which is determined by drain-source small-signal conduc-
tances. In the saturation region, such conductances are
roughly proportional to I, which can be varied through V,, to
make @, infinite, or of a given positive or negative value. In
addition, assuming M1A and MI1B operate as good source
followers, varying I does not greatly affect the gate-source
voltage of M2 (which determines g,) and thus leaves w, prac-
tically unaffected as can be seen from eqn. 5 under the condi-
tion eqn. 2. Thus w, and @, can be tuned virtually
independently of each other through V,,, and V,,, respectively.
This independence eases the design of the on-chip automatic
tuning system that must generate V,, and V4. Similar results
can be obtained using a high-linearity crosscoupled version of
the circuit in Fig. 2, or other related schemes.* In all cases,
however, since ¥, varies the operating point of several tran-
sistors, the worst-case output swing capability will be some-
what reduced compared to a circuit in which only V,, is
varied. The reduction of swing is not as severe as when g,,
must be tuned through the bias current in other schemes,!*?
since there g,, varies as /I and thus a large variation in [ is
needed. Here g, varies roughly as I, and for practical cases the
required range of [ is not as large.
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Fig. 2 Linearised transconductance-capacitance integrator proposed in
Reference 3

Simulation results: The circuit of Fig. 2 was designed using
active loads of the type employed in Reference 1, a load
capacitance of 10 pF and power supply voltages of +5V. To
keep g, small, and thus increase the frequency range over
which high Q, is maintained, channel lengths of 12 uym were
used. The circuit was simulated using the program SPICE,
with realistic model parameters. The near-independence in the
tuning of w, and Q, was verifiable. To check the capability of
the circuit to maintain a high quality factor over a significant
range of w,, the voltage V. was set at three different values
and in each case V,;, was adjusted to make the phase —90°
(Q; = ) at the corresponding «,. The results are shown in
Fig. 3.
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Fig. 3 SPICE simulation results
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Conclusions: It has been shown that in a recently proposed
transconductance-capacitance integrator one can tune the
quality factor and the unity-gain frequency independently.
This is accomplished by taking advantage of the same topo-
logical features that provide linearity without using additional
components. The above tuning independence should make the
integrator suitable for high-frequency, high-quality integrated
filter design.
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SLOTTED ALOHA FOR MULTIHOP PACKET
RADIO NETWORKS WITH
MULTIPLE-DIRECTIONAL-ANTENNA
STATIONS

Indexing terms: Telecommunications, Radio links

The slotted ALOHA protocol is modified to accommodate
stations with multiple directional antennas in a multihop
packet radio network environment. The one-hop throughput
is derived for both the Poisson station distribution and the
deterministic lattice station distribution. Numerical results
show that the throughput values are very close for the two
distributions. If the number of stations in the transmission
circle is fairly large, say 50, the throughput gain using direc-
tional antennas could be as large as the number of direc-
tional antennas used.

Introduction: Chang and Chang' have examined the possible
performance improvement of using directional transmitting
antennas in a multihop packet radio network (PRN)
environment. The protocols considered are slotted ALOHA
and nonpersistent carrier-sense multiple access (CSMA). Each
station is equipped with a single directional antenna.
However, with a single directional antenna, there is a need to
change the antenna directions for different receiving stations.
To avoid this problem, we can use multiple directional
antennas for transmission. In this letter we analyse the per-
formance of slotted ALOHA with multiple directional
antennas (SA/MDA) for deterministic and randomly distrib-
uted stations in a multihop PRN.

Let each station be equipped with m directional antennas
for transmission. The broadcasting angle is 360°/m for each
antenna and the orientation of the antennas is the same for all
stations. We assume that all packets are of the same length
and occupy one slot time. When a packet is ready, a station
would choose a suitable antenna, depending on the location of
the packet destination, and transmit the packet at the begin-
ning of the next slot. If collision occurs, the station retransmits
the packet after a random delay. Packet propagation delays
are assumed to be negligible compared to the transmission
time, and traffic acknowledgment is carried on a separate
channel.
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Analysis of SA/MDA :

(a) Deterministic lattice distributed stations: Let all stations be
located on a lattice (see Fig. 1) and let the number of stations
inside a circle of radius R (the transmission range) be N. At
each station, let the probability of transmitting a packet at

* * L] L]

L ] L] * »

o . o e

L] . - .
stations

. - - .

Fig. 1 Deterministic lattice distribution of stations

any particular slot be p, and let the traffic to all neighbouring
stations be the same. Consider the transmission of a packet
from P to Q, where Q is a neighbour of P, Let B be the event
that this transmission is successful. We have

prob [B] = prob [Q does not transmit]
x prob [all N — 2 neighbours of Q
(excluding P} do not transmit
toward Q’s direction]

= (1 —pll — p/m)¥~2

Define the one-hop throughput S as the average number of
successful packet transmissions per slot from a station. We
have

N>m (1)

S = prob [P transmits] x prob [B]
= p(1 — p)(1 — p/m)" 2 N>m ()
For'a given set of N and m, S is maximised by setting p to
_ 2m
(N — 1)+ 2m + JI(N ~ 1> + 4m(m — 1)]
=m/N for N>m

p* (3)

Substituting p* into eqn. 2, we have

m1

=5 for N>m (4

Hence the throughput gain by using SA/MDA could be as
much as the number of directional antennas used.
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Fig. 2 NS against p, lattice-distributed stations, N = 10

(b) Two-dimensional Poisson distributed stations: Let A be the
average number of stations per unit area. Then N £ AzR? is
the average number of stations in-a circle of radius R. We
adopt the most forward within R (MFR) routing strategy?
and derive the throughput® as

R =2

_ prA’
S=(1—e)p(1 —p) f j exp (— 7)
0 —=nf2
X folto, o) dBg dr 8)]

1028

where

A = 1R? — Ay, 6) (6
and
Arg exp [—AA(ro, 65)]
ralror B) = TeTE Lo 0 )

is the joint probability density function of the locations of Q
with respect to P in polar co-ordinates (r, 6). A,(r, #) in eqn. 7
is the area of excluded region where no neighbours of Q can
be located, and is given as®

Ar, 0) = R¥@ — sin 26'/2) 8)

where & = cos ™! [(#/R) cos 6].
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Fig. 3 NS against p, lattice-distributed stations, N = 50

Numerical results: Fig. 2 shows the total throughput in a
circle of radius R (i.e. NS} as a function of transmission prob-
ability p for m = 1, 2 and 4. The stations are assumed to be
located on a lattice and N = 10. Here we see that the
optimum throughput values for m = 1, 2 and 4 have the ratio
1:1-8:2-9. Fig. 3 shows the same case but with N = 50; here
the ratio is 1:1-92:3-64. Thus, for N » 1, the throughput gain
could be as large as the number of directional antennas used.
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Fig. 4 NS against p, Poisson-distributed stations, N = 10

Figs. 4 and 5 show the same curves for Poisson-distributed
stations. Compared with Figs. 2 and 3, the throughput values
differ by no more than 6%. For N = 50, the throughput for
the Poisson case is slightly higher, whereas for N = 10 the
reverse is true.
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Fig. 5 NS against p, Poisson-distributed stations, N = 50

Thus we see that the onc-hop throughput is quite indepen-
dent of the spatial distribution of stations. Furthermore, as
seen from the Figures, the optimum p values that maximise S
are practically the same for the Poisson- and lattice-
distributed station cases. -
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PHENOMENOLOGICAL APPROACH TO
POLARISATION DISPERSION IN LONG
SINGLE-MODE FIBRES

Indexing terms: Optical fibres, Polarisation

We describe a model for polarisation dispersion in single-
mode fibres of arbitrary length and configuration that is
based on the existence of principal states of polarisation.
These are two orthogonal input states of polarisation whose
corresponding output states exhibit zero dispersion in their
state of polarisation to first order.

Intreduction: Until now polarisation dispersion in single-
mode fibres has played a negligible role in lightwave system
design owing to the much more severe limitations imposed by
chromatic dispersion. However, polarisation dispersion could
become important in multigigabit systems where chromatic
dispersion will by necessity be greatly reduced through the use
of dispersion-shifted fibre and/or single-frequency lasers.' Tts
effect on future direct detection systems through pulse spread-
ing and on coherent systems through both pulse spreading
and depolarisation have yet to be fully assessed.

. Experimental and theoretical work on polarisation disper-
sion in single-mode fibres has typically made use of a model in
which two polarisation eigenmodes of the fibre are defined.
The propagation constants for the two modes become distinct
when the circular symmetry of the core is broken by stress or
geometrically induced birefringence.? In real fibres the appli-
cation of this model can become cumbersome when the fibre
length exceeds ~ 1km because mode coupling makes identifi-
cation of the eigenmodes experlmentally difficult.®> Further-
more, when several fibre pieces are concatenated to form a
long fibre length the random orientation of the birefringent
axes of the various pieces make the application of such a
model even less practical.

In this letter we propose a phenomenological model of pol-
arisation dispersion for long fibre lengths. It is based on the
observation that for any linear optical transmission medium
that has no polarisation-dependent loss there exist orthogonal
input _states of polarisation for which the corresponding
output states of polarisation are orthogonal and show no
dependence on wavelength to first order. Such states have
been observed in a 5 km piece of single-mode fibre.* We wish
to generalise this observation and point out that these states
of polarisation, which we call ‘principal’ states of polarisation,
form a convenient basis set for the description and character-

isation of polarisation dispersion in fibres of arbitrary length

and configuration.

Existence of principal states of polarisation: To demonstrate
the existence of principal states of polarisation, we consider a
linear medium described by the complex transfer matrix T(cw).
If we assume that there is no polarisation-dependent loss, then
T(w) takes the form

T(0) = #“U(w) W

where B(w) is in general complex and U(w) isa unitary matrix:
uy(w) uy(w) \

Ulw) = 2

@ (—uz(w) ut(o) @
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Here u, and u, satisfy the relation

|y > = Juy | =

A monochromatic optical field E,, when transmitted by such a

medium, produces an output field E, given hy
E, = T()E, 3

where @ is the optical frequency of the incident and transmit-
ted fields. The complex field vectors E,, can be expressed in
the form

X
Ea,b = o = lc’a,l;/ eiqbn'b éa,b (4)
Eds

where ¢, , and ¢, , are the amplitudes and phases of the fields
and &, , are complex unit vectors specifying the states of pol-
arisation.

In the presence of polarisation dispersion, which is one
manifestation of the frequency dependence of the matrix T{w),
we may expect for an arbitrary but fixed input state of polari-
sation that the output polarisation state will vary with the
frequency of the input wave. However, we wish to show here
that for any medium described by T(c) there exists at each
frequency a set of two mutually orthogonal input states of
polarisation for which the corresponding output states of pol-
arisation are independent of frequency to first order.

To do this we start by taking the derivative of eqn. 3 with
respect to frequency assuming a constant input field. This
gives

dE, dT &

af = _ 2 '
10 do —e[ﬁU-}-U]E (5)

~ The primes denote differentiation with respect to frequency.

From eqn. 4 we have

dE, [1 = 0 42
—L= I:— g, + iqﬁ;,:|E,, + g, €% d—z (6)

do £

Combining eqns. 5 and 6 while making use of eqns. 1 and 3
leads to '

dg, .
g e — T = f[U" — ikU]E, N

1

k=¢é+i[ﬂ’——€£l . ®)
&y

Since we wish to find the input states of polarisation that give

zero dispersion in the output state, we set the left-hand side of

eqn. 7 to zero, and look for solutions to the resulting eigen-

value equation:

[U'—ikUJs, =0 o)

We determine the allowed values of k in the usual manner by
setting the determinant of the matrix. in front of £, to zero.
Making use of eqn. 2, this leads to the two solutions

= +J(1u\? + 1y ) _ (10)

Inserting these two eigenvalues back into eqn. 9, we obtain
the corresponding eigenvectors:

[ — ik u,]
Buy = €* Pa (11)
- [ — ik ud
D.

where p is an arbitrary phase and

D, = {2k, (k, — Im [k + ufu;])} (12)
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