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SUMMARY Under the conditions of Poisson arrivals and
single copy transmission. we designed a minimum delay protocol
for packet satellite communications. The approach is to assume
a hybrid random-access/reservation protocol, derive its average
delay and minimize the delay with respect to all tunable system
parameters. We found that for minimum average delay,

1) a spare reservation should normally but not always be made
for each packet transmission.

2) all unreserved slots (i.e. Aloha slots) should be filled with a
packet rate of one per slot whenever possible. In other words, the
utilization of Alcha slots should be maximized.

3) an optimum balance between transmitting packets and mak-
ing reservations before transmission should be maintained.
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1. Introduction

Multiaccess protocols for packet satellite systems
usually take on one of the following three types: 1)
random-access, 2) reservation and 3) hybrid random-
access/reservation. Types 2 and 3 protocols are inher-
ently more complicated than type 1 because extra
processing, either on-board or at each earth station, is
required. Type 3 is a synthesis of type | and type 2,
taking the advantages of the low delay property of type
1 and the high throughput property of type 2. Because
of that, type 1 and type 2 can also be considered as
special cases of type 3 protocols. In recent years, there
have been constant efforts to design better and better
type 3 protocols.(V-®

In this paper, we attempt to find the minimum
delay protocol under a set of conditions. These condi-
tions define the environment of the protocol and the
protocol is optimal only in this environment. We shall
call this environment £. The conditions defining £ are:
1) The arrival of packets to the satellite channel is a
Poisson process. We would like to caution that for a
population sufficiently small, TDMA can give a
smaller delay than the best possible hybrid protocol
over a certain throughput range.®®
2) The combined arrival of new and reattempting
packets is assumed to be a Poisson process. For mean
retransmission randomization delay no smaller than 3
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slots, it was found that the above assumption is valid."”
In practice, for packet satellite systems inherent with
long round trip propagation delay, an average random-
ization delay of 5 slots or more is also desirable to
uncorrelate the retransmission of collided packets.
This uncorrelation process is vital since one more
collision means a penalty of one more round trip
propagation delay.
3) Transmitting multiple copies of the same packet
and making multiple reservations for the same packet
are not allowed. We suspect that transmitting multiple
copies and making multiple reservations might lead to
a slight reduction of the overall delay under certain
throughput range. But since we have not done any
investigation on this, we shall not consider this option.
4) Only a single uplink channel is considered. This
condition is really not restrictive because multiple
channel systems involve three kinds of inefficiencies:
1) additional overhead in partitioning a channel into
several TDM or FDM subchannels,
i1} longer transmission time on lower bit rate sub-
channels,
iii) longer average delay on multiple reservation
gueues on the satellite.
5) Only the slotted channel is considered. The unslot-
ted channel gives slightly better delay performance
only at very low traffic conditions.
6) A control channel is used for transmitting reserva-
tion information. We assume the bandwidth occupied
by the control channel is a fixed percentage of the total
bandwidth. In Ref (3), a scheme was proposed that
allows the dynamic sharing of control and data chan-
nel bandwidths. Such a scheme, although elegant, was
also reported to be more complicated with only a slight
improvement of delay performance when the numbes
of minislots per slot is more than 4.

Under the above conditions, there are still a
number of options in the design of protocols. We
attempt to isolate all the available options and mini
mize the average packet delay with respect to thes
options. The resulting protocol is then the minimum
delay protocol in & What are the remaining options
under the above conditions ? Obviously, a station with
a packet can choose to transmit immediately, to make
a reservation immediately, to make a spare reservatior
immediately with packet transmission, or to defe
transmission until a later time. The optimal choic
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would depend on the channel state and the channel
iading condition.

in the following, we shall first describe the packet
tellite system. We then design the protocol to be
ptimized and derive its throughput and delay charac-
ristics. Finally, we minimize the delay analytically
ith respect to all tunable parameters to obtain the
inimum delay protocol in £ as well as the set of
inditions for maintaining minimum delay.

The Packet Satellite System

Consider a packet satellite system. Besides the
plink data channel used for transmitting packets, let
lere also be an uplink narrow-band control channel
ir making reservation and a downlink announcement
wannel for broadcasting successful reservation. In
ractice, the control channel and the announcement
1annel can be subchannels on the up- and the down-
nk data channels respectively. The data channel is
otted with slot size equal to one packet transmission
me. The control channel is divided into minislots
ith M (need not be an integer) minislots per slot
Fig. 1). In contrast to other protocols such as that in
efs. (2)-(4), framing of slots is not needed. There are
vo types of slots. The Aloha slots are for transmitting
ickets without prior reservations whereas the
eserved slots are for transmitting packets with suc-
ssful reservations. The control channel serves two
Irposes:

' to make reservations for transmissions on the data
1annel and

to make spare reservations for retransmissions in
ise the transmissions in Aloha slots fail.  The
mouncement channel is used to broadcast the loca-
ons of the Reserved slots to all stations. All non-
eserved slots are treated as Aloha slots.

The Transmission Protocol

Consider the arrival of a packet. If it hits an
loha slot, it will either, with the probability fi, make
reservation on the control channel and await its
signed Reserved slot, or with the remaining probabil-
y 1 —fi, be transmitted in the current Aloha slot. In

| o /data packeli
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reservations

Fig. 1 Slots for data packets and minislot for reservations.
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the latter case, the packet can, with probability @, make
a spare reservation on the control channel. In case of
a collision in the Aloha slot, this spare reservation, if
successful, allows the packet to be transmitted in a
Reserved slot after a round trip propagation delay
(RTPD). If the transmission on the Aloha slot is
successful, its spare reservation, if made, is ignored by
the satellite. When a station wants to make a reserva-
tion or a spare reservation, it does so by marking its
identity randomly on one of the K subsequent mini-
slots.

If the arrival packet hits a Reserved slot, it will
either, with probability f;, make a reservation immedi-
ately or, with the remaining probability 1 — f, be trans-
mitted randomly on one of the I up-coming Aloha
slots. In the latter case a spare reservation will also be
made with probability @. For each successful reserva-
tion, a Reserved slot on the uplink data channel is
assigned. Packets with unsuccessful transmission or
unsuccessful reservation (including spare reservation)
will reattempt the system on one of the J subsequent
slots. A flow chart summarizing this protocol is shown
in Fig. 2.

The protocol being designed takes all optimizable
options, namely, the parameters ¢, fi and f, into
consideration. The optimal setting of these parameters
in different traffic conditions (learnt through measure-
ments on the channel) guarantees minimum average
packet delay. Optimal control parameters are comput-
ed offline and stored. Whenever there is a significant
change of traffic rate, new optimal control values are
looked up and used. As the protocol needs to main-
tain a reservation queue some very simple on-board
processing is required.

The stability of the protocol can be appreciated in
a very intuitive manner. When the traffic is very heavy,
both f; and f; are set to 1. This means that all packets
will have to make reservations before transmission. It
therefore behaves purely as a reservation protocol and

New packet

f, reservation f

diversion/
reservation?

1 transmission/

reservation?

diversion &
transmission

raservation N
successful

Fig.2 Flow chart of the minimum delay protocol.
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is always stable. On the other hand when trafhic is very
light both fi and f; will be zero, meaning that all
packets are transmitted without reservation. This
therefore is just slotted Aloha.

4, Throughput Analysis

Let A, be the average number of transmissions in
an Aloha slot and A, be the average number of ordi-
nary reservations per slot on the control channel. Due
to random bifurcation and merging of Poisson proc-
esses, the combined arrivals of ordinary and spare
reservations to the control channel is also a Poisson
process with per minislot rate of

_ /1r+aﬂa(l_.x)
= 7 (1)

Am

where x be the probability that a slot is of the reserved
type. To find x, note that all successful reservations
(to be quantified) are assigned a Reserved slot each.
Hence, the average number of successful reservations
per slot is equal to the average number of packets
transmitted through reservation per slot, which in turn
is equal to x. Mathematically,

x=[av. no. of successful reservation per slot]
av. no. of uncollided
= reservations

in M minislots

a slot is av. no. of spare res'ns
—Pr| of the to be ignored
Aloha type in an Aloha slot

a packet is
=MAine *"— (1—x)Pr| succ. tx’ed in
an Aloha slot
a spare this spare
Pr| res’n is not
collided
=Mjze *m— (1—x) (Ae %) ge *m (2)
Next, A is related to A, by

«Prl res’n

is made

a slot is

of the

Av. no. of
Ar=| packets arrived |§ /i Pr
to a slot Aloha type
a slot is
+f Pr of the
reserved type

=[Ar+ A (1) JUAL=x) + fix]. (3)

IEICE TRANS. COMMUN., VOL. E76-B. NO. 5> MAY 1993

Finally, the throughput § is given by

a Res. slot an Aloha slot
S=ux Pr| contains a [+ (1 —x) Pr| contains a
suce. tx’n succ. tx’n
=x+ (1—x) A (4)

The control channel may be regarded as a pure
overhead because it is not used for transmitting data
packets. Let w be the ratio of the control channel
bandwidth to the total channel bandwidth, then

Slwith overhead — (1 - W) S‘wlthout overhead-

5. Delay Analysis

The average packet delay D(a, fi, f2) consists of
seven terms denoted as Dy to ;. D;=0.5 is the average
synchronization delay in slots. D. is the expected
reservation delay and is equal to the round trip propa-
gation delay R (in unit of slots) muitiplied by the
probability of transmission through reservation or D,
=(x/S)YR. D; is the average waiting time in the
satellite reservation queue. For integral values of M,
D3 is given by the waiting time on a discrete-time
M /D/1 queue with the distribution of the number of
arrivals per slot U given by

M\ o Nk M —x \M*
rriv=sl=(, )3 (M)
From the Pollaczek-Khinchin mean value formula,®

the mean waiting time Ds; in this queueing system is
obtained as

_x(1—MY
Dy= 2(1—x)

Note that [} with M — oo was derived in Ref. (3) as
the waiting time in the reservation queue with reserva-
tions always successful. Dy;=(1+R) is the packet
transmission and propagation time. Ds is the average
delay of traffic diversion from the Reserved slots and is
given by

a slot is the fraction of

D:=Pr of the traffic diverted

reserved typellfrom a Reserved slot

av. duration
I—1
2

| between two

Aloha slots
l1—1

Ds is the randomization delay for the reservations and
is given by
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a slot is the fraction of
Dy=1Pr of the “Aloha” traffic
Aloha typellwith spare res’ns
the fraction
K—-1
+ that makes M
ordinary res’ns
— _ N Ar ] K—1
—[a-mat g At Aa(i=x) |20

D is the average delay due to retransmissions and is
iven as

D;=[av. delay per retx’n][av. no. of retx'n]

:{R %-{-DS-FDBJ[M‘Q_X)——I}

\dding up the seven terms, we have

1—M +S
Dlafify =15+ 5 M) XS gy
J—1
+Dﬁ+(R+'T+D5+D6)
. A'r+/1¢1(l_x) ‘*S
< (5)

For a given § and M and under constraints Egs.
1) to (4}, we can numerically minimize D(-) in Eq.
5) with respect to @, f; and f; to obtain the minimum
elay protocol in & But in order to find the conditions
> maintain minimum delay and to understand the
perational mechanism of the protocol for all values of
rand M, we have to resort to analytical method. We
st break Eq. (5) into two parts:

D('):D1+D11

‘here D, includes the waiting time for reservation and
1e propagation delay and Dy; includes all the random-
ation delays. Specifically,

N x(1—-M™Y _ 1R
DI_1'5+T(1—,T+[X+/1T+AG(1 x)]S
(6a)
D,,:DS+D6+(%+DS+DG>
. /ir+/1a(1_x) )
S (6b)

The analytical optimization process involves the
llowing two steps:

Since Dy is the dominating term, we shall minimize
) first with respect to @ and A, under constraints Egs.
1), (2) and (4).

By using the optimized ¢ and A, from step 1, Dy is
inimized with respect to f] and £ under constraint
q. (3).
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This two step process gives only a sub-optimal
solution. It is chosen because simultaneous minimiza-
tion of D(-) with respect to @, fi and f; is analytically
too difficult. The optimized D;, denoted as Df, is a
natural lower bound of D{:). In Sect. 8, we will show
numerically that the difference between the sub-
optimal solution and DF is insignificant. The close-
ness of the sub-optimal delay to the delay lower bound
implies:

1. D; indeed dominates over D,;.

2. The @, fi and f; parameters found by the above
process are very close to the optimal ones.

3. Condition 2 in £ is not really restrictive since
choosing any smaller randomization parameters can at
most reduce the overall delay to Djf.

To analytically minimize D(-), we need some
lemmas. As these lemmas are self-contained, we place
them in the appendix.

6. Minimization of D,

Figure 3 shows that the (A,, @) space is divided
into two rectangular regions A and B such that in
region A, dA,/da<0 at ¢=1 and in region B, di./da
=20 at g=1. These conditions determine the value of
the boundary point A, (M) such that in region A,
Aa(M)<A.=1 and in region B, 0 A, <A, (M). We
make this particular partitioning because, as we shall
show later, the locus of the optimal ¢ lies on the
boundary of region A. We shall further show that in
region A, the minimum delay point is at (A,=AF (M),
a=1) where A% (M) is the maximum value of A for A,
=20 and @¢=1, and in region B it is at {(A.=A, (M), &
=1). We then show that, for M =3, the minimum
delay in region A is always smaller than the minimum
delay in region B and hence the optimal (., @) is at
(A¥(M), 1) for M =3. For M <3, we will show via an
example in Sect. 9 that the g=1 solution is optimal

(Aa(m),1) (a1
\

1 .
| A >0

@ e

region B E region A
0 .
0 1

Aa

: the locus of the optimal o in region A.

Fig. 3 The (4., @) space for delay minimization.
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only in a restricted range of throughput. Outside that
range. delay minimization has to be entirely numerical.
The M =3 is the more interesting case because Smax<C 1
for M <2 (shown in Ref. (6)) while Spax=1 for M =3
(from Lemma 5 in the appendix).

We now proceed to the details of the derivation.
For each region, we first find the optimal «’s for
specific A.’s. Then, using these &’s, we minimize 1,
with respect 10 Aq.

6.1 Determination of A,(M) and (M)

A.(M) and (M) are defined as the values of A,
and x at =1 and di,/da=0. Differentiating Eq. (1)
with respect to « and using Eq. (A-4) and Eq. (4), we
get

dA- dAm

do =M do ~Aa(l=x)
_M(S—x)—2,(1—x) (M —xe™)
- M — xe™
_ Aall—x)[xe'"+ Me™*— M] 7
M — xe™
Since x< 1, dA,/da=0 if and only if
xe'+ Me % — M =0, (8)

Substitute A, from Eq. (8) into Eq. (2) and set a=1,
we obtain

In [—“—*%AM]: I—e %4 (1—x) Age ™™ (9)

At a given value of S and M, Eqs. (4) and (9) can be
solved sirpultaneously for A, and x which are the
required Aq(M) and x (M).

6.2 The Minimum Delay Point in Region A

Theorem 1: In region A, D; is minimized by maxim-
izing a without rendering A, negative.
Proof: Lemma 9 states that for A, >A.(M),[-]in Eq.
(7) is negative at ¢=1. Lemma 4 states that A,
decreases with @. Hence [-]in Eq. (7) is also negative
for @< 1. Therefore dA,/da<0 for all . It means that
maximizing ¢ will minimize A,. For a given A, (x is
fixed by Eq. (4)}, D, is minimized by minimizing A, or
maximizing ¢. Q.E.D.
Theorem 2: The minimum delay point in region A
occurs at ¢=1 and A, =AF(M).
Proof: .
(i) AE (A (M), AF(M)]:

At g¢=1, A, =A% (M) implies A, =0 from Lemma
7. Therefore, for a given A;, D; is minimized at ¢=1
by Theorem 1. Using Eq. (1) and setting a=1, we
obtain Dy as :
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x(1—M™Y  x+Mi,
i-x s K

To minimize D;(A,) with respect to A, Eq. (10}
stipulates that x and A, should both be as small as
possible. To minimize x and A,, Lemmas 1 and 5(i)
state that A, should be as close to one as possible, while
maintaining A, =0. Therefore, D; is minimized at A,=
A¥(M) and a=1.

(i1) A€ (AF(M), 1]

This case exists only when A% (M) <. From the
definition of A¥ (M), the constraint A, =0 is binding
for A¥(M) < 1. Therefore, A,=0at A,=A*(M) and ¢
=1. From Lammas 5(ii) and 10, we have S < §.(M).
Also, by Lemma 7, A,<0 for a given A, > A¥(M) at ¢
= 1. Therefore, from Theorem 1 for a given A,>
A¥ (M) the minimum delay occurs at A.=0. Next, we
minimize D; with respect to A, by setting A,=0.
Solving x from Eq. (4), substituting into (6a) with A,
=0, and differentiating with respect to A,, we have

dD, R(1—=8)[1—e 4 e (1= A,) ]
dAa S{1—Aqe™*)?

(=M
1—-8

D (Aa) =15+ (10)

el (1—-4) S<S(M).

(1)

This derivative can be shown to be an increasing
function of A;. Since Lemma 11 stipulates that A,=§,
dD;/dA,; is minimized at A,=S. Setting A,=S, Eq.
(11) becomes
dD, . R(1—S)[1—e S+ S5e 5(1—5)] s
g —5\ 2 — e
da S(1—S8e %)

=¢(S) S<SAM).

Noting that d¢(8)/dS<0 and S.(o0) > S (M), we
have,

dD,
o> (S (M) > $(Se(e)),

For R=1, ¢(5.(c0)) >0. Therefore, dDy/dAi, >0 and
the delay is minimized at the minimum possible value
of Ag, 1e. at Aa=A¥(M) with a=1. Q.E. D.

To summarize, after setting a=1, if §= 5.(M),
we set A¥ (M) =1 and solve for x, A» and A; simultane-
ously from Eqs. (1), (4) and (A-5). By substituting
them into Eq. (10), D¥ can be found. If $<S8.(M),
the choice A,(M) =1 will render A, negative. There-
fore, we choose A,=0 and solve for A¥(M) and An
simultaneously from Egs. (A+5) and (A-6) and sub-
stitute them into Eq. (10) to find D¥. The choice of A,
=0 results in mintmum delay because from Lemma 7,
an increase of A, will cause a decrease of A, and hence
an increase of D;. As A. is the traffic rate to the Aloha
slots. The above says that for minimum delay the
Aloha slots should be filled with a packet rate of one
per slot whenever possible.

—
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6.3 The Minimum Delay Point in Region B

In region B, the locus of the optimal & as A, varies
is generally not on the boundary of the region.
Locating the minimum delay point in this region
appears to be analytically very difficult. What we shall
do instead, is to find a lower bound of this minimum
delay and to prove that this lower bound is always
larger than the minimum delay in region A for M =3.
Therefore, finding the exact minimum delay in region
B is not important because the global minimum delay
point for M = 3 is in region A. The delay lower bound
is obtained by making a noncausal assumption. Let us
assume that all packets which are successfully transmit-
ted in the Aloha slots did not make any spare reserva-
tions on the control channel. This noncausal assump-
tion guarantees that there is no spare reservation from
successful packets to interfere with the other reserva-
tions and hence will result in a smaller average delay.

Under the noncausal assumption, let A, be the
average number of transmissions in an Aloha slot, A,
be the average number of ordinary reservations per slot
on the control channel. Then, the combined rate of
ordinary and spare reservations per minislot to the
control channel, denoted as A, is

_Artad(1—e ") (1—x)

Am W

(12)

The average number of successful reservations per slot
X 1s

x=M/av. no. of successful reservation in a
minislot]
=MAne '™ (13)
Substituting Eq. {13) into Eq. {4), we have
S=MAne "+ (1= MAne "™ Nge™ e (14)
From Eq. {6a), we obtain I}, as

_ x(1-M"")
Di(Ag) =15+ ST x)
+X+Ar+§1a(]—x> R. (15)

Lemma 14 states that for a given Aq, Di(Ag) is
minimized at ¢=1.

Theorem 3 Under the noncausal assumption, the
minimum delay point in region B is at A,=1, (M)
and a=1.

Proof: From Egs. (4) and (12) and setting the opti-
mal value of ¢=1, Eq. (15) becomes

_ x(1-M™") | MA,+S
D) =15+ 557 = 5+

To minimize D, (A,), Eq. (16) stipulates that x and

R. (16)
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A should both be as small as possible. Lemmas | and
15 state that /1, should be as large as possible.
Therefore, the delay is minimized at A=A, (M) and @
=1. Q.E.D.

6.4 Delay Comparison in the Two Regions

Theorem 4: The minimum delay in region A is
always smaller than the minimum delay in region B for
Mz3

Proof:

(i) §<S(o0):

First, we consider region A. From Eq. (10) we obtain
the minimum delay in this region as

x* (MY -—M7")
2(1—x*(M))

x* (M) + MAn R
S

Di(Aa=AF(M)) =15+

+ (17)
where x*(M) denotes the optimized x found before.

Next, we consider region B. Since X (M) >MAn
from Eq. (13), we obtain the minimum delay in this
region from Eq. (16) as

. FMY(1—M™)
Di(a=4a(M)} > 1.5+ =y
+%QR (18)

For M =3, numerical results shows that x (M)
+8 > x*¥(M)+MA, for S < Sc(0). [£(M)+S]
increases with M by Lemma 12. Under both “A% (M)
=1 and “A,=0" conditions, [ x* (M) + MAn| decreases
with increasing M from Lemmas 2(i) and 3. There-
fore,

FM)+S>x* M)+ My for M=3.

Together with (M) >x*(M) (from Lemmas | and
13), we have

Dy (Aa=A2(M)) <D (Aa=Aa(M))
for M =3.

(i1) The proof for S= S, (c0) is similar. Q. E.D.

7. Minimization of D,

From Eq. (6b), we can see that minimizing Dy is
equivalent to minimizing Ds+ Ds where

D5+D6:x(l—fg)7(%+[(l—x)af(l—f.)

+ Ar 1K—1
ArtA(l—x) | 2M

Substituting f; from Eq. (3) into Eq. (19), we have

(19)
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I S I
D5+Ds*[x Ar_‘,aa(]—x)]Z(l*X)

Ar J
Artda(1—x) | 2M

+[a'(1—x)+

+f1[1;1 _af(lAJ;jl;K—l)}

We choose = K to make [ -] of the last term positive.
Therefore, to minimize Ds+ Ds (or Dy), fi should be
chosen as small as possible while maintaining 2<1 as
governed by Eqg. (3).

8. Numerical Examples

Numerical results show that for M =2 and 0.77<
S <0.83, the minimized D, occurs at ¢<<1. This means
that making spare reservation for all packets transmit-
ted in the Aloha slot is not always the best for small
values of M. This is also to be expected since spare
reservations have a high chance to collide with ordi-
nary reservations when M is small. In practice, M
rarely needs to be set as low as 2 and so for all practical
purpose, always making a spare reservation with each
transmission in the Aloha slot (i.e. setting ¢=1) is the
optimal operating condition.

Let R=100, w=0 and I=J=K=10. Figures4
and 5 show the average delay of the UCA protocol,®
the Controlled Multiaccess protocol,® and the Mini-
mum Delay protocol for M =3 and M =6 respectively.
We choose UCA and Controlled Multiaccess for com-
parison because they have the best delay performance

260 -

240 UCA

~

220 | Controlled
Multiaccess

200 | AN

i

Delay

180 // / / Minimum Delay
160 7 // / Delay Bound
/ /
;7
iy
140 |- s
‘/ ///’ s
1 1 1 1
o 0.2 0.4 0.6 0.8 1.0
S

Fig. 4 Delay throughput characteristics, M =3.
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found in literature. They are, however, also more
complicated. As expected, the Minimum Delay proto-
col has an average delay smaller than the other two
protocols. Moreover, this delay is less than 2.5% higher
than its lower bound Df.

Figure 6 compares the average delay of the Mini-
mum Delay protocol for M =10 and M =co. As there
is less than 5% difference in the two delays for $ =0.95,
ten minislots per slot is sufficient to give a near optimal
performance.

9. Conclusions

The minimum delay protocol designed in this
paper is under the assumptions of Poisson arrivals and
single copy transmission. Steady state analysis is used
to obtain the optimal protocol parameters. For cor-

S
220 | )
n 4
3 uca 7/
[a ey
200 | \ /
Controlled /"
Muttiaccess »~ * 7
\S; s
£
180 S
! 1 ! 1
o] 0.2 04 08 08 1.0

Fig. 5 Delay throughput characteristics, M =6.

Minimum Delay

(M=10} \

160 - . \

Delay

i Minimum Delay
140 y (M= <o)
.
y
4
120 | yd
100
1 I | |
o} 0.2 04 0.6 0.8 1.0
S

Fig. 6 M =10 is quite sufficient for near-optimal delay perfor-
mance.
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related and non-stationary input processes, some form
of adaptive control is needed for satisfactory perfor-
mance. The design and optimization of these
“adaptive” protocols appears to be a real challenge.

Only the overall average delay is minimized in this
paper. In practice, for systems with different classes of
traffic where each class has a different delay require-
ment, the protocol design appears to be very compli-
cated. This is particularly true when the options of
multiple transmission copies per packet and multiple
reservations per packet are allowed.
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Appendix
Lemma 1: x and A, are inversely related.
Proof: This follows from differentiating Eq. (4).
Q.E.D.
Lemma 2: For fixed a, A. and x,
d{(Min) cov dAnm

(i) i <0, (ii) dM<O’ and

o dAr

(iii) M <0.

Proof:
(i) Solving for (1—x)A.e™* in Eq. (4) and substitut-
ing into Eq. (2), we have

xe'm"=Mi,—a(S—x). (A-D)
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For fixed @, A, and x, differentiating MA, in (A-1)
with respect to M, we have

d (MAn)  —Amxe™
dM M — xe'm

Since S > x (from Eq. (4)), we have from Eq. (A-1).
xem < Min< M.

(A-2)

Substituting into the denominator of Eq. (A-2), we
obtain

d(MAn)
a0

(ii) Differentiating A» in Eq. (A-1) with respect to
M, we obtain
dim _ = 2n
dM ~— M —xe™
(iii) From Eq. (1) we have MA,=A,+ad.(1—x).
Differentiating, we have

dAy  d(Min)
dM ~  dM

<0.

<0. Q. E.D.

Lemma 3:

d(x+MAin)
dM

for =1, A,=0 and S fixed.

Proof: Substitute x( from Eq. (4)) and A» (from Eq.
(1)) into Eq. (A-1), set =1 and A,=0, and then
differentiate with respect to M, we have dA./dM <0.
Differentiating Eq. (4), we have

dx  —(1—x) (1—Ad)e ™ dis
am 1 —Age aM

Differentiating (x+ MAn) using Eq. (1) and substitut-
ing by Eq. (A-3), we have

<0,

(A+3)

d(x_i_M/‘m) _ _ _ (1-/10_)26_1'2 dAa
—am U x>[1 = 20 }dM<0
since [-]>0. Q.E.D.

Lemma 4: For fixed A, x and M, din/da>0.

Proof: Differentiating Eq. (A-1) with respect to a,
we have
d/‘{m _ S —X
do — M —xet >0. (A-4)
Q.E.D.

Lemma 5: At g=1,

(i) A= and A, are inversely related.

(ii) S is a monotonically increasing function of A,
and An; hence it is maximized at A,=An=1.

(iii) the minimum M (denoted as M*) for maximum
throughput is M*=e.

Proof: (i) and (ii): Setting ¢=1 in Eq. (2) and
solve for x, we have
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_ M/lm_/iaei/‘u

X e/lm*/iaeifla . (A'S)
Substituting into Eq. (4), we obtain
Am __ _ —Aa

S:M/im+(e Min—1) Ace . (A-6)

et — Jue e

where A, =1 and A,<1. By differentiating Eq. (A+6)
with respect to A» and Ag, we obtain (i) and (ii) of
Lemma 5.

(iii) Setting S=A,=A»=1 in Eq. (A-6) and solving
for M, we obtain M*=e. Q.E.D.
Lemma 6 At =1 and for fixed A;, A, is a
monotonically increasing function of An.

Proof: Substituting Eq. (A-5) into Eq. (1) and solv-
ing for A,, we have

— M/ime%m_ M/lm/iae_’la_ /lae'l’" + M/ia/lm

T

Ar

(A-7)

By differentiating A, with respect to An, we obtain
Lemma 6. Q. E. D.
Lemma 7: At ¢=1, A, and A, are inversely related.
Proof: Lemma 5(i) stipulates that A, decreases with
increasing A, for a fixed §. However, from
differentiating Eq. (A-7) we know that the decrease of
Aa causes an increase of A, for a fixed A,,. Also, Lemma
6 states that increasing A, causes a corresponding
increase of A, for a fixed A,. Therefore A, is a
monotonically decreasing function of A, for a fixed S.
Q. E. D.
Lemma 8: A, is a monotonically increasing function
of § for a fixed A..
Proof: This follows from Lemmas 5(ii) and 6.
Q.E. D.
Lemma 9 [xe"+Me *—M] is a monotonically
decreasing function of A, at a=1.
Proof: As A increases at =1, x and A, will decrease
according to Lemmas 1 and 5(i) respectively. There-
fore, [-] decreases with increasing Aq. Q.E.D.
Lemma 10: S.(M)=S5|;,-1,40.c=1 increase with M.
Proof: For fixed @, A, and x, as M increases, A, will
decrease according to Lemma 2(iii). On the other
hand, Lemma 8 states that A, increases with .S for fixed
M and A,. Therefore, S.(M) increases with M.
Q.E.D.
Lemma 11: ;=S at A,=0.
Proof: Substituting Eq. (1) into Eq. (2) and then
into Eq. (4) and setting A,=0, we have

S=A1—-x)a(l —e ) e *m4+ o],

Since (1—x) =1 and [-]<1, we have A, = S.

Q.E.D.
Lemma 12: x(M) is a monotonically increasing
function of M.
Proof: From Eq. (8), we have
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(M)

l‘e,:a(m

=Me *n

As M is increased, A» decreases according to Lemma
2(ii). Therefore, £ (M) /{1 — e %™ increases with M.
But as X (M) is increased, Lemma 1 states that 1 —
e %™ is decreased. Therefore ¥ (M) /1 — e %) jg
increased if and only if X (M) is increased.

Q.E.D.
Lemma 13: For M Ze and g¢=1, X (M) >, (M).
Proof: Numerical results show that A¥(e) >2,(e).
Therefore by Lemma 9, [+] in Eq. (7) is negative at A,
=A#(e). Substituting Egs. (1) and (2) into [-] in Eq.
{7}, we have

_AtU—e ) [-M+ . 0—x)]
[-1= i .

If A¥(M) =1, we have A, decreasing with increasing M
by Lemma 2(iii) and hence [-] remains negative. On
the other hand, if A¥ (M) <1, the constraint A, =0 is
binding, i.e. A,=0 and [:] remains negative for M >e
since [—M+A,(1—x)] in [-] is always negative.
Therefore by Lemma 9, 2¥ (M) >, (M) for M =e.
Q.E.D.
Lemma 14: For a given Ag, A, is minimized at ¢=
1.
Proof: Substituting Eq. (12) into Egq. {(13) and
differentiating with respect to @, we have

d(ﬁ; = Aul—e ) (1—x) <0,

Lemma 15: A, and /1, are inversely related.
Proof: It follows from differentiating Eq. (14) with
respect to A and A,. Q. E. D.

Q.E.D.
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