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ABSTRACT
The anti-collision mechanism is a very important part in
Radio-frequency Identification (RFID) systems. Among all
the algorithms, the Framed Aloha based (FA) ones are most
widely used due to simplicity and robustness. Previous
works mainly focused on the tag population estimation, but
determined the reading strategy based on the classical re-
sults of Random Access (RA) systems. We show that a new
theory is needed for the optimization of the RFID systems
as they have characteristics very different from the RA sys-
tems. In this paper, We propose a new approach to minimize
the total expected reading time by choosing the most suit-
able frame size based on the tag population distribution.
We show that the optimal strategy can be used in differ-
ent applications. The mathematical analysis and computer
simulation show our approach outperforms the previous op-
timization works in the literature.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems; G.3 [Probability
and Statistics]: Distribution functions, Markov processes

General Terms
Algorithms, Design, Performance, Theory

Keywords
Algorithm, RFID, Framed Aloha, Optimization

1. INTRODUCTION
In Radio-frequency Identification (RFID) systems, tags share
a common communication channel. Therefore, if multiple
tags transmit at the same time, their packets will collide and
get lost [1]. Passive tags have bare-bone functionality and
no embedded power supply. They cannot sense the media
or cooperate with one another. The RFID reader needs to
coordinate their transmissions to avoid collisions. The com-
munication time between tags and readers are slotted. But
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Figure 1: The communication between the reader
and tags

unlike CSMA system, tags need to ‘reserve’ the channel
before transmission. The total communication time there-
fore includes the contention time and the operation time. To
illustrate, consider the tag reading operation in EPCglobal
standards [2] as shown in Figure 1. Within a contention
slot, the reader broadcasts a trigger command (‘Query’ or
‘QueryRep’). After receiving this command, each tag runs
a random function to decide whether to reply or not. Tags
only reply a short packet named ‘RN16’ (random number
16 bits). It is used as the temporary ID for this tag. If mul-
tiple tags reply or no tag replies, the reader sends an trigger
command again. If only one tag replies, the reader can re-
ceive the packet successfully and operate on this tag by its
RN16 after this slot. The operation may include reading
data, writing new data, changing password, etc. Since the
operation slot is collision-free, the total operation time does
not depend on the reading strategy. Therefore, the perfor-
mance of anti-collision algorithms is conventionally evalu-
ated by the average contention time measured by the num-
ber of contention slots. In literature, the ‘slot’ usually refers
to the contention slot while the ‘reading time’ usually refers
to the contention time measured in contention slots. We
follow this convention in this paper.

Depending on working principles, RFID anti-collision algo-
rithms can be divided into three main types: Tree based
algorithms [5][6], Framed Aloha based (FA) algorithms [8-
16] and Interval based algorithms [7]. Different types usually
require different hardware and software design of both the
reader and the tags. Among all the types, FA algorithms
are most widely used in RFID communication standards [2-
4] due to simplicity and robustness.

In most applications, the number of tags are unknown before
identification. So a proper FA algorithm always contains two
parts: Population Estimation part and Reading Strat-
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egy Determination part. The first part is for estimating
the tag population based on tags’ replies while the second
part is for adjusting the command parameters, such as the
frame size, based on the estimation. Previous works [8-16]
emphasized Population Estimation methods and designed
reading strategies based on the classic results of Random
Access (RA) Systems [10]. Since RFID systems and RA
systems are fundamentally different (the details are in sec-
tion 3), the use of RA results will not lead to the optimal
reading strategy in RFID systems. In this paper, we model
the reading process as a Markov Chain and derive the op-
timal reading strategy through first-passage-time analysis.
We show that the optimal strategy can be easily incorpo-
rated into the different applications to give significant per-
formance improvement, especially when the variance of tag
population is large.

In section 2, we introduce the basic ideas of the FA algo-
rithms. In section 3, we give a survey of the traditional
strategies of FA algorithms and point out an unjustified as-
sumption used in previous attempts of reading strategy opti-
mization. In section 4, a new model is proposed to derive the
optimal reading strategy. In section 5, we show the applica-
tions of the optimal strategy and compare its performance
with the previous works.

2. FRAMED ALOHA-BASED RFID SYSTEMS
Framed Aloha (FA) is a variation of slotted Aloha where
a terminal is permitted to transmit once per frame. The
frame size L is broadcast by the reader at the beginning of
every round; each tag randomly chooses a value from 0 to
L − 1 as its transmission delay. In RFID systems, the FA
algorithms have some special characteristics.

2.1 Limited Choices of Frame Size
Many RFID systems have limitations on the choice of frame
size due to hardware constraints. For example, in EPCglobe
standards, it is limited to only 16 choices as 2Q, where Q =
0, 1, 2, . . . , 15.

2.2 Silence Command
In the original design of FA algorithms, tags do not know
their transmission results as there is no feedback from the
reader. They will all transmit again in the next round of con-
tention. Readers have difficulty ascertaining the end of the
reading process as some tags may suffer collisions again and
again (tag starvation problem). This situation was changed
by the introduction of the Silence Command1 in EPCglobe
standards. After identifying a tag, the reader will broadcast
its ID and ask it to keep silent.

2.3 Reset Command
As in Figure 1, the RFID reader has to broadcast a ‘Trig-
ger’ command in every time slot because tags need to extract
power from the command signal to reply. The reader con-
sequently does not have to wait until the end of a frame
to change the reply probability by setting the appropriate
frame size. Some designs introduce the Frame-size Reset

1It is also referred to as Kill command in literature. In
EPCglobe standards, it corresponds to the Select command,
which have other uses besides silencing a tag.

Figure 2: The working mechanism of Type 4 Aloha-
based algorithms

command2 to cancel a running frame and initiate a new
one.

2.4 Split Command
Some FA algorithms [8] have the Split Command of Tree-
based algorithms embedded. After a frame of reading, the
reader may choose to initiate a new frame or just split the
collided slots. The reading process of algorithms embedded
with the Split Command is illustrated in Figure 2. This
was shown to improve the performance at the expense of
hardware complexity.

2.5 Classification of RFID Systems
Depending on the tag-reader capability, or the set of com-
mands supported, the RFID systems for FA algorithms can
be classified into four types as follows:

1: support only Framed Aloha;

2: support Framed Aloha with Silence Command;

3: support Framed Aloha with Silence and Reset Com-
mand;

4: support Framed Aloha with Silence and Split Com-
mand.

Note the term ‘Type × RFID system’ refers to an RFID
system (hardware and software) which supports a certain
set of commands while the term ‘Type × algorithm’ refers
to a reading strategy which determines when and how to
use these commands. In this paper, we will focus on the
Type 2 RFID system, which is simple enough and relatively
efficient.

2In EPCglobal standards, it corresponds to the QueryAd-
just command.
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3. A SURVEY OF PREVIOUS WORKS
FA algorithms are widely used in random-access systems.
The classical result for throughput U with N attempting
terminals and frame size L is given in [10] as:

U(N, L) =
N

L

(
1 − 1

L

)N−1

. (1)

The throughput U can be optimized by setting the frame
size equal to the terminal number, or L = N . The bound for
large N is U = e−1. However, in RFID systems, the precise
value of N is usually not available. Hence the throughput
depends on the estimate of N from tag replies.

During the reading process, the reader can estimate the tag
population based on the outcomes of the slots: whether they
are empty, singleton or collided. There is usually a mis-
understanding that the reader should use several frames of
contention slots to estimate the tag population before the
real reading process starts. Actually, it is only useful for
the earlier RFID systems, which do not support the reser-
vation mechanism. Since the collision of the operation slots
would waste more time, the earlier strategies prefer to use
a sequence of ‘training’ slots (short slots) to estimate the
tag population and use it to set the frame size of the oper-
ation slots. However, in modern RFID systems, a singleton
contention slot can reserve an operation slot. Tags can be
identified while the reader is doing estimation. Thus the
‘training’ sequence approach is abandoned. Most algorithms
do estimation throughout the reading process.

Based on the estimation methods, algorithms can be divided
into: the max-likelihood approach and the probability dis-
tribution approach.

3.1 Max-likelihood Approach
Schoute [10] noticed that when N is large and L is suitably
chosen (say L ≈ N), the number of tags attempting each
slot has a Poisson distribution with mean 1. The number of
collided tags NC at the end of a frame can be estimated as:

NC = round(2.39sc) (2)

where sc is the number of collided slots in the frame. There-
fore his strategy is to set L = round(2.39sc) as the next
frame size.

Vogt [11] improved Schoute’s strategy by using the statistics
of empty slots se and singleton slots ss in addition. Tag
population is estimated to be the value N that minimizes
the error between the observed values of se, ss, sc and their
expected values using N .

Kodialam [16] proposed an new estimation method based
on the Central Limit Theorem. That is when the number
of contending tags is large enough, the number of collision
slots and empty slots in the current frame should obey the
Normal distribution. Thus using his method, one may ob-
tain the estimation accuracy as well as the max-likelihood
tag population. But the frame size is also set as L = E[N ].

Another example is the Q algorithm in EPCglobal stan-
dards [2]. The reader maintains a floating-point variable
Qfp. It decreases a typical value C when no tag replies,

increases C when multiple tags reply and stays unchanged
when only 1 tag replies.3 The frame size is set to 2Q, where
Q = round(Qfp) and will be canceled whenever round(Qfp)
changes. In [13][14], the efficiency of the Q algorithm was
obtained with different choices of C and Qfp and some meth-
ods to improve efficiency were proposed.

In summary, algorithms of this type compute the maximum-
likelihood tag population N̂ based on the reading results
and set L = N̂ as the frame size. This approach is simple
but rough, as the expectation only cannot fully describe the
variable N .

3.2 Probability Distribution Approach
Floerkemeier [12][15] designed some new strategies based on
(1). He assumes that a rough estimation of the target group
size is always available in the form of a distribution Pr{N =
i} and derives the next frame size as

L∗ =

{
L : max

L∈Υ

Nmax∑
i=0

U(N = i, L) Pr{N = i}
}

, (3)

where Υ is the set of possible frame sizes. In every time slot,
the reader updates the distribution by Bayesian method and
cancels the current frame whenever L∗ changes according to
(3).

This approach can track the value of N more accurately.
Since a random variable N is completely specified by its
distribution and Bayesian method ensures no information
loss in estimation, the Population Estimation part of Flo-
erkemeier’s algorithm is undisputable, but the use of (1) in
the Reading Strategy Determination part is unwise.

3.3 The Need for a New Model
From this review, we can see that previous works focused on
the Population Estimation, providing different ways to find
a more accurate N . For the Reading Strategy Determina-
tion part, they all use (1) for calculating throughput. As we
mentioned before, (1) is obtained from the theory of Ran-
dom Access (RA) system. In RA system, the frame size is
chosen to optimize the instantaneous throughput U . Since a
terminal in an RA system would still attempts the channel
after a successful transmission, the ‘contending group’ can
be assumed unchange during a long enough period. The
long-term throughput of a RA system is therefore equal to
the expected instantaneous throughput U calculated by (1).
However, in RFID systems, identified tags are silenced by
the reader, leading to tag population decrease during the
reading process. When the frames are not identical, a con-
catenation of locally optimal solutions is not globally opti-
mal. As an example, suppose the target group size is dis-
tributed as

Pr{N = i} =

{
0.99 , i = 0
0.01 , i = 10

From (3), the suitable frame size should be L = 10, as it can
maximize the throughput of the current frame. However,
since this group is very likely empty, it is better to use L = 1
to check whether it contains tags or not even though the
throughput of this checking frame is 0.
3In EPCglobe standards, it is recommended that 0.2 ≤ C ≤
0.5 and the initial Qfp = 4

223



4. READING STRATEGY OPTIMIZATION
We now present our method to find the globally optimal
frame size. This method can be used for all types of FA
algorithms. In this paper, We use the Type 2 algorithm to
illustrate.

4.1 The Optimal Reading Strategy
Since canceling a frame is not allowed in Type 2 algorithms,
the reading strategies are restricted to the choice of the next
frame size. To choose a suitable frame size L, the reader
needs the information of the target group size. As discussed
in Section 3, this information can be fully described by a
probability distribution. In applications, a rough distribu-
tion is often available as the reader has information of its
previous readings. In the worst case where N is completely
unknown, a uniform distribution on [0, Nmax] can be as-
sumed as we cannot favor any value over the others.

During the reading process, let Bel(N) denote the belief of
N , or the conditional distribution of N based on all available
information [17]. At the end of every frame, the belief can
be updated by the Bayesian method [17]. To simplify the
notation, let vn = Bel(N = n) and v = (v0, v1, . . . , vmax).
Obviously the accuracy of the belief affects the reading ef-
ficiency. Let T (n |v) denote the expected contention time,
measured by slots, for these n tags when the current belief
is v. Then the expected finishing time is

T (v) =

Nmax∑
n=0

vnT (n |v).

Our goal is to find the optimal frame size L∗ that can min-
imize T (v) for any given distribution v, or

L∗ =
{

L : L ∈ Υ, min
L

{T (v)}
}

. (4)

Note (4) is different from (3) as it is designed to minimize
the expected reading time T (v) instead of the expected in-
stantaneous throughput U . Thus L∗ is the globally optimal
frame size. To find it, however, requires deriving the func-
tion of T (v) from the reading mechanism of Type 2 algo-
rithms.

In an intelligent system, the optimal decision depends only
on the current information, or the belief of all the relevant
variables [17]. Applying to RFID systems, the optimal frame
size depends only on Bel(N).4 We let Vj = Bel(Nj) =
(v0, v1, . . . , vmax) denote the state of the reading process at
the end of frame j, where Nj is unresolved tag population
at the end of frame j. Since identified tags are silenced by
the reader, we always have Nj ≥ Nj+1. Further let

V =

{
(v0, v1, . . . , vmax)

∣∣∣ vi ≥ 0,

Nmax∑
i=0

vi = 1

}

4Note it is important to differentiate the ‘unconditional
optimal’ and the ‘optimal based on current belief’. As
an example, suppose N = 10, but our current belief is
Bel(N = 9) = 1. Then the ‘unconditional optimal’ frame
size is 10, but the ‘optimal’ frame size based on the current
knowledge is 9. Since the unconditional optimal frame size
is not available until the reading process is finished, in this
paper we only consider the optimal one based on current
belief.

denote the set of all possible states. For a group with the
initial estimation P (N), let V0 = P (N) be the initial state
and VT = (1, 0, 0, . . . , 0) be the terminal state.

Theorem 1. Following a distribution-based anti-collision
algorithm, the reading process V0V1V2 . . . VT is a Markov
Chain.

Proof. At the end of frame j, let Vj = (v0, v1, . . . , vmax) ∈
V be the current state. For a distribution-based algorithm,
the next frame size l should be fixed given Vj . Let Vj+1 =
(u0, u1, . . . , umax) be the belief of tag population at the end
of frame j + 1. Obviously it depends on the reading results
of frame j + 1 as well as the previous beliefs.

In frame j + 1, let random variable S0, S1, Sc denote the
number of empty slots, singleton slots and collided slots. It
can be proved that the position of the empty slots, singleton
slots and collided slots does not matter and only their total
numbers affect the belief. Since S0 + S1 + Sc = l, there are
at most

(
l
2

)
= 1

2
(l + 1)(l + 2) different outcomes. Thus for a

given frame size, there are at most 1
2
(l + 1)(l + 2) different

choices of Vj+1 that satisfy Pr(Vj+1 |Vj) > 0.

Analogous to the urn problem [18], the probability that s1

urns contain only 1 ball, sc urns contain more than 1 balls
and the others are empty can be obtained as:

Pr{Sc = sc, S1 = s1 | Nj = n, L = l}

=
( l

s0, s1, sc

) n!

(n − s1)!ln

∑
m1,m2,...,msc≥2,

m1+m2+···+msc=n−s1

( n − s1

m1, m2, . . . , msc

)
,

(5)

where m1, m2, . . . , msc denote the number of tags in each of
the sc collided slots. Further, we can substitute the belief
of Nj to obtain

Pr{Sc = sc, S1 = s1 | L = l}

=

Nmax∑
n=0

vn Pr{Sc = sc, S1 = s1 | Nj = n, L = l}. (6)

At the end of frame j +1, we can obtain the values of s0, s1

and sc. By Bayes formula, the posterior distribution of Nj

can be updated as:

v′
i = Pr{Nj = i | Sc = sc, S1 = s1, L = l}

=
Pr{Sc = sc, S1 = s1 | Nj = i, L = l} vi

Pr{Sc = sc, S1 = s1 | L = l} (7)

As tags in the singleton slots are successfully identified and
silenced, we have Nj+1 = Nj − s1 with distribution given as

ui = Pr{Nj+1 = i | Sc = sc, S1 = s1, L = l}
= Pr{Nj = i + s1 | Sc = sc, S1 = s1, L = l}
= v′

i+s1 , i = 0, 1, 2, . . . (8)

Since the transition probability from state Vj = (v0, v1, . . . , vmax)
to Vj+1 = (u0, u1, . . . , umax) is just Pr{Sc = sc, S1 = s1 | L =
l}, which depends only on Vj and Vj+1, the states V0V1V2 . . . VT

forms a Markov Chain.
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For a given state Vj , let V(Vj , l) ⊂ V denote the set of
possible Vj+1, or

V(Vj , l) =
{

Vj+1 | Pr(Vj+1 |Vj) > 0
}

.

As proved in Theorem 1, |V (Vj , l)| ≤ 1
2
(l + 1)(l + 2). Let

TO(Vj) denote the first passage time from Vj to VT using
the optimal reading strategy. From the theory of Markov
Chain [19], we have

TO(Vj) = L∗ +
∑

Vj+1∈V(Vj , L∗)

Pr(Vj+1 | Vj)TO(Vj+1)

= min
l

⎧⎨
⎩l +

∑
Vj+1∈V(Vj , l)

Pr(Vj+1 | Vj)TO(Vj+1)

⎫⎬
⎭(9)

In (9), the set V(Vj , l) and the transition probability Pr(Vj+1 |Vj)
are given by (8) and (6). Theoretically speaking, it can be
solved to obtain the optimal frame size L∗. In the following,
we show how to solve (9) analytically and numerically.

4.2 The Analytical Solution of L∗

In this section, we show how to solve (9) by some examples.
Since (9) is a recursive function, we begin from small Nmax

cases

4.2.1 Case 1: Nmax = 2
In this case, the tag population can only be 0, 1 or 2. Given
Vj = v = (v0, v1, v2), the probability of different outcomes
of frame j + 1 can be obtained from (6) as:

Pr{Sc = 0, S1 = 0|L = l} = v0;

Pr{Sc = 0, S1 = 1|L = l} = v1;

Pr{Sc = 0, S1 = 2|L = l} =
l − 1

l
v2;

Pr{Sc = 1, S1 = 0|L = l} =
1

l
v2.

From (7) and (8), we get the distribution of Nj+1 as

Pr{Nj+1 = 0|Sc = 0, S1 = s1, L = l} = 1;

Pr{Nj+1 = 2|Sc = 1, S1 = 0, L = l} = 1.

Thus Vj+1 has only two possible choices as

V(Vj , l) =
{
(1, 0, 0), (0, 0, 1)

}
and the transition probability is

Pr
(
(1, 0, 0)

∣∣∣ (v0, v1, v2)
)

=
l − 1

l
v2 + v1 + v0

Pr
(
(0, 0, 1)

∣∣∣ (v0, v1, v2)
)

=
1

l
v2

Substituting them into (9), we have

TO(v) = min
l

{
l +

1

l
v2 TO

(
(0, 0, 1)

)}
= min

l

{
l +

4v2

l

}
, (10)

where TO

(
(0, 0, 1)

)
= 4 is the expected reading time for a

group with exactly 2 tags, which can be obtained in ‘Case

Figure 3: The solution set for Nmax = 3 case

3’. So we have

L∗ =

{
1 , v2 < 1

2

2 , v2 ≥ 1
2

TO(v) =

{
1 + 4v2 , v2 < 1

2

2 + 2v2 , v2 ≥ 1
2

To compare, we derived the frame size and average reading
time of Floerkemeier’s strategy from (3) as

L =

{
1 , v1 > v2

2 , v1 ≤ v2

Tf (v) =

{
1 + 4v2 , v1 > v2

2 + 2v2 , v1 ≤ v2

Therefore, when the distribution v satisfies v1 < v2 < 0.5,
Floerkemeier’s strategy is not optimal.

4.2.2 Case 2: Nmax = 3
Next, we move on to Nmax = 3 and derive the recursive
function as

TO(v) = min
l

{
l +

12v3(l − 1)

l2
+ (

v2

l
+

v3

l2
)TO(u)

}
, (11)

where u is the distribution of Nj+1 on condition that Sc = 1
and S1 = 0 in frame j + 1, or

u = (u0, u1, u2, u3) =

(
0, 0,

lv2

v3 + lv2
,

v3

v3 + lv2

)
.

Solving (11), the optimal reading strategy can be similarly
obtained as:

L∗ =

⎧⎨
⎩

1 , v ∈ Φ1

2 , v ∈ Φ2

3 , v ∈ Φ3

TO(v) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 + (v2 + v3)Tx

(
v3

v2+v3

)
, v ∈ Φ1

2 + 3v3 + 1
4
(2v2 + v3)Tx

(
v3

2v2+v3

)
, v ∈ Φ2

3 + 8
3
v3 + 1

9
(3v2 + v3)Tx

(
v3

3v2+v3

)
, v ∈ Φ3

where Tx is a recursive function as

Tx(α) =

{
8
3
α + 4 , 0 < α ≤ 9

16

3 + 8
3
α + 1

9
(3 − 2α)Tx

(
α

3−2α

)
, 9

16
< α < 1
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while Φ1, Φ2 and Φ3 are distribution regions specified in Fig-
ure 3. It shows that the choice of L is determined by v2 and
v3 instead of E[NA]. As an example, suppose Group X has
tag population distribution as (0, 0.45, 0, 0.55) and Group
Y (0.4, 0, 0.5, 0.1). Their expected group size are calculated
to be E[NX ] = 2.1 and E[NY ] = 1.3, but the optimal frame
size for Group X is 1 while that for Group Y is 2.

For Nmax > 3 cases, the optimal strategies can be obtained
similarly. But the computation becomes more complex.

4.2.3 Case 3: Tag Population N known
Let TN (n) denote the average reading time for a group with
tag population known as n, or TN (n) = TO(v) when vn =
1. After one frame of reading, the population decreases to
n′ = n−s1, where s1 is the number of singleton slots. So the
remaining reading time is TN (n − s1). Substituting TN (n)
and TN(n − s1) into (9), we have

TN(n) = min
l

{
l +

l∑
s1=0

l−s1∑
sc=0

Pr{Sc = sc, S1 = s1 | l}

∗TN (n − s1)

}
. (12)

The explicit form of the system equation after rearranging
is

TN (n) = (13)

min
l

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

l +
l∑

s1=1

l−s1∑
sc=0

Pr{Sc = sc, S1 = s1 | l}TN (n − s1)

1 −
l∑

sc=1

Pr{Sc = sc, S1 = 0 | l}

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

.

Solving (13), the optimal frame size is obtained as L∗ = n.
The algorithm efficiency η = n

TN (n)
is shown in Figure 4. We

can see that η decreases with n and approaches e−1, which
coincides with the efficiency upper bound of Random Access
systems [10].

4.3 The Numerical Solution of L∗

Here, we introduce a method to compute the values of L∗

by running a recursive program.

From the last section, we know for a group with known
population k, the optimal frame size is L∗ = k and the
average reading time is TN(k). It is easy to imagine for a
group with tag population very likely to be k, the optimal
frame size should also be L∗ = k. In other words, if the
distribution of N satisfying:

1. vk > vi, where i �= k and 0 ≤ i ≤ Nmax, 1 ≤ k ≤
Nmax;

2. Var(v) < δ, where δ is a small enough value,

the optimal frame size is still L∗ = k. If it does contain k
tags, obviously, the average reading time approaches TN (k)
when δ → 0, or limδ→0 T (k |v) = TN (k). But if it contains

j tags, where j �= k, we let limδ→0 T (j |v) = T (k−j)
N (j),
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Figure 4: The efficiency of the Optimal Type 2 FA
algorithm when tag population N is known

or T (k−j)
N (j) is the average reading time for j tags starting

with the wrong information that N → k. Averaging all
these cases, we have

lim
δ→0

T (v) =

Nmax∑
j=0

lim
δ→0

vjT (j |v) =

Nmax∑
j=0

vjT (k−j)
N (j), (14)

where T (0)
N (j) = TN (j) for j = k. Similar to the derivation

in Case 3, the formula for T (m)
N can be obtained as: for

m < 0,

T (m)
N (n) =

{
L +

L∑
S1=1

X∑
Sc=0

Pr{Sc, S1|L} ∗ T (m)
N (n − S1)

+

−m−1∑
k=0

n+m∑
S1=0

Pr{Sc =
n − S1 − k

2
, S1|L} ∗ T (−k)

N (n − S1)

}

∗
{

1 −
X∑

sc=1

Pr{Sc = sc, S1 = 0 | L}
}−1

, (15)

and for m ≥ 0,

T (m)
N (n) =

L +
L∑

S1=1

L−S1∑
Sc=0

Pr{Sc, S1|L} ∗ T (m)
N (n − S1)

1 −
L∑

Sc=1

Pr{Sc, S1 = 0|L}
, (16)

where L = m + n and X = min(L − S1,
n−S1

2
). Limited by

space, we skip the mathematical details.

With the above formulas, the computer program is designed
as follows5 :

5This program is designed for SL = {1, 2, 3, 4, . . . } case. If
L is limited to the powers of 2, the program is simpler.
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Figure 5: State machine (N uniform distributed in
[1, 5])

==================================
Function [Tv , Lv]=OptimalAloha(v) // realize(9)

if (var(v) < δ) // the stopping condition
Tv = T (v); // using (14)
Lv = E[N ];
return;

end if
l =round(E[N ]); Tv = ∞;
for Lt = l − Δl : l + Δl // numerically find L∗

temp =0;
for s1 = 0 : Lt

for sc = 1 : Lt − s1

Calculate Pr{sc, s1|Lt} from (6)
Calculate b from (7) and (8);
[Tu, Lu]=OptimalAloha(u);
temp=temp+Pr{sc, s1|Lt}Tu;

end for
end for
if(Tv >temp)

Tv=temp; Lv = Lt;
end if

end for
==================================

The input is a vector v representing the distribution. The
program first checks its variance. If it is smaller than a
threshold δ (our experiment shows δ ≈ 0.4 is enough), the
optimal frame size is E[N ] and the average reading time
is calculated from (14); if not, it is numerically resolved.
Since the variance of the input distribution decreases as the
program is recursively used, the stopping condition will be
fulfilled after several loops.

For implementation, these results can be precalculated and
stored in database. There is no need to do any computation
during the reading process. For example, when tag pop-
ulation is uniformly distributed from 1 to 5, the optimal
strategy is shown in Figure 5 as a state machine.

5. APPLICATION EXAMPLES
In a modern supermarket where all the merchandize are
tagged, customers just need to walk their carts through a
door for all items to be identified. Let N denote the num-

Figure 6: The frame size for different value of α

ber of items in one customer’s cart. Although the precise
value of N is usually unknown, a distribution of N is often
available from the past sales statistics.

For a given distribution, most of the previous algorithms
can give the optimal frame size when the variance of N is
small. But when the variance of N is large, the frame size is
often inappropriately chosen. Here we use a simple example
to show that the optimal algorithm we proposed still works
efficiently for large-variance samples.

Consider an express check-out supermarket counter where
each customer is allowed to checkout no more than 20 items,
or N ≤ 20. To illustrate the effect of population variation
on reading performance, we set E[N ] = 10 and change the
variance. Var[N ] = 0 when all customers buy exactly 10
items each. Var[N ] is maximized when half of them buy 20
items while the other half buy nothing. In our experiment,
we choose:

Pr{N = n} =

{
1
Z

( |n − 10| + 10)α , 0 ≤ n ≤ 20,
0 , others

where Z is the normalization constant and α is a variable.
The variance of NA increase with α while E[N ] = 10 is
independent of α. Specifically, when α → −∞, Var(N) ap-
proaches 0; when α = 0, N is uniformly distributed in [0, 20];
and when α → ∞, Var(N) is maximum. (Note that this
distribution is chosen for simplicity. Other distributions we
tried give similar results.) Following Schoute’s and Vogt’s
strategies (L = E[N ]), the ’suitable’ frame size is just 10
regardless the choice of α. 6 For distribution-sensitive al-
gorithms (Floerkemeier’s algorithm and the Optimal Type
2 algorithm), the choices of frame size are listed in Figure
6. The frame size of both algorithms start with 10 for small
variance cases, but diverge to 20 and 1 respectively as the

6We do not simulate Kodialam’s algorithm [16], because in
his algorithm the reader uses several ‘training’ frames to es-
timate tag population before the real reading process starts.
As mentioned in section 3, this is not efficient for modern
RFID systems. Thus its reading time would be much longer
compared other algorithms.
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Figure 7: The average reading time from simulation

variance increases. Figure 7 shows the average reading time
of four strategies from computer simulation (the average of
1 million samples for each point) as a function of Var(N).
We observe:

• The performance of Schoute’s and Vogt’s algorithms
are barely distinguishable.

• Floerkemeier’s algorithm is marginally better than Schoute’s
when α < −2, or Var(N) < 24 but poorer when above.

• The Optimal Type 2 algorithm is the best for all val-
ues of α and the performance gain increases with the
variance of tag population;

• The minimum performance gain is obtained at α →
−∞, or Var(N) = 0, where the average reading time
of the Optimal Type 2 algorithm is 24.2 slots, the same
as that of Floerkemeier’s algorithm.

• The maximum performance gain is obtained at α →
∞, where the average reading time of the Optimal
Type 2 algorithm is reduced from 35.3 slots to 26.3
slots when compared to Floerkemeier’s algorithm.

The Optimal Type 2 algorithm is only marginally better
for small variance cases, because it is usually easier to find
the suitable frame size when the target group size does not
change dramatically. However, as the variance increases,
traditional algorithms fail to make suitable choices while
the optimal algorithm can still work efficiently. Since the
samples to identify usually have large variance in real appli-
cation, the improvement is considerable.

6. SUMMARY
In this paper, we proposed a new optimizing method for
Framed Aloha based RFID anti-collision algorithms. It makes
globally optimal decisions based on the current information.
The optimal parameters can be obtained by running an it-
erative program and adopted to different applications. Sim-
ulation results show that significant improvement was ob-
tained, especially when the variance of tag population is
large.
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