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Abstract—Node placement problem in ShuffleNets is a com-
binatorial optimization problem. In this paper an efficient node
placement algorithm, called the gradient algorithm, is proposed.
A communication cost function between a node pair is defined
and the gradient algorithm places the node pairs one by one,
based on the gradient of the cost function. Then two lower bounds
on the traffic weighted mean internodal distanceh are proposed.
The performance of the gradient algorithm is compared to the
lower bounds as well as to some algorithms in the literature.
Significant reduction of h is obtained with the use of the gradient
algorithm, especially for highly skewed traffic distributions. For
a ShuffleNet with N = 64 nodes, theh found is only 22% above
the lower bound for the uniform random traffic distribution, and
14.7% for a highly skewed traffic distribution with skew factor
 = 100:

Index Terms—Gradient algorithm, node placement problem,
ShuffleNet, topological design.

I. INTRODUCTION

NETWORK designs using wavelength-division multi-
plexing (WDM) technologies can be grouped into two

classes: single-hop networks and multihop networks [1]. In a
single-hop WDM network, information is transmitted directly
from the source to the destination without going through
intermediate nodes. The main drawback of this design is
the need to use fast tunable optical transceivers, which
are not mature for mass production at the current stage.
Besides, the performance of a single-hop WDM network
depends on the efficiency of the transmission protocol in
performing pretransmission coordination. On the other hand,
in a multihop WDM network only a small number of fixed
optical transceivers are needed, but the information from a
source node may need to go through a number of intermediate
nodes before reaching its destination node.

The logical topology of a multihop WDM network is
relatively independent of its physical topology. Depending
on the wavelength assignment, a logical topology can be
designed to optimize the network performance independent
of its underlying physical networks. Literature on designing
logical topology based on different physical networks can be
found, for example, in [2] and [3]. The logical topology of a
multihop WDM network can be either regular (symmetrical),
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such as ShuffleNet, Toroid, DeBruijn graph, and Hypercube,
or irregular (asymmetrical). A regular topology can use simple
routing rules, which is crucial for high-speed networks. Two
major design issues for regular topologies are: 1) modular
increase and decrease of network size and 2) adaptation to
nonuniform traffic. Research on the first issue can be found, for
example, in [4] and [3]. Research on the second issue can be
grouped into two classes. The first class focuses on the optimal
initial placement of nodes into an empty regular topology
given the (average) traffic requirements between all pairs of
nodes. This is known as thenode placement problem. The
commonly used objective function is to minimize the traffic
weighted mean internodal distance of a network. If the network
consists of equal length links, this is equivalent to minimize the
mean network packet delay. It has been shown that the node
placement problem for even the simplest linear bus regular
topology is NP-hard [5]. Heuristic algorithms for suboptimal
solutions are reported for linear bus topology [5], ring topology
[6], and ShuffleNet [7]. Assume that all nodes have already
been placed in the network; the second class of research for
adapting to nonuniform traffic focuses on the routing/switching
problem on a packet-by-packet or call-by-call basis [8], [9].

In this paper we focus on the design of an efficient node
placement algorithm for ShuffleNets. A multistage shuffle-
exchange network architecture was originally proposed for
processor–memory and processor–processor interconnection in
modular multiprocessor systems [10], [11]. Many broad-band
packet switch designs are also based on this architecture [12],
[13]. ShuffleNet [14] is another proposed design of shuffle-
exchange networks for telecommunications applications. It
is one of the most prominent examples of WDM multihop
lightwave networks and has attracted a lot of research interests.
Among the proposed regular multihop network topologies,
ShuffleNet has the advantage of having a large connected
graph with a small degree and diameter. It has been shown
that ShuffleNet compares favorably with Torous network [15],
and the maximum throughput supported by a ShuffleNet is
higher than that supportable by an equivalent network based
on de Bruijn graph [16].

In this paper an efficient node placement algorithm, called
the gradient algorithm, is proposed. It has a time complexity
of , where is the network size. A communication
cost function between a node pair is defined and the gradient
algorithm places the node pairs one by one, based on the
gradient of the cost function. Then two lower bounds on
the traffic weighted mean internodal distanceare proposed.
The performance of the gradient algorithm is compared to
the lower bounds as well as to some algorithms in the
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literature. Significant reduction of is obtained with the use
of the gradient algorithm, especially for highly skewed traffic
distributions. For a ShuffleNet with nodes, the
found is only 22% above the lower bound for the uniform
random traffic distribution, and 14.7% for a highly skewed
traffic distribution with skew factor

In Section II the node placement problem for the ShuffleNet
is formally formulated. In Section III a communication cost
function for placing a node pair into a network is defined. The
gradient algorithm is proposed in Section IV and an example is
presented in Section V to illustrate the algorithm. In Section
VI we derive two lower bounds on the weighted mean hop
distance. Then the performance of the proposed algorithm is
evaluated in Section VII. Some comments on the future work
conclude the paper in Section VIII.

II. NODE PLACEMENT PROBLEM

ShuffleNet was first proposed in [14] and later extended in
[17]. It is a communication network in which nodes in one
column are connected to nodes in the next column in a perfect
shuffle connection pattern by directed links. A ShuffleNet is
characterized by two integer parametersand In a
ShuffleNet, the total number of nodes is equal to
They are numbered from 0 to and are arranged in

columns of nodes each, with theth column wrapped
around to the first in a cylindrical fashion (Fig. 1). The number
of transmitters and the number of receivers per node are both
equal to degree The total number of links is The
location of a node in a ShuffleNet can be represented by its
(row, column) coordinates , where and

The outgoing links of node are connected
to the nodes in the next stage with respective coordinates

, where
and

Let be the traffic matrix where denotes
the traffic rate from node to node Let and

Let be the hop distance from nodeto
node The weighted mean hop distance between two nodes
can be expressed as

(1)

The node placement problem is to assign nodes to the
ShuffleNet positions such thatis minimized. For the special
case where all ’s, except , are equal, the minimum
average hop distance is given by [7]

(2)

III. COMMUNICATION COST

The diameter of a ShuffleNet is the minimum hop distance
between two furthest-away nodes and is equal to A
ShuffleNet is cylindrically wrapped around and each node can

Fig. 1. A (2,2) ShuffleNet.

reach back to itself after traversing through the network. We
call such a traversal path aloop. Based on the regular topology
of a ShuffleNet, each node has aunique shortest loop of
hops, called the -loop. If the traversal path does not follow
the -loop, the next shortest traversal path hashops. These

-hop loops (or -loops for short) are not unique. If node
is in the -loop of node , node is also in the same-loop
of node The same is true for the -loops. As an example,
Fig. 1 shows that the loop (node 0 node 4 node 0) is
the -loop for node 0, where , and the loop (node 0
node 5 node 3 node 6 node 0) is a -loop of node
0. The communication cost from nodeto node is defined
as the product of the traffic rates from nodeto node and
the number of hops needed to travel from nodeto node
If node is in the -loop of node and node can reach
node in hops, then node can reach nodein hops,
where Under this condition, the communication cost
betweennodes and , denoted as , is

for (3)

where is the gradient of the cost function.
Similarly, if node is in a -loop of node , and node

can reach node in hops, then node can reach node
in hops, where The communication cost

betweennodes and can be defined as follows:

(4)

Equations (3) and (4) show that and
, or they are linear functions of and

, respectively. If and are minimized
when and respectively. Otherwise, and

are minimized when and , again
respectively. If , and are constants and
are independent of and

An ShuffleNet has different node
pairs. They can be divided into two sets and , where
is the set of node pairs which are in the-loop of each other,
and is the remaining set of node pairs which are in a-hop
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Fig. 2. cij(x) anddij(y) of a (p; k) ShuffleNet.

loop of each other. Substituting and into (1), we
get , where

(5)

is the total communication cost. Therefore, minimizingis
the same as minimizing

Fig. 2 shows the cost functions of some node pairs in a
ShuffleNet. The vertical axis is the cost and the horizontal
axis is the hop count or Each line represents the
communication cost between a node pair as a function of
its distance, and there are a total of lines.
The bullet on each line represents the relative position of
the node pair in the ShuffleNet and the communication cost.
The node placement problem can be restated as to find an
optimal placement of the bullets on the cost function lines
(one per line) such that the total cost is minimized under
the ShuffleNet topological constraints.

From Fig. 2, we can see that it is more crucial to place node
pairs with cost functions having large gradients, or ’s,
than small gradients. If a node pair with large can
be appropriately placed such that its communication cost is
minimized, a smaller overall traffic weighted mean internodal
distance will be obtained. This principle leads to a new node
placement algorithm called the gradient algorithm.

IV. THE GRADIENT ALGORITHM

The gradient algorithm is a greedy algorithm that places
node pairs one by one, starting from the one with the largest
gradient onto the first available position that minimizes the
communication cost between the node pair. Suppose a node
pair with is to be placed. To decide whether node

is to be placed in a -loop position or a -loop position,
we simply check if Using (3) and (4), this
reduces to checking

(6)

In the following, the node placement algorithm is described:

Input: and an empty ShuffleNet
Output: node placement pattern

1. For to do
for to do

.
if , .
if , .

2. Find the sorted list of such that the first
element is the maximum.

3. While not all , choose the
first nonnegative entry and denote it by ,

3.1 If both nodes and are placed,
set Goto Step 3.

3.2 Else if node can be placed at 1-hop
from node and they are in the-loop of
each other,

place node (if it is not placed) and
node (if it is not placed); .

3.3 Else if both nodes have not been placed,
or only node is placed,

if both nodes have not been placed,
place node at the first available position.
find an empty position in the-loop
of node s.t. it has the shortest distance

node .
find an empty position in a -loop
of node s.t. it has the shortest distance

node .
if

place node at the found position
in the -loop; .

else
place node at the found position
in the -loop; .

3.4 Else if only node is placed,
find an empty position in the-loop
of node s.t.
it has the shortest distance node .
find an empty position in a -loop
of node s.t.
it has the shortest distance node .
if ,

place node at the found position
in the -loop; .

else
place node at the found position
in the -loop; .

Step 1 calculates the gradients of the cost functions. Step
2 sorts the gradients into an ordered listwith
operations using, for example, QuickSort [18]. Step 3 is a
while-loop which excecutes at most times for placing the

nodes. Consider a worst-case execution of Step 3. Suppose
both nodes are not placed. First we need to check at most

positions for the two nodes to be placed in a one-hop
separation in their -loop. Assume that this fails, then nodeis
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(a) (b) (c)

(d) (e) (f)

Fig. 3. An example of placing nodes into a (2,2) ShuffleNet using the gradient algorithm. (a) Node 5 to node 7. (b) Node 5 to node 8. (c) Node 1 to
node 2.(d) Node 5 to node 6. (e) Node 1 to node 4. (f) Node 1 to node 3.

placed at the first available position. Next we need to check at
most positions for node A simple calculation is then
done for choosing the-loop or a -loop position. The worst-
case complexity for a single execution of Step 3 is therefore

The time complexity of the gradient algorithm is
therefore

V. AN EXAMPLE

Consider an example of placing eight nodes, numbered from
1 to 8, into a (2,2) empty ShuffleNet. Let the traffic matrix
be given by

Following Step 1 of the gradient algorithm, the gradient matrix
can be found

Starting from the node pair whose cost function has the
largest gradient , i.e. from node 5 to node 7, node
7 is placed at one hop downstream of node 5 and both nodes
are in the -loop of each other, as shown in Fig. 3(a). Next

we consider the node pair with the second-largest gradient
; the best position for placing node 8 has been

occupied by node 7 so we have to consider if it is better
to place node 8 in the -loop with hop count , or to
place node 8 in the -loop with hop count From the
inequality (6), the -loop position with is preferred
and thus node 8 is placed as shown in Fig. 3(b). Continue
this procedure until all nodes have been placed. Each node
placement has been shown in Fig. 3.

The weighted mean hop distancefor this example is found
to be 1.26 by (1). The lower bound is 1.23 using the method to
be described in the next section. We can see that the weighted
mean hop distance is only 2.4% above the lower bound. If the
greedy algorithm [7] is used, , which is 46.3% above
the lower bound.

VI. TWO LOWER BOUNDS

A tight lower bound on allows us to check and to assess
the quality of the solutions provided by the node placement
algorithms. The weighted mean internodal distancefrom (1)
consists of the summation of terms of These

terms can be partitioned into sets, where set
contains the communication costs from nodeto all
other nodes. It corresponds to the traffic on rowof the traffic
matrix

Next we show how to construct for setan optimal node
placement pattern—optimal in the sense that the one-way
communication cost for set, denoted , is minimum. A
directed binary tree (e.g., Fig. 4) which is a subgraph of
ShuffleNet, can be constructed with the root at nodeThe
arrow on the line indicates the traffic flow direction. The nodes
at level of the binary tree correspond to the nodes which can
be accessed by nodein hops in a corresponding ShuffleNet.
Therefore, the number of nodes at levelof the binary tree
is equal to for and for
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Fig. 4. A binary tree for a (2,3) ShuffleNet considering only the one-way
traffic from nodei to all other nodes.

Based on the one-way traffic generated from the root node,
a binary tree which minimizes can be found by first ranking
all other nodes in descending order of Then starting from
the first node in the list, nodes are placed one by one onto
the tree, starting from the first stage. is minimized because
the node with the heaviest traffic from nodeis placed at the
shortest hop distance from the root.

Theorem 1: A lower bound on is

Proof: Suppose an optimal node placement pattern is
found such that the weighted mean internodal distanceis
minimized. Let be the total cost of the setelements in
the optimal placement pattern. Since is obtained from the
optimal construction of a node placement pattern based on the
one-way traffic, less constraints are imposed on the construc-
tion as compared to theoverall optimal pattern. Therefore,

is always true. Because is obtained by averaging
over all ’s, it is a lower bound on

Following a similar approach, we can partition the
terms from (1) into sets, where set contains the
communication costs from all other nodes to nodeHere each
set corresponds to a column in the traffic matrixSimilarly,
an optimal binary tree can be constructed from setwith node

as the root. The difference is that the node with the heaviest
traffic to node is placed as close to the root as possible. From
Theorem 1, a lower bound based on columnwise partitioning
of the traffic matrix can be obtained.

VII. PERFORMANCE EVALUATION

In this section we evaluate the performance of the gradient
algorithm and compare it to the lower bound and to those algo-
rithms in [7] for both uniformly and nonuniformly distributed
internodal traffic. The same numerical examples used in [7]
are adopted here. For uniformly distributed random traffic, the
traffic rate from any node to any other nodes is a uniformly
distributed random number between 0–1. For nonuniformly
distributed random traffic, nodes are configured as database
servers—each serves a disjoint set of nodes. Traffic
rate from a nonserver node to any other nodes is a uniformly
distributed random number between 0–1. The traffic rate from
a server node to any other nodes it serves is a uniformly

TABLE I
WEIGHTED MEAN HOP DISTANCE UNDER

UNIFORMLY DISTRIBUTED RANDOM TRAFFIC

TABLE II
WEIGHTED MEAN HOP DISTANCE UNDER NONUNIFORMLY

DISTRIBUTED RANDOM TRAFFIC WITH  = 10

TABLE III
WEIGHTED MEAN HOP DISTANCE UNDER NONUNIFORMLY

DISTRIBUTED RANDOM TRAFFIC WITH  = 50

distributed random number between 0 and, where is a
given traffic skew factor.

The four algorithms proposed in [7] are: greedy, local,
global, and iterative. The time complexities for the first three
algorithms are , ,
and , respectively, and that for each iteration of the
iterative algorithm is

Table I summarizes the weighted mean hop distance for an
-node ShuffleNet under uniformly distributed random traffic

with , , and . Each value in the table is obtained
by averaging over 100 experiments, where each experiment
is carried out with a different (randomly generated) uniformly
distributed traffic matrix. The column under “Random” shows
the results obtained by randomly placing nodes into the
ShuffleNet. These results match the theoretical average hop
distance shown in (2). Column “BM” is the range of the
mean hop distance obtained from the four algorithms in [7].
Generally speaking, the greedy algorithm has the poorest
performance among the four. For nonuniformly distributed
traffic, the iterative algorithm has the best performance.

Note that column “Greedy” shows the results of the greedy
algorithm of our implementation. There are slight discrepen-
cies with that quoted in [7] because the algorithm stated
there is not precise enough to allow exact reproduction of
the results. The results for the gradient algorithm are obtained
under conditions similar to the greedy algorithm, i.e., using the
same random number generators and seeds. The column under
“ ” shows the larger of the column-based and the row-based
lower bounds. The last column in the table is the percentage
of found by the gradient algorithm above the corresponding
lower bound.

From Table I, we see that under uniformly random traffic
distribution, all algorithms including the random placement
algorithm give similar performance, with the global algorithm
having a slight advantage. The obtained by the gradient
algorithm is at most 22.8% above the lower bound.
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TABLE IV
WEIGHTED MEAN HOP DISTANCE UNDER NONUNIFORMLY

DISTRIBUTED RANDOM TRAFFIC WITH  = 100

Under nonuniformly random traffic distribution with skew
factor , , and , Tables II–IV show that the
gradient algorithm consistently gives shorterthan the other
algorithms. Moreover, the percentage improvement increases
with the network size and skew factor From the last
column, we can see that the percentage difference between
of the gradient algorithm and is at most 21.1% for ,
17.3% for , and 14.7% for , showing that the
gradient algorithm works better for highly skewed traffic.

VIII. C ONCLUDING REMARKS

In conclusion, we would like to discuss several related
issues with further investigation. In addition to the communi-
cation cost between the two nodes under consideration, other
information, such as the total communication cost between
all placed nodes and the node currently to be placed, can be
used for further improvement of the gradient algorithm. The
lower bounds proposed in this paper only consider the one-
way traffic generated by or destined to a particular node. It is
worthwhile to look into ways of making better use of the traffic
information for obtaining a tighter lower bound. The gradient
algorithm and the lower bounds can possibly be generalized
to other regular topologies, e.g., Toroid.
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