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Optimal Framed Aloha Based
Anti-Collision Algorithms for RFID Systems
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Abstract—The anti-collision algorithm is an important part
of the Radio-Frequency Identification (RFID) system. Of the
various possible algorithms, the Framed Aloha based (FA)
algorithms have been most widely used due to their simplicity
and robustness. Previous studies have focused mainly on the
tag population estimation, choosing the frame size based on the
classical results of Random Access (RA) systems. We show that
a new theory is needed for algorithm design for RFID systems,
because RFID and RA systems are fundamentally different. The
Philips RFID system is studied in this paper. We model the
reading process as a Markov Chain and derive the optimal
reading strategy by first-passage-time analysis. The optimal
frame sizes are derived analytically and numerically.

Index Terms—RFID anti-collision algorithms, framed Aloha,
optimization.

I. INTRODUCTION

IN the past few years, Radio-Frequency identification
(RFID) tags have found more and more everyday applica-

tions, ranging from inventory and tracking to electronic tickets
and keys. The capability of tags varies widely, depending on
the application. Active tags embedded with power supply and
their own CPUs can process data and initiate transmission.
Passive tags (including Class 1 and Class 2 tags in EPCglobal
standards [2]), however, have only bare-bone functionality and
no embedded power supply. Some passive tags can merely
transmit a particular bit-string when probed by a reader. But
they have the advantage of being relatively cheap, and for this
reason passive tags are gradually replacing barcode tags in
ever-widening range of applications.

In RFID systems, tags share a common communication
channel. Therefore, if multiple tags transmit at the same
time, their packets will collide and get lost [1]. Since passive
tags cannot sense the media or cooperate with one another,
the RFID reader needs to coordinate their transmissions to
avoid collisions. Depending on the working principles used,
previous-published RFID anti-collision algorithms can be di-
vided into three main classes: Tree based algorithms [5][6],
Framed Aloha (FA) based algorithms [8-16] and Interval
based algorithms [7]. Of these three classes, only FA based
algorithms are widely used in RFID communication standards
[2-4], because of their simplicity and robustness.
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Although variations on the working mechanism of FA based
RFID systems have been reported in previous studies, they all
share some basic properties. In this section we use the Philips
system [4] to introduce these properties. We focus only on the
anti-collision part as the complete communication process is
much more complicated.

1) The RFID Reader starts a frame by broadcasting the
“begin-round” command with an integer parameter ‘𝐿’.
Upon hearing this command, unsilenced tags generate a
random number from 0 to 𝐿− 1. Those generating ‘0’
reply immediately.

2) If only one tag replies, the reader can identify it and send
back the “fix-slot” command. On hearing this command,
the replied tag will be silenced, i.e. will not respond to
future commands, while the other tags decrease their
counter values by 1 and reply if the counters reach 0.

3) If multiple tags reply or no tag replies, the reader will
send back the “close-slot” command. On hearing this
command, all the unsilenced tags will decrease their
counters by 1 and reply if their counters reach 0. The
collided tags will be available for reading in another
frame.

4) After one frame ends, the Reader will begin a new frame
by broadcasting the “begin-round” command, and this
cycle will continue until no collision is detected.

This kind of RFID system is usually called the Basic FA-
based RFID system, or the Philips system. It is important
to differentiate between an ‘RFID system’ and an ‘RFID
algorithm’. The former is usually designed in standards or
product manuals. It specifies the reader’s command set and the
tag’s reply function. The latter is designed only for the RFID
reader. It tells the reader when and how to use the commands
to achieve efficiency. Besides these basic operations in the
Philips system, some advanced RFID systems incorporate
other commands, such as the ‘split’ command in [8] (asking
the collided tags to back off 1 or 2 slots to reply again) and
the ‘Frame-size adjust’ command in the EPCglboal system
[13][14][15] (terminating the current frame and letting all the
unsilenced tags regenerate their counter values according to a
new 𝐿). These advanced commands can improve performance,
but at the cost of greater system complexity.

As mentioned earlier, the communication time between the
tags and the reader is slotted. Conventionally, the time from
the point that the reader sends out a command to the point
that the tags finish replying their information is called a time
slot (slot for short). The time taken by the reader to identify a
group of tags is conventionally called the reading time, and is
measured in slots. In Basic FA-based RFID systems, the goal
of algorithm design is to find the optimal 𝐿 that can maximize
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the reading efficiency 𝜂 defined as

𝜂 =
The number of tags

The expected reading time
.

Unfortunately, a function between 𝜂 and 𝐿 is not explicitly
available. Previous studies [8-15] have therefore used the
frame-local efficiency

𝑈 =
The number of tags identified in the current frame

The current frame size

as a substitute for algorithm optimization. In the Random
Access theory, a classical formula to calculate the frame-local
efficiency 𝑈 with terminal population 𝑁 and frame size 𝐿 is
given in [10] as:

𝑈(𝑁,𝐿) =
𝑁

𝐿

(
1− 1

𝐿

)𝑁−1

. (1)

In (1), 𝑈 can be maximized by setting the frame size equal
to the terminal number, or 𝐿 = 𝑁 . On this basis, previous
algorithms [8-15] either directly set the frame size 𝐿 equal to
the expected tag population 𝐸[𝑁 ] or try to find an optimal
𝐿 to maximize 𝑈 for a given probability distribution of 𝑁 .
However, these approaches are not suitable because maximiz-
ing 𝑈 in every frame does not necessarily maximize overall
efficiency. Overall efficiency is equal to frame-local efficiency
only when all the frames are identical. Since the tag population
decreases frame by frame as identified tags are silenced by
the RFID reader, optimizing 𝐿 based on (1) will only yield
a frame-local optimal result. We will show in Section II.C
that the concatenation of locally optimal results are usually
significantly inferior.

In this paper, we propose a method for choosing the
globally optimal frame size for the Philips system. We model
the reading process as a Markov Chain and optimize the
reading strategy through first-passage-time analysis. The op-
timal frame sizes can be obtained either analytically or via
a recursive program. Simulation results demonstrate that the
use of the optimal frame size delivers a better performance
than previously-published algorithms. The methodology in this
paper can be applied to the EPCglobal system. Some partial
results are presented in [22].

In Section II, we survey these previously-published algo-
rithms and expose an unjustified assumption used in previous
attempts at reading strategy optimization. In Section III, a new
model is proposed to derive the optimal reading strategy. In
Section IV, we verify the optimal frame sizes by computer
simulation and compare the performance of the optimal al-
gorithm with its predecessors. In Section V, we provide an
example of the application of the optimal reading strategy.

II. SURVEY OF PREVIOUS STUDIES

In this section, we survey previous studies in this field and
show why a new theory is needed.

In real applications, the number of tags is unknown be-
fore identification. A proper FA algorithm therefore always
contains two parts: Population Estimation and Frame Size
Determination. The first part is used for estimating the tag
population based on tags’ replies, while the second part is used
for choosing the frame size using the estimation. Depending

on which estimation methods are used, algorithms can be
divided into the max-likelihood approach and the probability
distribution approach.

A. The Max-likelihood Approach

Schoute [10] noticed that when 𝑁 is large and 𝐿 suitably
chosen (say 𝐿 ≈ 𝑁 ), the number of tags contending each slot
has a Poisson distribution with mean 1. So in the Population
Estimation part, his algorithm uses �̂� = round(2.39𝑠𝑐),1

where 𝑠𝑐 is the number of collided slots in the last frame.
On this basis, in the Frame Size Determination part, the frame
size is set as 𝐿 = �̂� . This choice is obviously based on (1).
It tries to maximize the instantaneous throughput by setting
the frame size equal to the expected terminal number.

Vogt [11] improved the Population Estimation strategy of
Schoute’s algorithm by also using the statistics of empty slots
𝑠𝑒 and singleton slots 𝑠𝑠. Tag population is estimated to be
the value �̂� that minimizes the error between the observed
values of 𝑠𝑒, 𝑠𝑠, 𝑠𝑐 and their expected values using �̂� . In the
Frame Size Determination part, it also uses 𝐿 = �̂� .

Kodialam [16] proposed a new Population Estimation strat-
egy based on the Central Limit Theorem. That is when the
number of contending tags is large enough, the number of
collision slots and empty slots in a frame should obey the
Normal distribution. This method makes it possible to obtain
the estimation accuracy as well as the max-likelihood tag
population. But after deriving �̂� , it also sets 𝐿 = �̂� .

Another example is the Q algorithm in EPCglobal standards
[2]. The reader maintains a floating-point variable 𝑄𝑓𝑝. It
decreases a typical value 𝐶 when no tag replies, increases
𝐶 when multiple tags reply, and stays unchanged when only
1 tag replies.2 The tag population is estimated as round(2𝑄𝑓𝑝)
while the frame size is set to 2𝑄, where 𝑄 = round(𝑄𝑓𝑝). In
[13][14], the efficiency of the Q algorithm was obtained with
different choices of 𝐶 and 𝑄𝑓𝑝 and a number of suggestion
were made for improving the estimation strategy.

In summary, algorithms of this type compute the maximum-
likelihood tag population �̂� based on the reading results and
set 𝐿 = �̂� as the frame size. They may adopt different
approaches in the Population Estimation part, but follow the
same strategy in the Frame Size Determination part.

B. Probability Distribution Approach

Floerkemeier [12][15] assumes that a rough estimation of
the target group size is always available in the form of a
distribution Pr{𝑁 = 𝑛}. As a new Population Estimation
strategy, it updates the population distribution by Bayesian
method at the end of every frame. Based on this distribution,
the Frame Size is chosen as

𝐿∗ = argmax
𝐿∈Υ

𝐸[𝑈 ] = argmax
𝐿∈Υ

𝑁𝑚𝑎𝑥∑
𝑛=0

𝑈(𝑁 = 𝑛, 𝐿)Pr(𝑁 = 𝑛),

(2)
where Υ is the set of possible frame sizes while 𝑁𝑚𝑎𝑥 is a
practical limit of the tag population.

1For the first frame where 𝑠𝑐 is not available, �̂� is obtained from the initial
estimation of the tag population.

2In EPCglobe standards, it is recommended that 0.2 ≤ 𝐶 ≤ 0.5 and the
initial 𝑄𝑓𝑝 = 4
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This approach can track the value of 𝑁 more accurately.
Since a random variable 𝑁 is completely specified by its
distribution, and Bayesian method ensures no information loss
in estimation, the Population Estimation part of Floerkemeier’s
algorithm is flawless, but the use of (1) in the Reading Strategy
Determination part is still unwise. We explain why in the
following section.

C. The Need for a New Theory

Previous studies have focused on the Population Estimation
and have suggested a number of ways of obtaining a more
accurate estimation. For the Frame Size Determination part,
these studies all assumed that optimal performance can be
achieved by maximizing the frame-local efficiency 𝑈 . As we
mentioned before, (1) is obtained from the theory of RA
system. Since a terminal in RA systems would still attempt
the channel after a successful transmission, the ‘contending
group’ can be assumed unchange during a long enough period.
The long-term efficiency of a RA system is therefore equal
to the expected frame-local efficiency 𝑈 calculated by (1).
However, in RFID systems, identified tags are silenced by the
reader, so that the tag population decreases during the reading
process. When the frames are not identical, a concatenation
of locally optimal solutions is not globally optimal. Suppose,
for example, the target group size is distributed as

Pr{𝑁 = 𝑛} =

{
0.99 , 𝑛 = 0
0.01 , 𝑛 = 10

From (2), the suitable frame size should be 𝐿 = 10, as it
can maximize the throughput of the current frame. However,
since this group is very likely empty, it is better to use 𝐿 =
1 to check whether it contains tags or not, even though the
throughput of this checking frame is 0.

III. READING STRATEGY OPTIMIZATION

We now present our optimal strategy for Frame Size Deter-
mination. In this paper, we derive the optimal strategy only
for the Basic FA based RFID system. The application of this
theory to the EPCglobal system is in [22].

A. The Optimal Strategy

To choose a suitable frame size 𝐿, the reader needs the
information of the target group size. As discussed in Section II,
this information can be fully described by a probability distri-
bution. In applications, a rough distribution is often available
as the reader has information of its previous readings. In the
worst case where 𝑁 is completely unknown, a uniform distri-
bution on [0, 𝑁𝑚𝑎𝑥] can be assumed as we cannot favor any
value over the others. The value of this 𝑁𝑚𝑎𝑥 is determined
by the nature of the application concerned. For example, for
a typical supermarket shopping cart, 𝑁𝑚𝑎𝑥 can be safely set
to 1000.

During the reading process, let 𝐵𝑒𝑙(𝑁) denote the belief of
𝑁 , or the conditional distribution of 𝑁 based on all available
information [17]. To simplify the notation, let 𝑣𝑛 = 𝐵𝑒𝑙(𝑁 =
𝑛) and v = (𝑣0, 𝑣1, . . . , 𝑣𝑚𝑎𝑥). Obviously the accuracy of the
belief affects the reading efficiency. Let 𝑇 (𝑛 ∣v) denote the
average reading time, measured by slots, for these 𝑛 tags when

the initial belief is v. The expected reading time for a group
with population distribution v is then

𝒯 (v) =

𝑁𝑚𝑎𝑥∑
𝑛=0

𝑣𝑛𝑇 (𝑛 ∣v).

Our goal is to find the optimal frame size 𝐿∗ that can
maximize the overall efficiency for any given distribution v,
or

𝐿∗ = argmax
𝐿∈Υ

𝜂 = argmax
𝐿∈Υ

{
𝐸[𝑁 ]

𝒯 (v)

}
. (3)

Since 𝐸[𝑁 ] =
∑𝑁𝑚𝑎𝑥

𝑛=1 𝑛𝑣𝑛 independent of the frame size 𝐿,
(3) becomes

𝐿∗ = argmin
𝐿∈Υ

{𝒯 (v)
}
. (4)

It should be noted that (4) is different from (2), as it is
designed to maximize the overall efficiency instead of the
frame-local efficiency. Thus 𝐿∗ is the global optimal frame
size. To find it, however, requires the function of 𝒯 (v).
We now show how to derive this function from the reading
mechanism of basic FA based RFID systems.

In an intelligent system, the optimal decision only depends
on the current information, or the belief of all the relevant
variables [17]. When applied to RFID systems, the optimal
frame size only depends on 𝐵𝑒𝑙(𝑁). We let 𝑉𝑗 = 𝐵𝑒𝑙(𝑁𝑗) =
(𝑣0, 𝑣1, . . . , 𝑣𝑚𝑎𝑥) denote the state of the reading process at
the end of frame 𝑗, where 𝑁𝑗 is the unresolved tag population
at the end of frame 𝑗. Since identified tags are silenced by the
reader, we always have 𝑁𝑗 ≥ 𝑁𝑗+1. Further, let

V =

{
(𝑣0, 𝑣1, . . . , 𝑣𝑚𝑎𝑥)

∣∣∣ 𝑣𝑖 ≥ 0,

𝑁𝑚𝑎𝑥∑
𝑖=0

𝑣𝑖 = 1

}
denote the set of all possible states. For a group with the
initial estimation Pr(𝑁), let 𝑉0 = Pr(𝑁) be the initial state
and 𝑉𝑇 = (1, 0, 0, . . . , 0) be the terminating state.

Theorem 1: Following a distribution-based anti-collision
algorithm, the reading process 𝑉0𝑉1𝑉2 . . . 𝑉𝑇 is a Markov
Chain.
Proof: Let 𝑉𝑗 = (𝑣0, 𝑣1, . . . , 𝑣𝑚𝑎𝑥) ∈ V be the current state.
For a distribution-based algorithm, the next frame size 𝑙 should
be fixed given 𝑉𝑗 . Let 𝑉𝑗+1 = (𝑢0, 𝑢1, . . . , 𝑢𝑚𝑎𝑥) be the belief
of tag population at the end of frame 𝑗 + 1. Obviously 𝑉𝑗+1

depends on the reading results of frame 𝑗 + 1 as well as the
previous beliefs.

In frame 𝑗 + 1, let random variable 𝑆0, 𝑆1, 𝑆𝑐 denote the
number of empty slots, singleton slots and collided slots. Since
𝑆0 + 𝑆1 + 𝑆𝑐 = 𝑙 and 𝑆0, 𝑆1, 𝑆𝐶 ≥ 0, there are at most(
𝑙+2
2

)
= 1

2 (𝑙+1)(𝑙+2) different outcomes in frame 𝑗+1. Thus
for a given frame size, there are at most 1

2 (𝑙+1)(𝑙+2) different
choices of 𝑉𝑗+1 that satisfy Pr(𝑉𝑗+1 ∣𝑉𝑗𝑉𝑗−1 . . . 𝑉0) > 0.

In every frame, tags randomly choose their transmission
delay. Using the urn problem terminology, the probability that
𝑠1 urns (slots) contain only 1 ball (tag), 𝑠𝑐 urns contain more
than 1 balls and the others are empty can be obtained in [18]
as:

Pr{𝑆𝑐 = 𝑠𝑐, 𝑆1 = 𝑠1 ∣ 𝑁𝑗 = 𝑛,𝐿 = 𝑙} = (5)(
𝑙

𝑠0, 𝑠1, 𝑠𝑐

)
𝑛!

(𝑛− 𝑠1)!𝑙𝑛

∑
𝑚1,𝑚2,...,𝑚𝑠𝑐≥2,

𝑚1+𝑚2+⋅⋅⋅+𝑚𝑠𝑐=𝑛−𝑠1

(
𝑛− 𝑠1

𝑚1,𝑚2, . . . ,𝑚𝑠𝑐

)
,
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where 𝑚1,𝑚2, . . . ,𝑚𝑠𝑐 denote the number of tags in each of
the 𝑠𝑐 collided slots. Further, we can substitute the belief of
𝑁𝑗 to obtain

Pr{𝑆𝑐 = 𝑠𝑐, 𝑆1 = 𝑠1 ∣ 𝐿 = 𝑙} = (6)
𝑁𝑚𝑎𝑥∑
𝑛=0

𝑣𝑛 Pr{𝑆𝑐 = 𝑠𝑐, 𝑆1 = 𝑠1 ∣ 𝑁𝑗 = 𝑛, 𝐿 = 𝑙}.

At the end of frame 𝑗 + 1, we can obtain the values of 𝑠0,
𝑠1 and 𝑠𝑐. By Bayes formula, the posterior distribution of 𝑁𝑗

can be updated as.:

𝑣′𝑖 = Pr{𝑁𝑗 = 𝑖 ∣ 𝑆𝑐 = 𝑠𝑐, 𝑆1 = 𝑠1, 𝐿 = 𝑙}
=

Pr{𝑆𝑐 = 𝑠𝑐, 𝑆1 = 𝑠1 ∣ 𝑁𝑗 = 𝑖, 𝐿 = 𝑙} 𝑣𝑖
Pr{𝑆𝑐 = 𝑠𝑐, 𝑆1 = 𝑠1 ∣ 𝐿 = 𝑙} (7)

As tags in the singleton slots are successfully identified and
silenced, we have 𝑁𝑗+1 = 𝑁𝑗 − 𝑠1 with distribution given as

𝑢𝑖 = Pr{𝑁𝑗+1 = 𝑖 ∣ 𝑆𝑐 = 𝑠𝑐, 𝑆1 = 𝑠1, 𝐿 = 𝑙}
= Pr{𝑁𝑗 = 𝑖+ 𝑠1 ∣ 𝑆𝑐 = 𝑠𝑐, 𝑆1 = 𝑠1, 𝐿 = 𝑙}
= 𝑣′𝑖+𝑠1 , 𝑖 = 0, 1, 2, . . . (8)

Note the transition probability from state 𝑉𝑗 =
(𝑣0, 𝑣1, . . . , 𝑣𝑚𝑎𝑥) to 𝑉𝑗+1 = (𝑢0, 𝑢1, . . . , 𝑢𝑚𝑎𝑥) =
Pr{𝑁𝑗+1 ∣ 𝑆𝑐 = 𝑠𝑐, 𝑆1 = 𝑠1, 𝐿 = 𝑙} is just Pr{𝑆𝑐 =
𝑠𝑐, 𝑆1 = 𝑠1 ∣ 𝐿 = 𝑙}. As specified in (5) and (6), this transition
probability does not depend on states 𝑉𝑗−1𝑉𝑗−2 . . . 𝑉0. The
states 𝑉0𝑉1𝑉2 . . . 𝑉𝑇 then form a Markov Chain. □

For a given state 𝑉𝑗 , let 𝒮(𝑉𝑗 , 𝑙) ⊂ V denote the set of
possible 𝑉𝑗+1, or

𝒮(𝑉𝑗 , 𝑙) =
{
𝑉𝑗+1 ∈ V : Pr(𝑉𝑗+1 ∣𝑉𝑗 , 𝐿 = 𝑙) > 0

}
.

As shown in Theorem 1, ∣𝒮(𝑉𝑗 , 𝑙)∣ ≤ 1
2 (𝑙 + 1)(𝑙 + 2). Let

𝒯𝑜(𝑉𝑗) denote the expected first passage time from 𝑉𝑗 to 𝑉𝑇
using the optimal reading strategy, or

𝒯𝑜(𝑉𝑗) = min
𝐿∈Υ

𝒯 (𝑉𝑗).

According to the Markov Chain theory [19], we have

𝒯𝑜(𝑉𝑗)

= The reading time for the next frame + The expected

remaining reading time after the next frame

= The optimal frame size for the next frame

+
∑

𝑉𝑗+1∈V

Pr(the process moves to 𝑉𝑗+1)

∗(The expected first passage time from 𝑉𝑗+1 to 𝑉𝑇

)
= 𝐿∗ +

∑
𝑉𝑗+1∈𝒮(𝑉𝑗 , 𝐿

∗)

Pr(𝑉𝑗+1 ∣𝑉𝑗 , 𝐿
∗)𝒯𝑜(𝑉𝑗+1)

= min
𝑙

⎧⎨
⎩𝑙 +

∑
𝑉𝑗+1∈𝒮(𝑉𝑗 , 𝑙)

Pr(𝑉𝑗+1 ∣𝑉𝑗 , 𝑙)𝒯𝑜(𝑉𝑗+1)

⎫⎬
⎭ (9)

In (9), the state 𝑉𝑗+1 ∈ 𝒮(𝑉𝑗 , 𝑙) and the transition probability
Pr(𝑉𝑗+1 ∣𝑉𝑗 , 𝑙) are given by (8) and (6).

This formulation is often called the Adaptive Markov Deci-
sion Process [20]. We now show how to solve (9) analytically
and numerically.

B. The Analytical Solution of 𝐿∗

In this section, we show how to solve (9) by some examples.
Since (9) is a recursive function, we begin from small 𝑁𝑚𝑎𝑥

cases.

Case 1: 𝑁𝑚𝑎𝑥 = 2
In this case, the tag population can only be 0, 1 or 2. Given

𝑉𝑗 = v = (𝑣0, 𝑣1, 𝑣2), the probability of different outcomes
of frame 𝑗 + 1 can be obtained from (6) as:

Pr{𝑆𝑐 = 0, 𝑆1 = 0∣𝐿 = 𝑙} = 𝑣0;
Pr{𝑆𝑐 = 0, 𝑆1 = 1∣𝐿 = 𝑙} = 𝑣1;
Pr{𝑆𝑐 = 0, 𝑆1 = 2∣𝐿 = 𝑙} = 𝑙−1

𝑙 𝑣2;
Pr{𝑆𝑐 = 1, 𝑆1 = 0∣𝐿 = 𝑙} = 1

𝑙 𝑣2.

From (7) and (8), we get the belief of 𝑁𝑗+1 as

Pr{𝑁𝑗+1 = 0∣𝑆𝑐 = 0, 𝑆1 = 𝑠1, 𝐿 = 𝑙} = 1;

Pr{𝑁𝑗+1 = 2∣𝑆𝑐 = 1, 𝑆1 = 0, 𝐿 = 𝑙} = 1.

Thus 𝑉𝑗+1 has only two possible choices independent with
the value of 𝑙 as

𝒮(𝑉𝑗 , 𝑙) =
{
(1, 0, 0), (0, 0, 1)

}
and the transition probability is

Pr
(
(1, 0, 0)

∣∣∣ (𝑣0, 𝑣1, 𝑣2), 𝑙) =
𝑙 − 1

𝑙
𝑣2 + 𝑣1 + 𝑣0

Pr
(
(0, 0, 1)

∣∣∣ (𝑣0, 𝑣1, 𝑣2), 𝑙) =
1

𝑙
𝑣2

Substituting them into (9), we have

𝒯𝑜(v) = min
𝑙

{
𝑙 +

1

𝑙
𝑣2 𝒯𝑜

(
(0, 0, 1)

)
+(

𝑙 − 1

𝑙
𝑣2 + 𝑣1 + 𝑣0)𝒯𝑜

(
(1, 0, 0)

)}
= min

𝑙

{
𝑙 +

4𝑣2
𝑙

}
, (10)

where 𝒯𝑜
(
(1, 0, 0)

)
= 0 as (1, 0, 0) is the terminating state

while 𝒯𝑜
(
(0, 0, 1)

)
= 4 is the expected contention time for a

group with exactly 2 tags, which can be obtained in ‘Case 3’.
Solving (10) yields:

𝐿∗ =

{
1 , 𝑣2 <

1
2

2 , 𝑣2 ≥ 1
2

𝒯𝑜(v) =

{
1 + 4𝑣2 , 𝑣2 <

1
2

2 + 2𝑣2 , 𝑣2 ≥ 1
2

To compare, we derived the frame size and average contention
time of Floerkemeier’s algorithm from (3) as

𝐿 =

{
1 , 𝑣1 > 𝑣2
2 , 𝑣1 ≤ 𝑣2

𝒯𝑓 (v) =

{
1 + 4𝑣2 , 𝑣1 > 𝑣2
2 + 2𝑣2 , 𝑣1 ≤ 𝑣2

Therefore, when the distribution v satisfies 𝑣1 < 𝑣2 < 0.5,
we have 𝒯𝑓 (v) > 𝒯𝑜(v), or Floerkemeier’s strategy is not
optimal.
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Fig. 1. The solution set for 𝑁𝑚𝑎𝑥 = 3 case.

Case 2: 𝑁𝑚𝑎𝑥 = 3
Next, we move on to 𝑁𝑚𝑎𝑥 = 3 and derive the recursive

function as

𝒯𝑜(v) = min
𝑙

{
𝑙 +

12𝑣3(𝑙 − 1)

𝑙2
+ (

𝑣2
𝑙
+
𝑣3
𝑙2
)𝒯𝑜(u)

}
, (11)

where u is the distribution of 𝑁𝑗+1 on condition that 𝑆𝑐 = 1
and 𝑆1 = 0 in frame 𝑗 + 1, or

u = (𝑢0, 𝑢1, 𝑢2, 𝑢3) =

(
0, 0,

𝑙𝑣2
𝑣3 + 𝑙𝑣2

,
𝑣3

𝑣3 + 𝑙𝑣2

)
.

Solving (11), the optimal reading strategy can be similarly
obtained as:

𝐿∗ =

⎧⎨
⎩

1 , v ∈ Φ1

2 , v ∈ Φ2

3 , v ∈ Φ3

𝒯𝑜(v) =

⎧⎨
⎩

1 + (𝑣2 + 𝑣3)𝑓
(

𝑣3
𝑣2+𝑣3

)
, v ∈ Φ1

2 + 3𝑣3 +
1
4
(2𝑣2 + 𝑣3)𝑓

(
𝑣3

2𝑣2+𝑣3

)
, v ∈ Φ2

3 + 8
3
𝑣3 +

1
9
(3𝑣2 + 𝑣3)𝑓

(
𝑣3

3𝑣2+𝑣3

)
, v ∈ Φ3

where 𝑓(𝑥) is a recursive function as

𝑓(𝑥) =

{
8
3𝑥+ 4 , 0 < 𝑥 ≤ 9

16

3 + 8
3𝑥+ 1

9 (3 − 2𝑥)𝑓
(

𝑥
3−2𝑥

)
, 9

16 < 𝑥 < 1

while Φ1,Φ2 and Φ3 are distribution regions specified in
Fig. 1.

For 𝑁𝑚𝑎𝑥 > 3 cases, the optimal strategies can be obtained
similarly, though the computation becomes more complex.

Case 3: Tag Population 𝑁 known
We show this as a special case, because the result of this

case will be used in other tag population unknown cases. As
an example, to solve (10), we used 𝒯𝑜

(
(0, 0, 1)

)
= 4, which

is a result of 𝑁 known case.
Let ℱ(𝑛) denote the average reading time using the optimal

strategy for the tag population known case, or ℱ(𝑛) = 𝒯𝑜(v)
when 𝑣𝑛 = 1. After one frame of reading, the population
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Fig. 2. The efficiency bound for Basic FA based systems and Random Access
systems when 𝑁 is known.

decreases to 𝑛′ = 𝑛−𝑠1, where 𝑠1 is the number of singleton
slots. So the remaining reading time is ℱ(𝑛−𝑠1). Substituting
ℱ(𝑛) and ℱ(𝑛− 𝑠1) into (9), we have

ℱ(𝑛) =

min
𝑙

{
𝑙 +

𝑙∑
𝑠1=0

𝑙−𝑠1∑
𝑠𝑐=0

Pr{𝑆𝑐 = 𝑠𝑐, 𝑆1 = 𝑠1 ∣ 𝑙} ∗ ℱ(𝑛− 𝑠1)

}
.

The explicit form of the system equation after rearranging is

ℱ(𝑛) = min
𝑙

⎧⎨
⎩

𝑙 +
𝑙∑

𝑠1=1

𝑙−𝑠1∑
𝑠𝑐=0

Pr{𝑆𝑐 = 𝑠𝑐, 𝑆1 = 𝑠1 ∣ 𝑙}ℱ(𝑛− 𝑠1)

1−
𝑙∑

𝑠𝑐=1

Pr{𝑆𝑐 = 𝑠𝑐, 𝑆1 = 0 ∣ 𝑙}

⎫⎬
⎭

.

(12)
Solving (12), the optimal frame size is obtained as 𝐿∗ = 𝑛
while the average reading time is

ℱ(𝑛) =

𝑛+
𝑛∑

𝑠1=1

𝑛−𝑠1∑
𝑠𝑐=0

Pr{𝑆𝑐 = 𝑠𝑐, 𝑆1 = 𝑠1 ∣ 𝐿 = 𝑛}ℱ(𝑛− 𝑠1)

1−
𝑛∑

𝑠𝑐=1

Pr{𝑆𝑐 = 𝑠𝑐, 𝑆1 = 0 ∣ 𝐿 = 𝑛}
.

(13)
The algorithm efficiency 𝜂 = 𝑛

ℱ(𝑛) is shown in Fig. 2. We
can see that 𝜂 is always above the efficiency upper bound of
Random Access systems [10]. This is also a proof that formula
(1) is not suitable for RFID systems.

C. The Numerical Solution of 𝐿∗

In [20][21], a general method is proposed to solve the
optimal strategy in an Adaptive Markov Decision Process by
running an Iterative Program. Following the method in [21],
we show an outline of the solution as follows:

For a group of tags with initial estimation 𝑉0, the average
reading time and optimal frame size can be derived from (9)



3588 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 58, NO. 12, DECEMBER 2010

as

𝒯𝑜(𝑉0) = min
𝑙

⎧⎨
⎩𝑙 +

∑
𝑉1∈𝒮(𝑉0, 𝑙)

Pr(𝑉1 ∣𝑉0, 𝑙)𝒯𝑜(𝑉1)

⎫⎬
⎭ ,

𝐿∗ = argmin
𝑙

⎧⎨
⎩𝑙 +

∑
𝑉1∈𝒮(𝑉0, 𝑙)

Pr(𝑉1 ∣𝑉0, 𝑙)𝒯𝑜(𝑉1)

⎫⎬
⎭ .

Thus given the values of {𝒯𝑜(𝑉1)}, where 𝑉1 ∈ 𝒮(𝑉0, 𝑙),
both 𝒯𝑜(𝑉0) and 𝐿∗ can be solved numerically. If 𝑉1 is the
terminating state, we can simply use 𝒯𝑜(𝑉1) = 0. Other-
wise, 𝒯𝑜(𝑉1) should be similarly computed from the values
of {𝒯𝑜(𝑉2)} where 𝑉2 ∈ 𝒮(𝑉1, 𝑙). The process continues
until the terminating state 𝑉𝑇 is reached. This program is
guaranteed to converge, because in a transient Markov Chain,

lim
𝑗→∞

Pr(𝑉𝑗 = 𝑉𝑇 ) = 1.

The computation complexity is proportional to the number of
states. For a particular state 𝑉𝑗 , the number of states it will
visit after one frame is ∣𝒮(𝑉𝑗 , 𝑙)∣ ≤ 1

2 (𝑙 + 1)(𝑙 + 2) ∼ 𝑁2.
In other words, the number of states increases with 𝒪(𝑁2𝛼),
where 𝛼 is the number of frames used to identify all the tags.
As derived in [10], the number of frames 𝛼 ∼ 𝒪(log𝑁).
In sum, therefore, the computation complexity is 𝒪(𝑁 log𝑁 ).
This approach is prohibitive when 𝑁 is large, so we go on to
introduce a more efficient and accurate approximation method
for the solution based on theorem 2. The proof is in Appendix
I.

Theorem 2: For a group of tags with population distribution
Pr(𝑁) = v = (𝑣0, 𝑣1, 𝑣2, . . . , 𝑣𝑚𝑎𝑥), variance Var(𝑁) → 0
and expectation 𝐸[𝑁 ] → 𝑘, its average reading time satisfies

𝒯𝑜(v) =

𝑁𝑚𝑎𝑥∑
𝑗=0

𝑣𝑗 𝒢𝑘−𝑗(𝑗), (14)

where 𝒢𝑚(𝑛) is defined in (15) and 𝐿 = 𝑚 + 𝑛, 𝑋 =
min(𝐿 − 𝑆1,

𝑛−𝑆1

2 ).

Based on Theorem 2, we can stop the iteration and cal-
culate the approximate value of 𝒯𝑜(v) by (14) as soon as
Var(𝑁) < 𝛿, where 𝛿 is a small enough value. After each
frame, the feedbacks from the tags help the reader to update
the estimation and hence decrease the estimation variance.
According to [16], if the first frame size is appropriately
chosen, the reader can estimate the tag population within two
or three frames with an accuracy greater than 99.95%. In other
words, Var(𝑁) will drop to 0.6 for a group of about 100 tags
within a few of frames. Thus the computation complexity is
reduced to 𝒪(𝑁𝛽), where 𝛽 = 𝒪(1). The error bound of
this approximation is depicted in Fig. 3 for different variance
bound. As it shows, the error bound is nearly a constant as tag
population increases. For 𝐸[𝑁 ] = 20 and Var(𝑁) = 0.6, the
error bound is around 0.25, only 0.5% error compared with
ℱ(20). The derivation of this error bound is in Appendix II.

A computer program based on the theorem discussed above
is shown in Fig. 4. The input is a vector v representing the
distribution of 𝑁 . The program first checks its variance. If
it is smaller than a threshold 𝛿, the average reading time
is calculated from (14); if not, it is solved numerically. Our
experiment shows that the stopping condition will be fulfilled
after several frames.
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Fig. 4. The iterative program to compute the optimal frame size.

IV. PERFORMANCE COMPARISON

To compare the performance of various algorithms in differ-
ent cases, we need a class of population distribution whereby
the mean and variance of 𝑁 can be varied. In our computer
simulation, we choose

𝑃𝑟{𝑁 = 𝑛} =

{
1
𝑍 ( ∣𝑛− 𝛽∣+ 𝛽)

𝛼
, 0 ≤ 𝑛 ≤ 2𝛽,

0 , others
(16)

where 𝑍 is the normalization constant, 𝛼 and 𝛽 are parameters.
It can be shown that 𝐸[𝑁 ] = 𝛽 independent of 𝛼 while
the coefficient of variation 𝑐𝑣 can be changed from 0 to the
maximum value of 1 by setting different values of 𝛼. The
uniform distribution is a special case of (16) when 𝛼 = 0. Note
that this distribution is chosen for convenience. The Poisson
distribution and Binomial distribution are not favored because
once the mean is given, the variance is fixed.

We first set 𝐸[𝑁 ] = 10 and change 𝑐𝑣 from 0.3 to 1.
Fig. 5 shows the choices of the first frame size by Schoute’s,
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𝐺𝑚(𝑛) =

⎧⎨
⎩

𝐿+

𝐿∑
𝑆1=1

𝑋∑
𝑆𝑐=0

Pr{𝑆𝑐, 𝑆1∣𝐿} ∗ 𝒢𝑚(𝑛− 𝑆1) +

𝑚+1∑
𝑘=0

𝑛+𝑚∑
𝑆1=0

Pr{𝑆𝑐 =
𝑛− 𝑆1 + 𝑘

2
, 𝑆1∣𝐿} ∗ 𝒢𝑘(𝑛− 𝑆1)

1−
𝑋∑

𝑠𝑐=1

Pr{𝑆𝑐 = 𝑠𝑐, 𝑆1 = 0 ∣ 𝐿}
, 𝑚 < 0

𝐿+

𝐿∑
𝑆1=1

𝐿−𝑆1∑
𝑆𝑐=0

Pr{𝑆𝑐, 𝑆1∣𝐿} ∗ 𝒢𝑚(𝑛− 𝑆1)

1−
𝐿∑

𝑆𝑐=1

Pr{𝑆𝑐, 𝑆1 = 0∣𝐿}
, 𝑚 ≥ 0

(15)
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Fig. 5. The choices of the first frame size by different algorithms when
𝐸[𝑁 ] = 10.
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Fig. 6. Efficiency of different algorithms when 𝐸[𝑁 ] = 10.

Vogt’s, Floerkemier’s and the optimal algorithms.3 Schoute’s
and Vogt’s algorithms always set the first frame size 𝐿 =
𝐸[𝑁 ] = 10 regardless of the value of 𝑐𝑣; Floerkemeier’s
algorithm sets 𝐿 = 10 when 𝑐𝑣 < 0.5 and increases 𝐿 with
𝑐𝑣; the optimal algorithm also sets 𝐿 = 10 for small 𝑐𝑣 but
decreases 𝐿 with 𝑐𝑣 . Fig. 6 shows the efficiency (𝜂 = 𝐸[𝑁 ]

𝐸[𝑇 ] )
of the four algorithms from computer simulation (104 samples
for each point) as a function of 𝑐𝑣. We observe:

3We do not simulate Kodialam’s algorithm [16], because that algorithm is
designed only for estimating the tag population instead of identifying tags.
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Fig. 7. Efficiency of different algorithms when 𝑐𝑣 = 0.7 and 𝑐𝑣 = 0.9.

∙ The performance of Schoute’s and Vogt’s algorithms are
barely distinguishable;

∙ Floerkemeier’s algorithm is marginally better than
Schoute’s when 𝑐𝑣 ≤ 0.6 but poorer when 𝑐𝑣 > 0.6;
and

∙ The optimal algorithm performs best, and its performance
is quite insensitive to 𝑐𝑣 .

Next, we let 𝐸[𝑁 ] vary from 1 to 20 while keeping 𝑐𝑣 equal
to 0.7 and 0.9 respectively. Fig. 7 shows the performance of
the four algorithms. Again, the optimal algorithm is performs
markedly more efficiently than all the others.

V. AN APPLICATION

The direct use of the optimal algorithm in real application
is not recommended, as it requires a lot of computation and
storage in the reader. However, the optimal frame sizes are
very useful for algorithm design.

As shown in Section IV, previous algorithms [10-12] are
quite efficient when the tag population variance is small. Since
the variance decreases after each frame of reading, a simple
and efficient approach is to use the optimal frame sizes for
the first several frames and revert to the previous strategies
thereafter.
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Fig. 8. Improved Schoute’s algorithm for a distribution with 𝐸[𝑁 ] = 10
and 𝑐𝑣 = 0.8.

0.4 0.5 0.6 0.7 0.8 0.9 1

0.31

0.32

0.33

0.34

0.35

0.36

0.37

0.38

0.39

0.4

Coefficient of variation

E
ffi

ci
en

cy

 

 

Schoute
Improved Schoute
Optimal

Fig. 9. Efficiency of different algorithms when 𝐸[𝑁 ] = 10.

As an example, we improved Schoute’s algorithm by us-
ing 𝐿 = 𝐿∗ in the first two frames. Thereafter, we set
𝐿 = round(2.39𝑠𝑐) as in Schoute’s algorithm. Specifically,
for the distribution in (16) with 𝐸[𝑁 ] = 10 and 𝑐𝑣 = 0.8,
the reading strategy of the Improved Schoute’s algorithm is
shown in Fig. 8. It stipulates the use of a small frame size
(𝐿 = 2) for the first frame to check if 𝑁 is “relatively” large
or “relatively” small. If collisions occur in both slots, 𝑁 is
estimated as a large value and subsequently a large frame size
(𝐿∗ = 15) will minimize collision. If a collision occurs in
only one slot, 𝑁 should be relatively small and 𝐿∗ = 2 is
optimal. Fig. 9 shows that the improved algorithm can track
the performance of the optimal algorithm quite closely.

In practice, the reader does not need to store 𝐿∗. For
inventory applications where many groups of tags are read
sequentially, it is more efficient to dynamically update the
estimation of 𝑁 and the choice of 𝐿. As an example, after 100
groups are identified, the reader may update the distribution

of 𝑁 using Bayes formula and recalculate 𝐿∗ for the next 100
groups.

VI. CONCLUSION

In this paper, we have proposed a new theory for the
FA based RFID anti-collision systems. Based on this theory,
we have analytically derived the optimal frame size and the
average reading time. Simulation results have confirmed that
this approach results in a significantly better performance than
previously-published algorithms have been able to achieved.
The methodology developed in this paper can be extended
to other RFID systems, including the Tree based systems,
Interval based systems and advanced FA based systems. An
example is in [22], where the optimal frame size is derived
with the inclusion of the ‘Frame-size Reset’ command. During
the course of our research, we were delighted to discover that
the Adaptive Markov Decision Process theory could be used
to solve our problem.

APPENDIX I

Lemma 1: Let v and u denote two distributions and v ∕= u.
We have

𝒯𝑜(v) =
𝑁𝑚𝑎𝑥∑
𝑛=0

𝑣𝑛𝑇𝑜(𝑛 ∣v) ≤
𝑁𝑚𝑎𝑥∑
𝑛=0

𝑣𝑛𝑇𝑜(𝑛 ∣u),

where 𝑇𝑜(𝑛 ∣v) denote the average reading time of 𝑛 tags
following the optimal strategy when the initial estimation is
v.

We do not have the space here to provide a rigorous proof,
but this lemma can be easily justified by intuition. For a group
with distribution v, the average reading time based on the
correct distribution v is always less than that based on the
wrong distribution u.
Lemma 2: For a group of tags with population distribution
Pr(𝑁) = v = (𝑣0, 𝑣1, 𝑣2, . . . , 𝑣𝑚𝑎𝑥), variance Var(𝑁) → 0
and expectation 𝐸[𝑁 ] → 𝑘, the optimal frame size 𝐿∗ = 𝑘.
Proof: Let u = (𝑢0, 𝑢1, 𝑢2, . . . , 𝑢𝑚𝑎𝑥) denote another distri-
bution with 𝑢𝑘 = 1. As derived in Section III.B Case 3, the
optimal frame size for u is 𝐿∗ = 𝑘 and the average reading
time is ℱ(𝑘). From Lemma 1, we have

𝒯𝑜(v) ≤
∑
𝑛

𝑣𝑛𝑇𝑜(𝑛 ∣u)

= 𝑣𝑘𝑇𝑜(𝑘 ∣u) +
∑
𝑛∕=𝑘

𝑣𝑛𝑇𝑜(𝑛 ∣u)

= 𝑣𝑘ℱ(𝑘) + (1− 𝑣𝑘)𝑌, (17)

where 𝑌 is averaged reading time on condition that 𝑁 ∕= 𝑘,
or

𝑌 =

∑
𝑛∕=𝑘 𝑣𝑛𝑇𝑜(𝑛 ∣u)∑

𝑛∕=𝑘 𝑣𝑛
< ∞.

On the other hand, if the first frame size is chosen as 𝐿 =
𝑚 ∕= 𝑘, we let 𝑇 ′(𝑛 ∣𝐿 = 𝑚) denote the average reading time
of 𝑛 tags when the first frame size is 𝑚 and the following
frame sizes are optimal. Obviously ℱ(𝑘) < 𝑇 ′(𝑘 ∣𝐿 = 𝑚)
because for 𝑘 tags to read, the optimal frame size 𝐿∗ = 𝑘.
Based on these, we have the average reading time using 𝐿 =
𝑚 as
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𝑡 =
∑
𝑛

𝑣𝑛𝑇
′(𝑛 ∣𝐿 = 𝑚) > 𝑣𝑘𝑇

′(𝑘 ∣𝐿 = 𝑚) = 𝑣𝑘ℱ(𝑘) + 𝑣𝑘Δ,

(18)
where Δ = 𝑇 ′(𝑘 ∣𝐿 = 𝑚) − ℱ(𝑘) > 0. Since Δ and 𝑌
are both constant and 𝑣𝑘 → 1 when Var(𝑁) → 0, we obtain
𝑣𝑘Δ > (1 − 𝑣𝑘)𝑌 . Combining with (17) and (18), we have
𝒯𝑜(v) < 𝑡. Thus we claim that the optimal frame size 𝐿∗ = 𝑘.
□
Proof of Theorem 2:

As defined in Section III, 𝒢𝑚(𝑛) is the average reading
time of 𝑛 tags with the estimated group size distribution
v = (𝑣0, 𝑣1, 𝑣2, . . . , 𝑣𝑚𝑎𝑥) satisfying 1) 𝑣𝑚+𝑛 → 1 and 2)
Var(𝑁) → 0. In other words, 𝒢𝑚(𝑛) is the average reading
time of 𝑛 tags with the wrong information that there are 𝑛+𝑚
tags. By Lemma 2, the optimal frame size for v is 𝑚+𝑛. We
now derive the formulas of 𝒢𝑚(𝑛) for different values of 𝑚.

Case 1: 𝑚 ≥ 0, or the estimated group size is larger than the
real one. After 𝑠1 tags are identified in the current frame, the
real group size becomes 𝑛 − 𝑠1 while the estimated number
of remaining tags is 𝑛 + 𝑚 − 𝑠1. Based on the replies, the
reader will not detect the estimation mistake until all the tags
are successfully identified. Similar to (12), we have the system
function as

𝒢𝑚(𝑛) = 𝐿+
𝐿∑

𝑠1=0

𝐿−𝑠1∑
𝑠𝑐=0

Pr{𝑆𝑐 = 𝑠𝑐, 𝑆1 = 𝑠1 ∣ 𝐿} ∗ 𝒢𝑚(𝑛− 𝑠1),

where 𝐿 = 𝑚+ 𝑛. Then we can obtain explicit form as (15)
by rearranging the terms.

Case 2: 𝑚 < 0, or the estimated group size is smaller than
the real one. If the number of the collided slots 𝑠𝑐 ≤ 𝑛+𝑚

2 , the
reader will not discover the mistake and update the estimated
group size as 𝑛+𝑚−𝑠1. But the reader will know something
is wrong if the number of collided slots 𝑠𝑐 > 𝑛+𝑚

2 , because
𝑛+𝑚 tags cannot produce so many collisions. Since Var(𝑛) →
0, the estimated group size should be updated as 𝑁 = 2𝑠𝑐.
Similarly, we have the system function as

𝒢𝑚(𝑛) = 𝐿+
𝐿∑

𝑆1=0

𝑋∑
𝑆𝑐=0

Pr{𝑆𝑐, 𝑆1∣𝐿} ∗ 𝒢𝑚(𝑛− 𝑆1)

+
𝑚+1∑
𝑘=0

𝑛+𝑚∑
𝑆1=0

Pr{𝑆𝑐 =
𝑛− 𝑆1 + 𝑘

2
, 𝑆1∣𝐿} ∗ 𝒢𝑘(𝑛− 𝑆1),

where 𝐿 = 𝑚+ 𝑛 and 𝑋 = min(𝐿− 𝑆1,
𝑛−𝑆1

2 ). (15) can be
obtained by reshuffling the terms.

APPENDIX II

Consider two groups, Group A and Group B with tag pop-
ulation 𝑁𝐴 and 𝑁𝐵 respectively. Suppose Group A satisfies:
𝐸[𝑁𝐴] = 𝑘 and Var(𝑁𝐴) = 𝛿 > 0; Group B satisfies:
𝑁𝐵 = 𝑘. Let v and u denote the distribution of 𝑁𝐴 and
𝑁𝐵 respectively. We can prove

𝒯𝑜(u) ≤ 𝒯𝑜(v) ≤
𝑁𝑚𝑎𝑥∑
𝑛=0

𝑣𝑛𝑇𝑜(𝑛 ∣u). (19)

The first inequality holds because when the expectation is
same, the group with known population needs less time. The
second inequality holds as a result of Lemma 1. By definition,
𝒯𝑜(u) = ℱ(𝑘); 𝑇𝑜(𝑛 ∣u) = 𝒢𝑘−𝑛(𝑛). Thus (19) becomes

ℱ(𝑘) ≤ 𝒯𝑜(v) ≤
𝑁𝑚𝑎𝑥∑
𝑛=0

𝑣𝑛𝒢𝑘−𝑛(𝑛). (20)

According to (14), we use 𝒯𝑜 (𝑣) =
∑𝑁𝑚𝑎𝑥

𝑛=0 𝑣𝑛𝒢𝑘−𝑛(𝑛) as
an approximation of 𝒯𝑜(v). Then the error bound of this
estimation can be derived from (20) as∣∣∣𝒯𝑜 (𝑣)− 𝒯𝑜 (𝑣)

∣∣∣ ≤ ∣∣∣∣∣ℱ (𝑘)−
𝑁𝑚𝑎𝑥∑
𝑛=0

𝑣𝑛𝒢𝑘−𝑛 (𝑛)

∣∣∣∣∣ . (21)

REFERENCES

[1] K. Finkenzeller, RFID Handbook, 2nd edition. John Wiley & Sons,
2003.

[2] EPCglobal, EPCglobal Class 1 Generation 2 UHF Air Inter-
face Protocol Standard Version 1.0.9, 2005. [Online]. Available:
http://www.epcglobalinc.org/

[3] International Organization for Standardization, Information technology
- RFID for item management - Part 6: “Parameters for air interface
communications at 860 MHz to 960 MHz,” 2004.

[4] Philips Semiconductors, I-CODE Smart La-
bel RFID Tags. [Online]. Available:
http://www.semiconductors.philips.com/acrobat_download/other/
identification/SL092030.pdf

[5] J. Myung, W. Lee, J. Srivastatva, and T. K. Shih, “Tag-splitting: adaptive
collision arbitration protocols for RFID tag identification,” IEEE Trans.
Parallel Distrib. Syst., vol. 18, no. 6, June 2007.

[6] K. W. Chiang, C. Q. Hua, and T. S. P. Yum, “Prefix-randomized query-
tree protocol for RFID systems,” in Proc. IEEE ICC, 2006.

[7] P. Popovski, F. H. P. Fitzek, and R. Prasad, “Batch conflict resolution
algorithm with progressively accurate multiplicity estimation,” in Proc.
ACM DIALM-POMC, Oct. 2004.

[8] J. Park, M. Y. Chung, and T. J. Lee, “Identification of RFID tags
in framed-slotted ALOHA with tag estimation and binary splitting,”
Commun. Electron., 2006

[9] J. Mosely and P. A. Humblet, “A class of efficient contention resolution
algorithms for multiple access channels,” IEEE Trans. Commun., vol.
33, no. 2, Feb. 1985.

[10] F. C. Schoute, “Dynamic frame length ALOHA,” IEEE Trans. Commun.,
vol. 31, no. 4, pp. 565–568, Apr. 1983.

[11] H. Vogt, “Efficient object identification with passive RFID rags,” in
Proc. 1st International Conf., PERVASIVE, Volume 2414 of Lecture
Notes in Computer Science (LNCS), pp. 98–113, Aug. 2002.

[12] C. Floerkemeier, “Transmission control scheme for RFID object iden-
tification,” in Proc. Pervasive Wireless Networking Workshop (IEE
PERCOM), 2006.

[13] B. Zhen, M. Kobayashi, and M. Shimizu, “Framed ALOHA for multiple
RFID objects identification,” IEICE Trans. Commun., vol. E88-B, no. 3,
Mar. 2005.

[14] M. Buettner and D. Wetherall, “An empirical study of UHF RFID
performance,” in Proc. MobiCom, 2008.

[15] C. Floerkemeier, “Bayesian transmission strategy for framed ALOHA
based RFID protocols,” in Proc. IEEE International Conf. RFID, Mar.
2007.

[16] M. Kodialam and T. Nandagopal, “Fast and reliable estimation schemes
in RFID systems,” in Proc. MobiCom, Sep. 2006.

[17] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference, 1st edition, Morgan Kaufmann Publishers.

[18] W. Feller, An Introduction to Probability Theory and Its Applications,
2nd edition, John Wiley & Sons.

[19] J. Keilson, Markov Chain Models - Rarity and Exponentiality. Springer-
Verlag, 1979.

[20] D. J. White, Markov Decision Processes. John Wiley & Sons, 1993.
[21] J. J. Martin, Bayesian Decision Problems and Markov Chains. London:

Wiley, 1967.
[22] L. Zhu and T. S. P. Yum, “Design and analysis of framed ALOHA based

RFID anti-collision algorithms,” in Proc. IEEE Global Commun. Conf.,
Dec. 2009.



3592 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 58, NO. 12, DECEMBER 2010

Lei Zhu (S’09) received the B.S. degree in elec-
tronic information science and technology from the
University of Science and Technology of China in
2006. He is a Ph.D. candidate at the Chinese Uni-
versity of Hong Kong. His general research interests
include protocol and algorithm design, RFID sys-
tems and random access systems, and performance
evaluation for computer networks, wireless mobile,
and sensor networks.

Tak-Shing Peter Yum (S’76-A’78-SM’86) was
born in Shanghai. He received primary and sec-
ondary school education in Hong Kong. He went
to Columbia University and was awarded BS, MS,
MPh, and PhD degrees in 1974, 1975, 1977, and
1978 respectively. He joined Bell Telephone Lab-
oratories in April 1978, working on switching and
signaling systems for two and one half years. Then,
he taught at National Chiao Tung University, Tai-
wan, for two years before joining The Chinese
University of Hong Kong in 1982. He was appointed

department chairman two times and was elected dean of engineering for two
terms. He is currently senior advisor of Applied Science at the Technology
Research Institute of Hong Kong (www.astri.org).

Professor Yum has published widely in Internet research, with contributions
to routing, buffer management, deadlock handling, message resequencing, and
multi-access protocols. He then branched out to work on cellular network,
lightwave networks, video distribution networks, and 3G networks. His
recently research is in the areas of RFID, sensor networks, and wireless
positioning technologies.


