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AbstractÐThe performance of today's database systems is usually limited by the speed of their I/O devices. Fast I/O systems can be

built from an array of low cost disks working in parallel. This kind of disk architecture is called RAID (Redundant Arrays of Inexpensive

Disks). RAID promises improvement over SLED (Single Large Expensive Disks) in performance, reliability, power consumption, and

scalability. However, a general fact about RAID is that the ªwriteº operation is difficult to speedup. In this paper, we propose a new

RAID architecture, called Dynamic Multiple Parity (DMP) Disk Array, for serial transaction processing database systems. Serial

transaction processing database systems include engineering database systems, fully replicated database systems using a completely

centralized algorithm and distributed systems using the conservative timestamp ordering algorithm. DMP Disk Array can significantly

increase the I/O throughput by incorporating multiple parity disks. Due to the inherent distributed sparing property, DMP Disk Array can

provide normal service to the users under single disk failure condition. Delay and maximum throughput analysis on DMP Disk Array is

performed. Results show that, for a typical ªwriteº job proportion of 20 percent, DMP Disk Array can provide nearly 20 percent

improvement on I/O throughput over that of RAID level 5 when one extra parity disk is used.

Index TermsÐRAID, disk arrays, I/O systems, database systems, transaction processing.
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1 INTRODUCTION

IN the past decade, considerable attention has been drawn
to the research and development of database computers.

As Su [1] has stated in his book, there are three reasons why
database computers are needed: 1) the need for efficient and
effective data management, 2) the need for more powerful
database management systems, and 3) high performance
database computers become economically feasible because
of the advancement in hardware technology and the
reduction in hardware cost. The performance of a database
system is usually limited by the speed of its storage devices.
One good example is the Datacycle2 project at BellCore

starting in the late 1980s [2]. BellCore proposed an
innovative database architecture called the Datacycle2. In

this architecture, the entire database is periodically pumped

out from the central database to a number of servers in which

the user required data are filtered out. Since the whole

database is pumped out, Datacycle2 has an unlimited

throughput for read-only transactions. Datacycle2 technique

assumes that the database is ªmemory resident,º i.e., the entire

database has to reside in very fast storage.1 This assumption,
however, limits its scope of applications.

Redundant Arrays of Inexpensive Disks (RAID) is an
innovative concept in designing fast and reliable data
storage systems. The philosophy behind RAID is that,

instead of using one single expensive disk to achieve the
performance and reliability required, an array of low cost
disks working in parallel are used. Five levels of RAID were
defined when RAID was first introduced2 and RAID level 5
was found to be one of the best [3]. For all levels of RAID,
the ªwriteº operations are much slower than the ªreadº
ones. This limitation is particularly severe for applications
with frequent data updates.

There are two reasons why a ªwriteº operation takes
more time for RAID. First, a ªwriteº operation involves the
additional step of reading back the old data from one disk
and parity from another disk. Second, a ªwriteº operation
involves the waiting time for two specific disks to be free
simultaneously before actual writing. This waiting time can
be reduced by using the technique presented in this paper.

In this paper, we propose a new RAID architecture,
called Dynamic Multiple Parity (DMP) Disk Array, for
serial transaction processing database systems. Many
database systems process transactions in this way. Exam-
ples are engineering database systems [4], [5], [6], fully
replicated database systems using the completely centra-
lized algorithm, and distributed systems using the con-
servative timestamp ordering algorithm [7], [8], [9]. When
we discuss the operation of DMP Disk Arrays, we will see
how this kind of database systems handles I/O requests in a
way different from other database systems. We will also
show that DMP Disk Array can significantly reduce the
waiting time of disk operations and provide a higher I/O
throughput than RAID level 5. In the next section, we
describe DMP Disk Array in detail. We then present an
average delay analysis in Section 3 and a maximum
throughput analysis in Section 4. In Section 5, results of
simulation with a precise disk model are given. We then
conclude the paper in Section 6.
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2 DMP DISK ARRAY

2.1 Sector Coordinate System

The sector coordinate system can be used to describe
RAID operations, including that of DMP Disk Array.
Consider a disk array system with M disks, where each
disk consists of Z sectors and each sector can store K bits
of information (Fig. 1). Let S�i; j� � �bi;j1 ; b

i;j
2 ; b

i;j
3 ; . . . ; bi;jK � be

the bit pattern of sector j in disk i. It can be data or
parity. As an example, a RAID level 1 is described in this
sector coordinate system as:

S�i; j� � S�i� 1; j� j � 1; 2; 3; . . . ; Z; i � 1; 3; 5; . . . ;M ÿ 1:

�1�
Similarly, RAID level 4 and level 5 can be described as:

XM
i�1

S�i; j� � �1; 1; 1; . . . ; 1� for all j fodd parityg
�0; 0; 0; . . . ; 0� for all j feven parityg;

�
�2�

where � is defined here as the mod-2 sum of the sectors'
contents:

XM
i�1

S�1; j� � S�i; j� � S�2; j� � . . .� S�M; j�

� �b1;j
1 ; b1;j

2 ; . . . ; b1;j
K � � �b2;j

1 ; b2;j
2 ; . . . ; b2;j

K � � . . .

� �bM;j
1 ; bM;j

2 ; . . . ; bM;j
K �

� �b1;j
1 � b2;j

1 � . . .� bM;j
1 ; b1;j

2 � b2;j
2 � . . .� bM;j

2 ; . . . ;

b1;j
K � b2;j

K � . . .� bM;j
K �:

�3�
Let E�j� be the location of the parity sector at row j.
For RAID level 4 E�j� �M and for RAID level 5
E�j� � ��jÿ 1�modM� � 1. The placement of these parity
sectors is shown in Fig. 1. A study of the various parity
placement methods for RAID level 5 can be found in [10].

2.2 Sector Organization

The DMP Disk Array proposed in this paper is a new RAID
architecture for which RAID level 5 is a special case. RAID
level 5 has only one parity sector in each sector row and,
therefore, it is not possible to simultaneously update two or

more sectors on the same row. DMP Disk Array allows such

updates by placing R parity sectors in each row. Their

locations E1�j�; E2�j�; . . . ; ER�j� for row j are

Er�j� � ��r� jÿ 2�modM� � 1 r � 1; 2; . . . ; R: �4�
Lee and Katz [10] showed that, for relatively large request

sizes of hundreds of kilobytes, the choice of parity

placement can significantly affect the performance of disk

arrays, whereas, for small request sizes, the choice of parity

placement is insignificant to system performance. We

therefore arbitrarily choose the parity locations as stated

in (4). Although there are R parity sectors in each row,

parity integrity described in (2) is always maintained for

DMP Disk Array. (An example on the sector organization of

DMP Disk Array for R � 2 is shown in Fig. 2.)
There are two advantages to placing R parity sectors in

each row. First, for each data sector modification, we can

choose any one of the R parity sectors in the same row for

simultaneous parity modification. Hence, blocking due to

busy disks can be significantly reduced. Second, up to

R data sectors on the same row can now be modified

simultaneously. We now prove that DMP Disk Array has

these useful properties.

2.3 Properties of DMP Disk Array

Property 1 concerns the simultaneous negation of two bits

on the same row.

Property 1. For any row j, simultaneous negation of any two bits

in the same bit positions of two different sectors will not affect

the parity sum of the row.

Proof. Consider the set of rth bits of each sector in sector

row j, i.e., b1;j
r , b2;j

r , . . . , and bM;j
r . In order to maintain

parity integrity, the sum of these bits should always be 1

for odd parity or 0 for even parity. The parity sum after

the negation of any two bits ba;jr and bb;jr , where a 6� b is:
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Fig. 1. The sector coordinate system showing level 5 RAID. Fig. 2. The placement of parity sectors for DMP Disk Array when R � 2.



b1;j
r � . . .� ba;jr � . . .� bb;jr � . . .� bM;j

r
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r
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� �
� b1;j

r � . . .� bM;j
r

ÿ �
flaw of double negationg

� ba;jr � bb;jr
ÿ �� b1;j

r � . . .� bM;j
r

ÿ �
fdefinition of exclusive-org

� ba;jr � bb;jr � b1;j
r � . . .� bM;j

r

fassociative lawg
� b1;j

r � . . .� ba;jr � . . .� bb;jr � . . .� bM;j
r

fcommutative lawg:

�5�

tu

The last result is identical to the parity sum before the
simultaneous negation. We can extend the argument on the
modification of two bits to that of the modification of two
sectors on the same row. This is stated as Property 2.

Property 2. Parity integrity of a row can be maintained by
modifying any one of the parity sectors in the same row.

Property 2 implies that there can be R different ways to
update a data sector. Due to this flexibility, the probability
that a ªwriteº request is blocked due to the busy disk can be
reduced.

Property 3. Consider the simultaneous modification of data in
sector j of disk a and parity in sector j of disk b. We denote the
old data sector, the new data sector, the old parity sector, and
the new parity sector as S�a; j�jold, S�a; j�jnew, S�b; j�jold, and
S�b; j�jnew, respectively. For maintaining data integrity, the
new parity sector should be:

S�b; j�jnew � S�a; j�jold � S�a; j�jnew � S�b; j�jold: �6�

Proof. In order to maintain parity integrity, the partial sum
of the two sectors S�a; j� and S�b; j�must not be changed
after sector modification, i.e.,

S�a; j�jnew � S�b; j�jnew � S�a; j�jold � S�b; j�jold: �7�
Solving for S�b; j�jnew, (6) is obtained. tu

Property 4. For DMP Disk Array with R parity sectors in each
row, R data sectors located in the same row can be
simultaneously updated.

Proof. Equation (7) shows that, for any sector update on
row j, the partial sum of the data sector and the parity
sector will always be the same. Thus, the particular
sector update will not affect the updating of the other
sectors in row j. From Property 3, we find that each

sector update requires the old contents of two sectors
only. Therefore, each update is actually carried out by
two disks working in cooperation and is independent of
the operations of the rest of the disks. Therefore, with
R parity sectors, R simultaneous updates can be
performed. tu

Property 5. Consider a DMP Disk Array with M disks and
R parity sectors in each row (R > 1). When a disk fails, it is
possible to reconfigure the remaining M ÿ 1 disks to a new
array with Rÿ 1 parity sectors in each row without data loss.

Proof. Let (p, p, ..., p) be the parity sum of all the sectors in a
row, say row j, and let S�b1; j�; S�b2; j�; . . . ; S�bR; j� be the
parity sectors. Obviously,

b1 � E1�j�; b2 � E2�j�; . . . ; bR � ER�j�:
Suppose disk i fails. We consider two cases for the
recovery of S�i; j�.

1. If S�i; j� is a data sector, it can be recovered from

S�i; j� � �p; p; . . . ; p� �
XM

n�1;n 6�i
S�n; j�: �8�

One of the parity sectors, say S�bR; j�, can be used
to store the recovered data S�i; j�. To maintain
parity integrity another parity sector, say S�b1; j�,
is modified as:

S�b1; j� � S�b1; j� � S�bR; j�: �9�
The recovered DMP Disk Array now has Rÿ 1
parity sectors.

2. If S�i; j� is a parity sector, then no data is lost. The
parity integrity can be recovered by modifying
another parity sector, say b, as follows:

S�b; j� � �p; p; . . . ; p� �
XM
n�1;n 6�i;
n6�b

S�n; j�: �10�

tu

Property 5 tell us that DMP Disk Array has the
distributed sparing property discussed in [11]. It is shown
in [11] that distributed sparing is the best sparing technique
for small disk arrays.

2.4 Principle of Operation

Fig. 3 shows the organization of DMP Disk Array. Requests
from a host are directly sent to the disk controller for the I/O
operations. The disk controller consists of four parts: an FCFS
queue, a local memory, a scheduling processor, and a DMA
controller. The queue is used for storing I/O requests. Since
we are considering systems which execute transactions in a
strict order, a single global queue with FCFS service discipline
is used. Note that this is different from other systems reported
in the literature, which use separate disk queues [12], [13],
[14], [15]. The data associated with each request (i.e., the new
data for a sector) is stored in the local memory when the
request is placed on the queue. The local memory is also used
for buffering the data sent to/read from each of the disks
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with the help of the DMA controller. The DMA controller

functions basically as a multiplexer/demultiplexer and

handles simultaneous data transfers to various disks. The

scheduling processor is responsible for distributing I/O

requests to the disks and performs all necessary processing.

Specifically, its functions are outlined as follows:

1. It reads a request from the FCFS queue when ready
and determines whether the request is a ªreadº or a
ªwriteº type.

2. For a ªreadº request, the processor will

a. check the status of the disk involved with this
request;

b. instruct the disk involved to read the target
sector;

c. load the sector to the local memory; and
d. signal the host for data ready.

3. For a ªwriteº request, the processor will

a. check the status of the disks and select at
random the parity sector of a nonbusy disk;

b. read the old data sector and the selected parity
sector;

c. compute the new parity sector according to (7);
d. write the new data sector and the new parity

sector to their corresponding disks;
e. read back the parity and data sectors for

verification; and
f. signal the host for ªwriteº completion.

3 AVERAGE DELAY

3.1 Analysis

Fig. 4a shows a queuing model for DMP Disk Array.

Requests sent from host become jobs to be served in the

servers. Job arrivals are assumed to be a Poisson process

with rate �. A job is of the ªwriteº type with probability �

and of the ªreadº type with the remaining probability. Jobs

not yet served by the disk array are queued in an FCFS
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Fig. 3. Organization of DMP Disk Array.

Fig. 4. Queuing models of DMP Disk Array.



queue. We call the job which is at the top of the queue the
Head Of Line (HOL) job. The probability that the HOL job
needs to access a particular disk is assumed to be the same
for all disks. This assumption is usually not true, but it can
be made true by distributing the frequently accessed data
uniformly across all the disks. For mathematical conve-
nience, we assume that the service time for a job is
exponentially distributed with the service rates for a
ªwriteº job and a ªreadº job denoting as �w and �r,
respectively.

Let random variables Nw and Nr denote the number of
ªwriteº jobs and ªreadº jobs in the disk array and Nq be the
number of queuing jobs (including the HOL job) at any
time. It is easy to see that the triplet �Nw;Nr;Nq� completely
specifies the state of the system. Let Sw;r;q denote the state of
the system when Nw � w, Nr � r, and Nq � q. State
transition will take place when a new job arrives or when
a job in the system departs. Since the time spent in a state is
exponentially distributed, the evolution of �Nw;Nr;Nq� is a
continuous time Markov process. We define the transition
probabilities to be

P Sw0;r0;q0 j Sw;r;q
� �
� P Nw;Nr;Nq

ÿ � � w0; r0; q0� � after state transition
�
j Nw;Nr;Nq

ÿ � � w; r; q� � before state transition
�
:

�11�

Consider a particular state transition at time t. Define
events E1, E2, and E3 as:

E1: A new job arrives at time t.
E2: A ªreadº job departs at time t.
E3: A ªwriteº job departs at time t.

The event E1 is listed in the first column of Table 1. A
complete table listing the other two events is given in [3].
The disk array is at Sw;r;q immediately before t, i.e., at time
tÿ �t (�t! 0). The probability that a new job will arrive in
the interval �tÿ �t; t� is ��t if �t! 0. Similarly, the
probabilities that the disk array will finish serving a ªwriteº
job and a ªreadº job in this small time interval are �w�t and
�r�t, respectively. Therefore,

P �E1� � �

�� w�w � r�r
P �E2� � r�r

�� w�w � r�r
P �E3� � w�w

�� w�w � r�r :

�12�

When a new job arrives (i.e., E1 occurs), the probabilities
that this HOL job is of the ªreadº type and of the ªwriteº
type are 1ÿ � and �, respectively. However, a different
probability for each of the job types for the HOL job is
found when a job departs (i.e., either E2 or E3 occurs). We
denote the probabilities that the HOL job is of the ªwriteº
type and of the ªreadº type by hw and 1ÿ hw, respectively,
for system transitions due to job departures. Probability hw
can be derived as follows: At the previous state change, the
HOL job was blocked because it requires the access of one
or more busy disks. By that time there were 2w� r busy
disks. If the HOL job is of the ªreadº type, the probability of
blocking kr is:

kr � number of busy disks

total number of disks
� 2w� r

M
: �13�

On the other hand, if the HOL job is of the ªwriteº type, the
probability of blocking kw can be derived as follows: We
shall call the disk which the HOL job targets for data
modification the data disk and the R disks storing the
required parity information the parity disks. Let events �1

and �2 be:

�1: The data disk to be accessed was free at the previous
state change.

�2: At least one of the R parity disks was free at the previous
state change.

Then,

1ÿ kw � P �no blocking�
� P ��1 and �2�
� P ��1�P ��2 j �1�:

�14�

P ��2j�1� is given by:

P ��2 j �1� � 1ÿ

number of ways to

choose R parity disks

from 2w� r busy disks

0B@
1CA

number of ways to

choose R parity disks

from M ÿ 1 disks

0B@
1CA

�

1 2w� r < R

1ÿ
2w� r
R

� �
M ÿ 1

R

� � 2w� r � R:

8>>>>><>>>>>:

�15�

Substituting into (14) and solving for kw we obtain

kw �

2w� r
M

2w� r < R

2w� r
M

�M ÿ �2w� r�
M

2w� r
R

� �
M ÿ 1
R

� � 2w� r � R:

8>>>>>><>>>>>>:
�16�

Having obtained kr and kw, hw is given by:

hw � kw
kr � kw : �17�

Conditioning on event Ei and giving the type of the HOL
job, the probabilities of having different numbers of jobs
located in the queue and in the disk array are listed in the sixth
column of Table 1. For example, the first row of Table 1
corresponds to the case that a ªreadº job enters an empty
queue is blocked or the number of ªreadº jobs and ªwriteº
jobs in the disk array remain the same and q0 becomes 1. The
probability of having the new triplet �w0; r0; q0� � �w; r; 1� after
t under the two given conditions is denoted as a1. Similarly
the fifth row of Table 1 corresponds to the case that a ªwriteº
job enters an empty queue and gets served immediately. The
probability of having �w0; r0; q0� � �w� 1; r; 0� after t under
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the two given conditions is denoted by a3, as shown. The
derivation of all ais is given in [3].

The seventh column of Table 1 shows the type of the new
HOL job and its corresponding probability. A new HOL job
is blocked at time t with probabilities k0r and k0w when it is
of the ªreadº type and of the ªwriteº type, respectively.
Similarly to the derivations on kr and kw, k0r and k0w can be
obtained from (13) and (16) by changing the number of busy
disks from 2w� r to 2w0 � r0.

The last column of Table 1 shows P �Sw0 ;r0;q0 jSw;r;q; Ei�. By
removing the condition on Ei, the transition probabilities
are thus obtained:

P Sw0;r0;q0 j Sw;r;q
� � �X3

i�1

P Sw0;r0;q0 j Sw;r;q; Ei

� �
P �Ei�: �18�

Having obtained the transition probabilities, the equili-
brium distribution of different states can be computed in
the usual way. The expected numbers of jobs in the queue
are given by:

E�Nq� �
XbM=2c

w�0

XM
r�0

X1
q�0

qP �Sw;r;q�: �19�

Finally, by Little's formula, the job's sojourn time D is
given by

D � E�Nq�
�
� �

�w
� �1ÿ ��

�r

� �
: �20�

3.2 Numerical Example

As an example, consider a small DMP Disk Array with data
storage capacity of four disks. We assume in this example
that �w � 30 jobs/sec and �r � 50 jobs/sec. Figs. 5 and 6

show both the analytic and simulation results for this disk
array and we observe that they match very well with each
other. Note that, for all simulation results shown in this
paper, we have extended the simulation time sufficiently
long to make the 95 percent confidence intervals smaller
than the size of the simulation points shown.

Fig. 5 shows the job delay against the arrival rate when
half of the jobs are of the ªwriteº type. As indicated by the
curve, the maximum throughput for RAID level 5 is about
50 jobs/sec. When one parity disk is added to the disk array
(i.e., when M � 6 and R � 2), we find that the average job
delay is reduced under all traffic conditions and the
maximum throughput is increased by about 13 percent
when compared to RAID level 5. If one more parity disk is
used (R � 3), we find that the job delay is further reduced
under all traffic conditions and 23 percent increase in
maximum throughput is observed.

Fig. 6 shows the job delay against the arrival rate when
20 percent of the jobs are of the ªwriteº type (� � 0:2). We
observe from the figure that DMP Disk Array with R � 2

and R � 3 again performs significantly better than RAID
level 5 under all traffic levels.

4 MAXIMUM THROUGHPUT

4.1 Analysis

Although the analysis given in Section 3 provides an exact
solution on average job delay, the computation is very
demanding when the disk array is large. In the following,
we present a simplified analysis which gives the maximum
throughput for DMP Disk Array. A modified model, shown
in Fig. 4b, is used in our analysis. Compared with the
previous model (Fig. 4a), the FCFS queue is removed and
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TABLE 1
Transition Probabilities of Event E1 for Average Delay Analysis

A complete table showing the transition probabilities of all other events can be found in [3].



we assume that there is always a new job available at the

input of the disk array. All other previously used assump-

tions are used in this maximum throughput analysis. Since

the queue is removed, the system's state can solely be

specified by Nw and Nr and is denoted by Sw;r. State

transition will take place when a job in the disk array

departs, i.e., either E2 or E3 occurs. Since the time spent in a

state is exponentially distributed, the evolution of Nw and

Nr remains a continuous time Markov process. As before,

we define the transition probabilities to be

P �Sw;r; Sw0;r0 � �
P �Nw � w0; Nr � r0 after system transition j

Nw � w;Nr � r before system transition�:
�21�

Consider a particular state transition occurs at time t. The

probability of occurrence of E2 and E3 is given by

P �E2� � r�r
w�w � r�r

P �E3� � w�w
w�w � r�r :

�22�

Given that a specific event Ei occurs, the transition

probabilities P �Sw;r; Sw0;r0 jEi� are listed in the last column

of Table 2.3 The derivations on probabilities ai shown in the

table are given in [3]. Having obtained the transition

probabilities, the equilibrium distribution of different states

can be computed as before. The expected time between

successive job departures X is given by
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Fig. 5. Average job delay against the arrival rate for small DMP Disk Arrays (data storage capacity M-R is four disks). Half the jobs are of ªwriteº type

(� � 0:5).

Fig. 6. Average job delay against the arrival rate for small DMP Disk Arrays (data storage capacity M-R is four disks). Eighty percent of the jobs are of

the ªreadº type (� � 0:2).

3. Table 2 shows only the transition probabilities of event E1. A complete
table for all events can be found in [16].



X �
XbM=2c

w�0

XM
r�0

P �Sw;r� 1

w�w � r�r : �23�

Finally, the maximum throughput for DMP Disk Arrays T is

T � 1

X
: �24�

4.2 Numerical Examples

Fig. 7 shows the throughput gain over that of RAID level 5

against R for a small DMP Disk Array with data storage

capacity of four disks. We observe from the figure that

increasing the number of parity disks R will always increase

the maximum throughput for DMP Disk Array. When the

proportion of ªwriteº jobs is higher, the increase in
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TABLE 2
Transition Probabilities of Event E2 for Maximum Throughput Analysis

A complete table showing the transition probabilities of all other events can be found in [3].

Fig. 7. Throughput gain over that of RAID level 5 as a function of R for small DMP Disk Arrays (data storage capacity M-R is four disks).



maximum throughput is more apparent because DMP Disk
Array will reduce the queuing time of ªwriteº jobs.
Considering the case of all ªwriteº jobs (� � 1), DMP Disk
Array with R � 2 provides 24 percent increase in maximum
throughput when compared to RAID level 5. Further
increasing R to three provides an additional 17 percent
increase in maximum throughput. These performance
figures match well with the numerical examples given in
the previous section. When R is greater than three, linear
increase in maximum throughput is observed for each
parity disk added. From the figure, we also observe that
significant throughput gain is obtained for a typical
20 percent proportion of ªwriteº jobs.

Fig. 8 plots the throughput gain over that of RAID level 5
against R for a large DMP Disk Array with data storage
capacity of 13 disks. When compared with Fig. 7, we
observe that DMP Disk Array with R � 2 provides even
more notable increase in maximum throughput than the
previous case. We can thus conclude that a DMP Disk Array
with R � 2 provides the best cost/performance ratio.

5 SIMULATION WITH PRECISE DISK MODEL

In our previous analysis, disk service time is assumed to be
exponentially distributed. This is usually not true for
practical disk drives. To better understand the performance

of DMP Disk Array in practice, we perform simulation on

DMP Disk Array with a precise disk model. In our simulation,

disks are not assumed to be rotationally synchronized and

their simulation parameters are summarized in Table 3. Each

disk access involves a seek time, a latency, and a data transfer

time [16]. We use the seek profile in [17], which states that the

seek time Tseek (in mSec) is related to seek distance x (in

number of cylinders) by:

Tseek � 0 for x � 0
0:4623

�����������
xÿ 1
p � 0:0092�xÿ 1� � 2 for x > 0:

�
�25�

Latency is assumed to be uniformly distributed. Data

transfer time for one sector is equal to the disk revolution

time divided by the number of sectors per track, as given in

Table 3. With that, the mean service time for ªwriteº jobs is

computed to be 33.3 ms and, for ªreadº jobs, it is 20 ms. The

corresponding service rates are therefore the same as those

in the previous examples. As stated in [18], this kind of disk

modeling provides more than 94 percent accuracy when

ignoring the disk caching effect. Since disk caching has little

impact on ªwriteº performance (which we are most
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Fig. 8. Throughput gain over that of RAID level 5 as a function of R for large DMP Disk Arrays (data storage capacity M-R is 13 disks).

TABLE 3
Disk Parameters Used in Simulation

Fig. 9. Simulation results on average job delay against arrival rate for

small disk arrays (data storage capacity M-R is four disks). Half the jobs

are ªwriteº (� � 0:5).



interested in), we can thus assume that the system has no

disk caching mechanism.
Figs. 9, 10, 11, and 12 show the simulation results with

the precise disk model. We first consider a small disk array

with data storage capacity of four disks and half the jobs are
of the ªwriteº type. Fig. 9 shows that the maximum

throughput for RAID level 5 is about 56 jobs/sec. If DMP

Disk Array with M � 6 and R � 2 is used, the average job

delay is reduced under all traffic conditions and the

maximum throughput is increased by 23 percent as

compared to RAID level 5. The maximum throughput is

further increasted by about 40 percent when DMP Disk

Array with M � 7 and R � 3 is used. We also observe that
when the number of disks M is fixed, DMP Disk Array with

R � 2 still provides 11 percent improvement in maximum

throughput.
Fig. 10 shows the results for � � 0:2. We observe that

DMP Disk Array with R � 2 and R � 3 provides 17 percent

and 29 percent increases in I/O throughput, respectively.

The increase in throughput when M � 5 and R � 2 is about

7 percent.

Figs. 11 and 12 show the delay throughput characteristics

of a typical large disk array with data storage capacity of

13 disks. DMP Disk Array again provides significant I/O

throughput increase. When half the jobs are of the ªwriteº

type (Fig. 11), the increase on maximum throughput for

DMP Disk Array with R � 2 is about 21 percent, whereas

the corresponding increase in system cost is at most

7 percent. Under the condition of 20 percent of the jobs

are of the ªwriteº type (Fig. 12), we find that the 7 percent

increase in system cost can still give 12 percent higher

throughput.
Figs. 13 and 14 show the case when the number of disks,

M, is fixed at 14 disks. When half the jobs are of the ªwriteº

type (Fig. 13), the increase on maximum throughput for

DMP Disk Array with R � 2 is about 17 percent. Note that

there is no increase in system cost. Under the condition of 20

percent of the jobs are of the ªwriteº type (Fig. 14), we find

that DMP Disk Array with R � 2 still provides 8 percent

higher throughput at no additional system cost.
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Fig. 10. Simulation results on average job delay against arrival rate for

small disk arrays (data storage capacity M-R is four disks). Eighty

percent of the jobs are of the ªreadº type (� � 0:2).

Fig. 11. Simulation results on average job delay against arrival rate for

large disk arrays (data storage capacity M-R is 13 disks). Half the jobs

are of ªwriteº type (� � 0:5).

Fig. 12. Simulation results on average job delay against arrival rate for

large disk arrays (data storage capacity M-R is 13 disks). Eighty percent

of the jobs are of the ªreadº type (� � 0:2).

Fig. 13. Simulation results on average job delay against arrival rate for

large disk arrays (total number of disks, M, is 14). Half the jobs are of

ªwriteº type (� � 0:5).



6 CONCLUSIONS

In this paper, we propose a new RAID architecture, called
Dynamic Multiple Parity (DMP) Disk Array, for fast
database system applications. The DMP Disk Array
provides significant improvement on I/O throughput over
the RAID level 5. The DMP Disk Array also inherently has
the sparing property so that it has a higher survivability
under disk failure conditions. Delay and maximum
throughput analysis on DMP Disk Array is performed.
Simulation with precise disk model shows that, for a typical
ªwriteº job proportion of 20 percent, DMP Disk Array can
provide nearly 20 percent improvement on I/O perfor-
mance over that of RAID level 5 when one extra parity disk
is used.
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Fig. 14. Simulation results on average job delay against arrival rate for

large disk arrays (total number of disks, M, is 14). Eighty percent of the

jobs are of ªreadº type (� � 0:2).


