pg(z1, z, z3) be the conditional prob-
ability that the total number of active channels in cells
t+ 1 and 7 + 2 is equal to 2m given that the current
state is (.’L‘l, X2, Tg), or PR(.’III,.EQ, 123) = P{ISZ'+11+ISH-2| =
2m|(z1,z9,%3)}. Let Pr(zq, 2y, z3) be similarly defined to
be the conditional probability that the total number of ac-
tive channels in cells i~1 and i—2 is equal to 2m given that
the current state is (21, 2, 23). Then the exact state tran-
sition rate from state (z1, 24, 23) to (z1,22+1, z3) is My =
[1— Pr(z1,22,23)]Aiy1 and that from state (z1, 22, 23) to
(1'1, T9,23 + 1) is A;—l = [1 - PL(.’L‘I, Zg, .’L‘3)])\,‘_1 (Flg 3)
In the cell group decoupling analysis, we ignore the effect
from cells outside the cell group and take the state transi-
tion rates simply as A;,_; and X;4;. Since A\j_; > Al_; and
Ait1 > Aiy, we have in fact assumed a higher traffic rate
and therefore the blocking probability obtained is larger,
or is an upper bound of the exact blocking probability. By
the same argument, A/_; and A ) shown in Fig. 3 are
similar quantities with values smaller than Ai-1 and A4
respectively. Q.E.D.

The three-dimensional Markov chain shown in Fig. 2
happens to belong to the class of coordinate convex pol-
icy problems for which product-form solution can be ob-
tained [14]. Let © denote the set of all possible states and
a; = A;/p. The steady state probability is given by

3 T

a’
P(x1,20,z3) =G_1Hﬁ (2)

j=1"7"

where
3 a:f_fj
— j
G= > II o}

(£1,72,23)E0Omega \j=1

From (1), the call blocking probability at cell 1, is obtained
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Fig. 4. Linear microcellular network with uniform traffic distribution.

as
B, = Z P(zy,2m — z,,23) +
r1+z3<2m
Z P(z1,23,2m — z1). (3)
T1+z2<2m

Note that a boundary cell has only one neighboring cell
and so the three-dimensional Markov chain degenerates
into a two-dimensional one. The overall blocking proba-
bility B of the system consisting of N linear microcells is
given by

N 1N
B= (Z ,\k) > X Be. (4)
k=1 k=1

IV. ILLUSTRATIVE EXAMPLES

The linear microcellular system being analyzed consists
of 30 microcells. Let there be a total of 20 channels in this
system. Let the arrival of calls be a Poisson process and
the call duration be exponentially distributed with a mean
of 3 minutes.

First, we examine the performance under the homoge-
neous traffic distribution. Let the base load traffic in each
cell be 100 calls/hour. The overall average blocking prob-
ability B of the system obtained by the above analysis
is plotted as a function of the increase in traffic in Fig. 4.
The Erlang-B formula which corresponds to the fixed chan-
nel assignment (FCA) performance is also plotted for the
purpose of comparison. We see that under all traffic con-
ditions, the blocking probability obtained by simulation is
upper bounded by the analytical results. The bound tends
to be looser at heavy traffic conditions. This is because
the influence of the farther away neighboring cells on the
blocking of the local cell grows with the traffic load and
our analysis has ignored such influence.
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Fig. 5. Linear microcellular network with nonuniform traffic distribution.
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Fig. 6. Boundary cells of a linear network with non-uniform traffic.

Next, consider the same linear cellular systems under
heterogeneous traffic where the traffic rate in calls per hour
in the 30 cells are {120, 100, 80, 80, 90, 100, 96, 130, 120,
60, 40, 60, 80, 100, 80, 120, 100, 60, 60, 80,120, 100, 80,
60, 60, 80, 100, 100, 80, 120]. Fig. 5 shows again that a
very tight bound is obtained. All blocking probabilities ob-
tained under heterogeneous traffic conditions are weighted
by the traffic rates X;’s.

In Fig. 6, we study the performance of cell group decou-
pling analysis on boundary cells. Blocking probabilities of
the two boundary cells (i.e. cells 1 and 30) and an arbitrar-
ily chosen interior cell (cell 10) are plotted against traffic
rates for the above non-uniform traffic distribution.

It is interesting to note that although cells 1 and 30 have
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the same base load of 120 calls/hr, the cell group decou-
pling analysis provides a tighter upper bound on cell 1 than
on cell 30. The reason is that for cell 30, the effect from
the "neighbor’s neighbor” (i.e. cell 28) is much stronger
than that of cell 3 to cell 1. In other words, the base load
of cell 28 is larger than the base load of cell 29 whereas the
base load of cell 3 is smaller than the base load of cell 2.
Cell 28, therefore, affects more on cell 29 than cell 3 on cell
2. In cell group decoupling analysis, we ignore the effect of
”neighbor’s neighbors” and so the bound tends to be looser
when such effect is large at heavy load conditions.
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