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Node Placement Optimization in ShuffleNets

Kwan Lawrence YeungMember, IEEE and Tak-Shing Peter Yungenior Member, IEEE

Abstract—Node placement problem in ShuffleNets is a com- such as ShuffleNet, Toroid, DeBruijn graph, and Hypercube,
binatorial optimization problem. In this paper an efficient node  or jrregular (asymmetrical). A regular topology can use simple

placement algorithm, called the gradient algorithm, is proposed. - ;jing rules, which is crucial for high-speed networks. Two
A communication cost function between a node pair is defined

and the gradient algorithm places the node pairs one by one, Major design issues for regular topologies are: 1) modular
based on the gradient of the cost function. Then two lower bounds increase and decrease of network size and 2) adaptation to
on the traffic weighted mean internodal distance’ are proposed. nonuniform traffic. Research on the first issue can be found, for
The performance of the gradient algorithm is compared to the example, in [4] and [3]. Research on the second issue can be

lower bounds as well as to some algorithms in the literature. : 3 .
Significant reduction of h is obtained with the use of the gradient grouped into two classes. The first class focuses on the optimal

algorithm, especially for highly skewed traffic distributions. For initial placement of nodes into an empty regular topology
a ShuffleNet with N = 64 nodes, theh found is only 22% above given the (average) traffic requirements between all pairs of
the lower bound for the uniform random traffic distribution, and  nodes. This is known as theode placement problenThe
14.7% for a highly skewed traffic distribution with skew factor commonly used objective function is to minimize the traffic
v = 100. weighted mean internodal distance of a network. If the network
Index Terms—Gradient algorithm, node placement problem, consists of equal length links, this is equivalent to minimize the
ShuffieNet, topological design. mean network packet delay. It has been shown that the node
placement problem for even the simplest linear bus regular
|. INTRODUCTION topology is NP-hard [5]. Heuristic algorithms for suboptimal

ETWORK designs using wavelength-division rnul,[i_solutions are reported for linear bus topology [5], ring topology
plexing (WDM) technologies can be grouped into twaebl, and ShuffleNet [7]. Assume that all nodes have already

classes: single-hop networks and multihop networks [1]. In2gen Placed in the network; the second class of research for
single-hop WDM network, information is transmitted directlyadaptlng to nonuniform traffic focuses on the routmg/swnchlng
from the source to the destination without going throughroPlem on a packet-by-packet or call-by-call basis [8], [9].
intermediate nodes. The main drawback of this design is/n this paper we focus on the design of an efficient node
the need to use fast tunable optical transceivers, whiBlgcement algorithm for ShuffleNets. A multistage shuffle-
are not mature for mass production at the current stag&change network architecture was originally proposed for
Besides, the performance of a single-hop WDM networRrOcessor—memory and processor—processor interconnection in
depends on the efficiency of the transmission protocol fRodular multiprocessor systems [10], [11]. Many broad-band
performing pretransmission coordination. On the other harRfcket switch designs are also based on this architecture [12],
in a multhop WDM network only a small number of fixed[13]. ShuffleNet [14] is another proposed design of shuffle-
optical transceivers are needed, but the information frome%change networks for telecommunications applications. It
source node may need to go through a number of intermediteone of the most prominent examples of WDM multihop
nodes before reaching its destination node. lightwave networks and has attracted a lot of research interests.

The logical topology of a multihop WDM network is Among the proposed regular multihop network topologies,
relatively independent of its physical topology. DependinghuffleNet has the advantage of having a large connected
on the wavelength assignment, a logical topology can lg&aph with a small degree and diameter. It has been shown
designed to optimize the network performance independéhat ShuffleNet compares favorably with Torous network [15],
of its underlying physical networks. Literature on designingnd the maximum throughput supported by a ShuffleNet is
logical topology based on different physical networks can lggher than that supportable by an equivalent network based
found, for example, in [2] and [3]. The logical topology of aon de Bruijn graph [16].
multihop WDM network can be either regular (symmetrical), In this paper an efficient node placement algorithm, called

the gradient algorithm, is proposed. It has a time complexity
of O(N?), where N is the network size. A communication
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literature. Significant reduction df is obtained with the use
of the gradient algorithm, especially for highly skewed traffic
distributions. For a ShuffleNet wittv = 64 nodes, theh
found is only 22% above the lower bound for the uniform
random traffic distribution, and 14.7% for a highly skewed
traffic distribution with skew factory, = 100.

In Section Il the node placement problem for the ShuffleNet
is formally formulated. In Section Il a communication cost
function for placing a node pair into a network is defined. The
gradient algorithm is proposed in Section IV and an examplefg. 1. A (2,2) ShuffleNet.
presented in Section V to illustrate the algorithm. In Section
VI we derive two lower bounds on the weighted mean hop

distance. Then the performance of the proposed algorithmr'sach back to itself after traversing through the network. We

evaluated in Section VIl. Some comments on the future wor
. . call such a traversal pathl@op. Based on the regular topolo
conclude the paper in Section VIII. pafaop. 9 pology

of a ShuffleNet, each node hasuaique shortest loop of%
hops, called thé-loop. If the traversal path does not follow
II. NODE PLACEMENT PROBLEM the k-loop, the next shortest traversal path Bashops. These
ShuffleNet was first proposed in [14] and later extended ?rqfthp loops (or2k-|oop§ for shprt) are qot unique. If node

. o . . . IS in the k-loop of nodei, nodes is also in the samé-loop
[17]. It is @ communication network in which nodes in one . )

. ; of nodej. The same is true for thek-loops. As an example,

column are connected to nodes in the next column in a perf;c_qt 1 shows that the loop (node-8 node 4= node 0) is
shuffle connection pattern by directed links. A ShuffleNet i 9. P

characterized by two integer parametgrand k. In a (p, k) t%edk-lgop fo;nogde 0. \(/jvheGr@ - 20’| agd .th;f?p (no?le e;
ShuffleNet, the total number of node¥ is equal tokp*. hode 5= node 3=> node 6= node 0) is &2k-loop of node

They are numbered from 0 thp* — 1 and are arranged in 0. The communication cost from noddo nodej; is defined
k columns ofp* nodes each, with théth column wrapped as the product of the traffic rates from nodéo node; and

around to the first in a cylindrical fashion (Fig. 1). The numbépe ”“mb?r F’f hops needed to tra?’e' from nobde node;.

of transmitters and the number of receivers per node are bdtf10de 7 is in the k-loop of node: and node: can reach
equal to degree. The total number of links igp*+!. The NOd€j inz hops, then nodg can reach nodein & —x hops,
location of a node: in a ShuffleNet can be represented by it¥Nere0 <z <k. Under this condition, the communication cost
(row, columi) coordinates(a, b), wherea = n mod p* and PeWweemodes: andj, denoted as:; (), is

b = |n/p¥|. The p outgoing links of node: are connected

to the p nodes in the next stage with respective coordinates cii(@) =xhi; + (k — 2)Ay;

(c,d), (c+1,d),-++,(c+p—1,d), whered = (b+ 1) mod k " " ’

andc = (a mod p*~1)p. =kXji +m;;z, for0<z <k (3)
Let A = [A;;] be the traffic matrix where\;; denotes
the traffic rate from node to nodej. Let A; = 0 and \herem,; = \;; — A;; is the gradient of the cost function.

A = 2 Xij. Let hy; be the hop distance from nodeto  gimilarly, if node is in a 2k-loop of nodei, and nodei
nodej. The weighted mean hop distance between two nodgs, reach nodg in v hops, then node can reach node
can be expressed as in 2k — y hops, whered < y < 2k. The communication cost
d;;(y) betweemodesi andj can be defined as follows:
- 1
h:KE:E:mﬁMT (1)
()

dij(y) =yAij + 2k — y) Az

. . =2kA; +miy for 0<y < 2k. 4
The node placement problem is to assign nodes to the gi TGy o Y @)
ShuffleNet positions such thatis minimized. For the special

case where all;;’s, excepti = j, are equal, the minimum  Equations (3) and (4) show that;(x) = c¢;;(k — ) and

average hop distance is given by [7] dij(y) = d;;(2k — y), or they are linear functions of and
y, respectively. IfA;; > Aj;, ¢;;(x) andd;;(y) are minimized
— kpF(p— 1Bk —1) — 2k(p* — 1) whenz = 1 andy = 1 respectively. Otherwises;;(x) and
h= : : @ g inimized wher: = & — 1 andy = 2k — 1, agai
2(p — 1)(kp* — 1) ;;(y) are minimized wherx = andy = , again

respectively. If\;; = Aj;, ¢;;(z) andd;;(y) are constants and
are independent of and .
IIl. COMMUNICATION COST An N = kp* ShuffleNet hasV(N — 1)/2 different node
The diameter of a ShuffleNet is the minimum hop distang&irs. They can be divided into two se&is and ., whereé;
between two furthest-away nodes and is equatito- 1. A is the set of node pairs which are in thdoop of each other,
ShuffleNet is cylindrically wrapped around and each node candé, is the remaining set of node pairs which are izZkahop
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In the following, the node placement algorithm is described:

Input:
Output:

A =[)\;] and anN = kp*, empty ShuffleNet
A node placement pattern

1. Fori=1to N do
forj =1to N do
mqi; = )\“ — )\jZ
if mi; <0, my; = —1.
if LIJ, Mgy = —1.
2. Find the sorted lisf of {m;;} such that the first
element is the maximum.
3. While not allm;; = —1, choose the
first nonnegative entry and denote it by,
3.1 If both nodeg and; are placed,
setm;; = —1; Goto Step 3.
3.2 Else if nodej can be placed at 1-hop
from nodei and they are in thé&-loop of

Cost

o 1 2 ==° k-1 k k+! et 2k-1

hop count: x or y

Fig. 2. ¢;;(x) andd;;(y) of a (p, k) ShuffleNet.

loop of each other. Substituting; (z) andd;;(y) into (1), we each other,
geth = C/A, where place node (if it is not placed) and
nodejy (if it is not placed);m;; = —1.
C= > cilm+ Y di(y) (5) 3.3 Else if both nodes have not been placed,
(,5)C&1 (4,5)CE2 or only nodei is placed,

if both nodes have not been placed,

is the total communication cost. Therefore, minimizihgs
the same as minimizing’.

Fig. 2 shows the cost functions of some node pairs in a
ShuffleNet. The vertical axis is the cost and the horizontal
axis is the hop count: or y. Each line represents the
communication cost between a node pair as a function of
its distance, and there are a total 8f(N — 1)/2 lines.

The bullet on each line represents the relative position of

the node pair in the ShuffleNet and the communication cost.
The node placement problem can be restated as to find an
optimal placement of the bullets on the cost function lines

(one per line) such that the total caStis minimized under

the ShuffleNet topological constraints.

From Fig. 2, we can see that it is more crucial to place node3-4
pairs with cost functions having large gradients,|or;;|’s,
than small gradients. If a node pair with large:;;| can
be appropriately placed such that its communication cost is
minimized, a smaller overall traffic weighted mean internodal
distance will be obtained. This principle leads to a new node
placement algorithm called the gradient algorithm.

IV. THE GRADIENT ALGORITHM

The gradient algorithm is a greedy algorithm that places
node pairs one by one, starting from the one with the largest
gradient onto the first available position that minimizes the

place node at the first available position.

find an empty position in thé-loop
of nodes s.t. it has the shortest distance
z from nodei.
find an empty position in &k-loop
of node: s.t. it has the shortest distance
y from nodei.
if & <y +kAji/(Aij = i),
place nodej at the found position
in the k-loop; m;; = —1.
else
place nodej at the found position
in the 2k-loop; m;; = —1.
Else if only nodej is placed,
find an empty position in thé-loop
of nodej s.t.
it has the shortest distanaeto nodej.
find an empty position in 8k-loop
of nodej s.t.
it has the shortest distangeto node .
if <y + k‘)\ﬂ/()\“ — )\ji,)y
place node at the found position
in the k-loop; m;; = —1.
else
place node at the found position
in the 2k-loop; m,;; = —1.

communication cost between the node pair. Suppose a nodge 1 calculates the gradients of the cost functions. Step

pair with A;; > A;; is to be placed. To decide whether nodg sots the gradients into an ordered Bswith O(N2 log V)

J is to be placed in &-loop position or a2k-loop position,  gnerations using, for example, QuickSort [18]. Step 3 is a

we simply check ifc;;(z) < dij(y). Using (3) and (4), this yhile-loop which excecutes at moat times for placing the

reduces to checking N nodes. Consider a worst-case execution of Step 3. Suppose
both nodes are not placed. First we need to check at most

6) N positions for the two nodes to be placed in a one-hop
separation in theik-loop. Assume that this fails, then noflis

kAji

T<y+ 0
(Aij — Aji)
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Fig. 3. An example of placing nodes into a (2,2) ShuffleNet using the gradient algorithm. (a) Node 5 to node 7. (b) Node 5 to node 8. (c) Node 1 to
node 2.(d) Node 5 to node 6. (e) Node 1 to node 4. (f) Node 1 to node 3.

placed at the first available position. Next we need to checkwaé consider the node pair with the second-largest gradient
most .V — 1 positions for nodg. A simple calculation is then mss = 51; the best position for placing node 8 has been
done for choosing thé-loop or a2k-loop position. The worst- occupied by node 7 so we have to consider if it is better
case complexity for a single execution of Step 3 is therefote place node 8 in th&-loop with hop countz = 2, or to
O(N?). The time complexity of the gradient algorithm isplace node 8 in th@k-loop with hop county = 1. From the
thereforeO(N?). inequality (6), the2k-loop position withy = 1 is preferred
and thus node 8 is placed as shown in Fig. 3(b). Continue
V. AN EXAMPLE this procedure until all nhodes have been placed. Each node

. . : cPlacement has been shown in Fig. 3.
Consider an example of placing eight nodes, numbered fr Mrhe weighted mean hop distanéor this example is found
1 to 8, into a (2,2) empty ShuffleNet. Let the traffic matrix

to be 1.26 by (1). The lower bound is 1.23 using the method to

be given by be described in the next section. We can see that the weighted
0 514 176 309 O 0 0 0 T mean hop distance is only 2.4% above the lower bound. If the
05 O 09 0.2 07 02 05 0.1 greedy algorithm [7] is used, = 1.80, which is 46.3% above
0.1 04 0 03 04 1.0 05 0.8 the lower bound.

A= 0.6 0.8 0.8 0 08 02 06 0.3
|0 0 0 0 0 347 91.7 520" VI. Two LOWER BOUNDS

8';1 8'2 82 82 gg 008 0(')9 gz A tight lower bound o allows us to check and to assess
05 10 01 02 10 07 04 0 the quality of the solutions provided by the node placement

- algorithms. The weighted mean internodal distahdeom (1)
Following Step 1 of the gradient algorithm, the gradient matrigonsists of the summation &f (V —1) terms ofh;; \;;. These
M can be found N(N — 1) terms can be partitioned intty sets, where set
1 509 175 303 0 -1 -1 —1- contains theV — 1 communication costs from nodeto a]l
- other nodes. It corresponds to the traffic on roof the traffic
-1 -1 05 -1 07 -1 -1 -1 matrix A
-1 -1 -1 -1 4 2 1 . ) .
- 0 0 0 0.7 Next we show how to construct for sétan optimal node
-1 06 05 -1 08 -1 02 o041 . .
. placement pattern—optimal in the sense that the one-way
0 -1 -1 -1 -1 33.8 91.5 51.0 L - .
communication cost for set denotedH;, is minimum. A
04 04 -1 07 -1 -1 0 0 . - . . -
directed binary tree (e.g., Fig. 4) which is a subgraph of
0.8 0.1 -1 -1 -1 -1 -1 01 g .
05 09 —1 -1 -1 -1 -1 -1 ShuffleNet, can be constructed with the root at ned&he
e ' B arrow on the line indicates the traffic flow direction. The nodes
Starting from the node pair whose cost function has tte level/ of the binary tree correspond to the nodes which can
largest gradientn;7 = 91.5, i.e. from node 5 to node 7, nodebe accessed by nodén i hops in a corresponding ShuffleNet.
7 is placed at one hop downstream of node 5 and both nodéwerefore, the number of nodes at levebf the binary tree
are in thek-loop of each other, as shown in Fig. 3(a). Next equal top” for h <k and (p* — p*=*) for h > k.
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Node i TABLE |
WEIGHTED MEAN Hop DISTANCE UNDER
UNIFORMLY DISTRIBUTED RANDOM TRAFFIC

N | (p,k) || Random BM Greedy | Gradient || Ag %%
8 12,2 2.00 1.80-1.92 1.98 1.98 1.64 | 20.7
24 | (2,3) 3.25 3.08-3.20 3.23 3.23 2.63 | 22.8
64 | (2,4) 4.63 4.46-4.59 4.62 4.61 3.78 | 22.0
[
. — TABLE 1l
ifr‘jf;nd,’fo’%fe 1 > 3 2 5 WEIGHTED MEAN HoP DISTANCE UNDER NONUNIFORMLY

DisTRIBUTED RANDOM TRAFFIC WITH v = 10

Fig. 4. A binary tree for a (2,3) ShuffleNet considering only the one-wayxs . %) || Random BM Greedy | Gradient || Ay, %
traffic from node: to all other nodes. -

8 | (22 2.03 | 1.59-1.78 || 1.90 1.52 1.37 [ 10.9
24 | (2,3) 326 | 278297 || 3.20 2.79 2.31 | 20.8
, . 64 | (24 463 | 4.384.61| 4.59 4.31 3.56 | 21.1
Based on the one-way traffic generated from the root ripde 24
a binary tree which minimize&; can be found by first ranking TABLE I
all other nodes. in desgendlng order)qf. Then starting from WEIGHTED MEAN Hop DISTANCE UNDER NONUNIFORMLY
the first node in the list, nodes are placed one by one onto DISTRIBUTED RANDOM TRAFFIC WITH v = 50
the tree, stgrting from the first s'tagﬁfi is min.imized because —FT77.%) T Random | BM Greedy | Cradient | iz | %
the node with the heaviest traffic from nodlés placed at the 78| (2,2) 203 | 1.36-159 || 1.85 1.27 122 | 41
shortest hop distance from the root. 241 (2,3) 3.26 | 244283 ) 3.12 2.18 191 | 14.1
Theorem 1: A lower boundh on % is 64 | (2,4) 463 |402454| 451 3.59 3.06 | 17.3
N N .
1 distributed random number between 0 apdwhere~ is a
hL = — ZHZ . .
A 1 given traffic skew factor.
-

The four algorithms proposed in [7] are: greedy, local,
Proof: Suppose an optimal node placement pattern @gdobal, and iterative. The time complexities for the first three
found such that the weighted mean internodal distalnds algorithms are max[O(N?2p), O(N?log N)], O(N#*p+~1),
minimized. LetH! be the total cost of the sételements in and O(N?), respectively, and that for each iteration of the
the optimal placement pattern. SinéE is obtained from the iterative algorithm isO(N*).
optimal construction of a node placement pattern based on thdable | summarizes the weighted mean hop distance for an
one-way traffic, less constraints are imposed on the constrd¢é=node ShuffleNet under uniformly distributed random traffic
tion as compared to theverall optimal pattern. Therefore, with N = 8, 24, and64. Each value in the table is obtained
H; < H! is always true. Becaude;, is obtained by averaging by averaging over 100 experiments, where each experiment
over all H;’s, it is a lower bound orh. is carried out with a different (randomly generated) uniformly
Following a similar approach, we can partition tN¢ N —1)  distributed traffic matrix. The column under “Random” shows
terms from (1) intoN sets, where set contains thelV — 1 the results obtained by randomly placing nodes into the
communication costs from all other nodes to néddere each ShuffleNet. These results match the theoretical average hop
set corresponds to a column in the traffic matdixSimilarly, distance shown in (2). Column “BM” is the range of the
an optimal binary tree can be constructed fromiseith node mean hop distance obtained from the four algorithms in [7].
i as the root. The difference is that the node with the heaviésenerally speaking, the greedy algorithm has the poorest
traffic to nodei is placed as close to the root as possible. Froperformance among the four. For nonuniformly distributed
Theorem 1, a lower bound based on columnwise partitionittiggffic, the iterative algorithm has the best performance.
of the traffic matrix can be obtained. Note that column “Greedy” shows the results of the greedy
algorithm of our implementation. There are slight discrepen-
cies with that quoted in [7] because the algorithm stated
there is not precise enough to allow exact reproduction of
In this section we evaluate the performance of the gradiethie results. The results for the gradient algorithm are obtained
algorithm and compare it to the lower bound and to those algaader conditions similar to the greedy algorithm, i.e., using the
rithms in [7] for both uniformly and nonuniformly distributedsame random number generators and seeds. The column under
internodal traffic. The same numerical examples used in [7};” shows the larger of the column-based and the row-based
are adopted here. For uniformly distributed random traffic, thewer bounds. The last column in the table is the percentage
traffic rate from any node to any other nodes is a uniformlyf i found by the gradient algorithm above the corresponding
distributed random number between 0-1. For nonuniformlgwer bound.
distributed random traffick nodes are configured as database From Table I, we see that under uniformly random traffic
servers—each serves a disjoint setpdf— 1 nodes. Traffic distribution, all algorithms including the random placement
rate from a nonserver node to any other nodes is a unifornaigorithm give similar performance, with the global algorithm
distributed random number between 0-1. The traffic rate fronaving a slight advantage. The obtained by the gradient
a server node to any other nodes it serves is a uniforndjgorithm is at most 22.8% above the lower bound.

VIl. PERFORMANCE EVALUATION
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TABLE IV [7] , “Algorithms for optimized node placement in shufflenet based
WEIGHTED MEAN HOP DISTANCE UNDER NONUNIFORMLY multihop lightwave networks,” ifProc. IEEE INFOCOM’'93 1993, pp.
DiSTRIBUTED RANDOM TRAFFIC WITH 7 = 100 557-564.
- [8] K. C. Lee and V. O. K. Li, “Routing for all-optical networks using

N | (p.k) || Random BM Greedy | Gradient | hr % wavelengths outside erbium-doped fiber amplifier bandwidgrdc.
8 1(22) 203 | 132157 ) 184 L2l 119 | 1.7 IEEE INFOCOM'94 vol. 2, Toronto, Ont., Canada, 1994, pp. 946-953.
24| (2,9) 326 | 232276 || 3.10 1.98 1.77 | 11.9 [9] K. N. Sivarajan and R. Ramaswami, “Lightwave networks based on de
64 | (24) 4.63 3.72-449 || 447 3.19 2.78 | 147 bruijin graphs,”IEEE/ACM Trans. Networkingvol. 2, pp. 70-79, Feb.

1994.
[10] T. Y. Feng, “Data manipulating functions in parallel processors and
. . . . . their implementations,IEEE Trans. Comput.vol. C-23, pp. 309-318,
Under nonuniformly random traffic distribution with skew Mar. 19p74_ pu PP
factor v = 10, 50, and 100, Tables IlI-IV show that the [11] D. H. Lawrie, “Access and alignment of data in an array processor,”

; ; ; ; I IEEE Trans. Comput.vol. C-30, pp. 1145-1155, Dec. 1975.
gradient algorithm consistently gives shortethan the other 12] M. Kumar and J. R. Jump, “Performance of unbuffered shuffle-exchange

algorithms. Moreover, the percentage improvement increases networks,”IEEE Trans. Computvol. C-35, pp. 573-578, June 1986.
with the network sizeV and skew factory. From the last [13] S.C. Liew and T. T. Lee,/ilogn dual shuffle-exchange network with
column. we can see that the percentage difference betiveen error-correcting routing,1EEE Trans. Communvol. 42, pp. 754-765,

. . . Feb./Mar./Apr. 1994.
of the gradient algorithm ankl;, is at most 21.1% foty = 10, [14] A. S. Acampora, “A multichannel multihop local lightwave networks,”

17.3% fory = 50, and 14.7% fory = 100, showing that the Proc. IEEE GLOBECOM'87Tokyo, Japan, 1987, pp. 1459-1467.
. . . . [15] E. Ayanoglu, “Signal flow graphs for path enumeration and deflection
gradient algorithm works better for highly skewed traffic. routing analysis in multihop networks,” Proc. IEEE GLOBECOM'89

Dallas, TX, Nov. 1989, pp. 1022-1029.
[16] K. Sivarajan and R. Ramaswami, “Multihop lightwave networks based
VIIl. CONCLUDING REMARKS on de bruijn graphs,” irProc. IEEE INFOCOM'9] Bal Harbour, FL,
Apr. 1991, pp. 1001-1011.
In conclusion, we would like to discuss several related?7] M. G. Hluchyj and M. J. Karol, “Shufflenet: An application of gener-

issues with further investigation. In addition to the communi- ﬁ\':lz%dclz)e'\r/fl,e;é slhguggf’spg_’ gn;gt_'ggg_“ghtwa"e networks,"Hroc. IEEE
cation cost between the two nodes under consideration, otij A. M. Tenenbaum, Y. Langsam, and M. J. Augenst&iata Structures
information, such as the total communication cost between Using C Englewood Cliffs, NJ: Prentice-Hall, 1990, p. 330.

all placed nodes and the node currently to be placed, can be

used for further improvement of the gradient algorithm. The
lower bounds proposed in this paper only consider the one-
way traffic generated by or destined to a particular node. It
worthwhile to look into ways of making better use of the traffii
information for obtaining a tighter lower bound. The gradier
algorithm and the lower bounds can possibly be generaliz
to other regular topologies, e.g., Toroid.
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