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Abstract—Protocol sequences are used for channel access in
the collision channel without feedback. Each user is assigned
a deterministic zero-one pattern, called protocol sequence. The
zeros and ones in a protocol sequence are read out periodically,
and a packet is sent if and only if it is one. A collision occurs
if two or more users transmit at the same time. Due to the lack
of feedback from the receiver and cooperation among users, the
beginning of the protocol sequences cannot be synchronized and
relative delay offsets are incurred. We study the design of protocol
sequences from two different perspectives. Under the first one,
called shift invariance, we aim at minimizing the fluctuation of
throughput due to relative delay offsets. As for the second one,
called user irrepressibility, we want to guarantee that each user
can send at least one packet successfully in each period. For both
design criteria, we derive a lower bound on sequence period and
give an optimal construction that achieves this lower bound.

I. INTRODUCTION

A. Channel Model

We consider a time slotted system with K transmitters
and one receiver. Within a slot duration, each transmitter
either sends out packet, or remains idle. If two or more
users transmit at the same slot, a collision occurs and the
collided packets are assumed unrecoverable. If there is only
one user transmitting in a time slot, the packet will be received
successfully. Forward error correction can be applied across
packets to recover erasures and errors. We will assume that
all successfully received packets are error-free, and define the
effective throughput as the fraction of packets that can be sent
without suffering any collision. We also assume that there is
no cooperation among the users, and no feedback from the
receiver.

The access of channel is done by assigning each user a
deterministic and periodic zero-one sequence, called protocol
sequence [1]. For i = 1, 2, . . . , K, the protocol sequence
associated with user i is specified by a row vector si :=
[si(0) si(1) . . . si(L − 1)], where L is the common period.
As there is no feedback from the receiver and no cooperation
among the users, each user has a relative delay offset τ , which
is random but remains fixed throughout the communication
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session. User i sends a packet at slot t if si(t + τ) = 1, and
remains silent if si(t + τ) = 0. Here, the addition by τ is
modulo L addition.

This channel model is applicable to wireless sensor net-
works with limited computing capability [2]. Instead of im-
plementing collision avoidance and backoff protocol, we de-
sign specific protocol sequences satisfying some favorable
statistical properties. Each user can simply store the assigned
protocol sequence in the memory and repeatedly read out the
sequence.

B. Design Criteria of Protocol Sequences

The goal behind the first criterion, called shift invariance,
is to minimize variance and fluctuation of throughput due
to delay offsets. Shift-invariant sequences are used in the
capacity achieving scheme for the collision channel without
feedback [1]. Some constructions of shift-invariant sequences
are provided in [1]–[3]. We present in this paper a general
construction method that contains the constructions in [1]–[3]
as special cases. We also establish a lower bound on sequence
period and show that the construction is optimal.

The second criterion is called user irrepressibility. The
objective is to guarantee that a user can send at least one packet
within a predefined tolerable delay. The worst-case delay is
bounded by the period of the sequences. We note that this is
a strict guarantee with probability one, in contrast to random
access scheme, like slotted ALOHA, where in a fixed period
of time it is only guaranteed that with high probability each
user has at least one successfully sent packet. Application of
this strict guarantee is mentioned in [4] for medical systems.
Some constructions of sequences with the property of user
irrepressibility can be found in [5]–[8]. We establish a lower
bound on sequence period and give a construction of sequences
that achieves this lower bound asymptotically.

Remark: Protocol sequences is related to optical orthogonal
code [9], and binary cyclically permutable codes [10]. The
main difference is that Hamming autocorrelation is inessential
in the design of protocol sequences. Only Hamming crosscor-
relation is considered.

II. SHIFT-INVARIANT SEQUENCES

The Hamming weight of a sequence is the number of ones
in a period. The duty factor [1] of a sequence is the Hamming

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on August 19, 2009 at 04:12 from IEEE Xplore.  Restrictions apply. 



weight divided by the period, which measures the fraction
of time a user is transmitting. The duty factor of user i is
denoted by fi := (1/L)

∑L−1
t=0 si(t). We identify the K users

with K := {1, 2, . . . ,K}. Let OK be the set

{(i1, . . . , in) ∈ KK : i1 < i2 < . . . < in, n = 1, . . . ,K}
which represents the collection of all ordered n-tuples of
users, for n = 1, 2, . . . , K. We define a generalized notion
of Hamming crosscorrelation for two or more sequences as
follows. For A = (i1, . . . , in) ∈ OK , let

H(τ1, . . . , τn; A) :=
L−1∑
t=0

n∏

j=1

sij (t + τj).

It is the number of slots in a period where all users in A
transmit at the same time, given that the delay offset of user
ij is τj , for j = 1, . . . , n. When n = 2, it reduces to the usual
notion of pairwise Hamming crosscorrelation. When n = 1, it
is simply the Hamming weight of the sequence.

Given an ordered tuple A ∈ OK , the Hamming crosscor-
relation H(τ1, . . . , τn; A) is said to be shift-invariant (SI) if
it is a constant function of τ1, . . . , τn. We say that a protocol
sequence set is shift-invariant if, for all ordered tuples of users
A ∈ OK , the Hamming crosscorrelation H(τ1, . . . , τn;A) is
shift-invariant.

When only users i1, . . . , in are active in a period, with
relative delay offsets τ1, . . . , τn, the throughput of user ij ,
denoted by θj(τ1, . . . , τn;A) for j = 1, . . . , n, is given by

1
L

L−1∑
t=0

sij (t + τj)
∏

` 6=j

(
1− si`

(t + τ`)
)
.

It is the fraction of time slots where user ij transmits and users
i1, . . . , ij−1, ij+1, . . . , in remain silent.

Example 1: The following are three shift-invariant se-
quences with duty factors 1/2, 1/3 and 2/3:

s1 = [1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0]
s2 = [1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0]
s3 = [1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0].

We can check that, for all τ1, τ2 and τ3, the values
of the Hamming crosscorrelations are H(τ1, τ2; (1, 2)) =
3, H(τ2, τ3; (2, 3)) = 4, H(τ1, τ3; (1, 3)) = 6 and
H(τ1, τ2, τ3; (1, 2, 3)) = 2.

A. Throughput

In order to reduce the fluctuation due to delay offsets, we
want to design protocol sequences such that the through-
put of each user is as stable as possible for all possible
delay offsets. In the extreme case, we want the throughput
to be invariant and independent of the delay offsets. This
motivates the following definition. Given n distinct users,
i1, i2, . . . , in (i1 < i2 < . . . < in), we say that the
throughput θj(τ1, . . . , τn; (i1, . . . , in)) is shift-invariant if it
is a constant function of τ1, . . . , τn. The next theorem says

that the requirement that all throughput functions are shift-
invariant is equivalent to the requirement that the Hamming
crosscorrelations are shift-invariant.

Theorem 1. A set of binary sequences {s1, s2, . . . , sK}
is shift-invariant if and only if the throughput function
θj(τ1, τ2, . . . , τn; A) is shift-invariant for every A ∈ OK , and
j = 1, 2, . . . , n.

Proof: (⇒) Suppose that the Hamming crosscorrelation
H(τ1, . . . , τn; A) is SI for all A ∈ OK . By re-labeling the
users, it is sufficient to show that the throughput of user 1 is
SI when users 1, 2, . . . , n are active, for all n ≤ K.

Let B be the set {1, 2, . . . , n}, and B be the ordered tuple
(1, 2, . . . , n). By the principle of inclusion-and-exclusion, the
number of time slots in a period where user 1 transmits and
users 2 to n are silent, is equal to

Lθ1(τ1, . . . , τn; B) = H(τ1; (1))−
∑

α∈B\{1}
H(τ1, τα; (1, α))

. . . + (−1)n+1H(τ1, . . . , τn; B). (1)

Since all Hamming crosscorrelations on the right hand side are
SI, we conclude that the left hand side is also SI. Therefore,
θ1(τ1, . . . , τn; B) is SI.

(⇐) Suppose that all throughput functions are SI. We
will prove that the Hamming crosscorrelations are SI by
mathematical induction. For k = 1, 2, . . . , K, H(τk; (k)) is
the Hamming weight of the k-th sequence, and is easily seen
to be SI.

Suppose that H(τ, . . . , τk;A) is SI for every order tuple
A with length less than or equal to n − 1. Consider B =
(1, 2, . . . , n) as in the first part of the proof. We can re-
arrange the terms in (1), and express H(τ1, . . . , τn;B) in
terms of throughput θ1(τ1, . . . , τn; B) and Hamming cross-
correlations associated with strictly less than n users. Since
θ1(τ1, . . . , τn; B) is SI by our assumption, and the Ham-
ming crosscorrelations associated with strictly less than n
users are also SI by the induction hypothesis, we see that
H(τ1, . . . , τn; B) is SI. This shows that the Hamming cross-
correlation corresponding to B = (1, 2, . . . , n) is SI. The proof
for other choices of n-tuples in OK is similar.

After showing that the throughput is SI, we now determine
the throughput. Since throughput is SI, it is the same as the
mean value, averaged over all possible delay offsets. When
the K users are all active and the duty factor of user i is fi,
for i = 1, . . . ,K, the throughput of user i is given by

fi

∏

j 6=i

(
1− fj

)
. (2)

A detailed proof can be found in [11].

B. Lower Bound on Period
We have seen that SI sequences achieve zero variance

in throughput. However, the cost for this is the exponential
growth of period as a function of the number of users.

Theorem 2. Let the duty factors of K shift-invariant se-
quences be ni/di, for i = 1, 2, . . . , K, such that ni and di
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are relatively prime for all i. Then the common period of the
sequence set is divisible by d1d2 · · · dK .

Proof: Suppose that p is a prime number that divides∏K
i=1 di. By re-labeling the users, we assume without loss

of generality that d1, d2, . . . , dj are all divisible by p, but
dj+1, . . . dK are not divisible by p. Let pe be the largest power
of p that divides

∏j
i=1 di.

Consider the Hamming crosscorrelation associated with
A = (1, 2, . . . , j). By the SI assumption, H(τ1, . . . , τj ;A) is
identically equal to an integer h for all τi’s. After summing
over all τ1, . . . , τj , we get

L−1∑
τ1=0

· · ·
L−1∑
τj=0

H(τ1, . . . , τj ;A) = Ljh. (3)

On the other hand, by the definition of Hamming crosscorre-
lation, we have
L−1∑
τ1=0

· ·
L−1∑
τj=0

H(τ1, . . . , τj ;A) =
L−1∑
τ1=0

· ·
L−1∑
τj=0

L−1∑
t=0

j∏

i=1

si(t + τi).

Exchange the order of summation,
L−1∑
t=0

j∏

i=1

L−1∑
τi=0

si(t + τi) = L

j∏

i=1

Lni

di
. (4)

Here, Lni/di is the Hamming weight of the i-th sequence.
From (3) and (4), we have h

∏j
i=1 di = L

∏j
i=1 ni. Since h

is an integer, we see that L
∏j

i=1 ni is divisible by
∏j

i=1 di,
and hence is also divisible by pe. However, for i = 1, 2, . . . , j,
ni/di is a reduced fraction, and consequently

∏j
i=1 ni is not

divisible by p. Therefore L must be divisible by pe.
Since the above argument is valid for all prime factors of∏K
i=1 di, we conclude that L is divisible by

∏K
i=1 di.

Theorem 2 has the following important corollary: the period
of SI sequence set is at least KK when the duty factors of the
K users are all 1/K.

C. An Optimal Construction for SI Sequences

The period of the generated sequences by the following
construction is optimal in the sense that it achieves the lower
bound in Theorem 2.

Construction: Suppose that, for j = 1, . . . , K, the duty
factor of the j-th sequence to be constructed is a reduced
fraction nj/dj . The least period of the j-th is the product∏j

i=1 di. To generate the j-th sequence, we construct an∏j−1
i=1 di by dj zero-one matrix, with exactly ni ones in each

row. The j-th sequence is obtained by “interleaving”, i.e.,
reading out the columns from left to right. We illustrate the
procedure by constructing the sequences in Example 1.

In Example 1, the duty factors are 1/2, 1/3 and 2/3. The
first sequence has least period 2 and is obtained by extending
[0 1] periodically. The second sequence has least period 6. We

construct the following 2× 3 matrix
[
1 0 0
0 1 0

]
.

The duty factor condition implies that each row must contain
exactly one “1”. By writing down the first, second and third

column one by one, we have [1 0 0 1 0 0], which can be
periodically extended to s2 in Example 1. The third sequence
is generated from the 6× 3 matrix which has [1 1 0] in each
of the six rows. The proof that the sequence set so generated
is SI can be found in [11].

III. USER-IRREPRESSIBLE SEQUENCES

A sequence set is called user-irrepressible (UI) if
for all j between 1 and K, the individual throughput
θj(τ1, . . . , τK ; (1, 2, . . . ,K)) is strictly positive for all possible
delay offsets, i.e., in the worst case, at least one successfully
sent packet for each user in each period is guaranteed. A set
of UI sequences has the favorable property of bounded delay,
namely, each user needs not wait for longer than the duration
of one period before a packet can be sent without collision.
We remark that a SI sequence set, unless the all-zero or the all-
one sequence are included, is user-irrepressible. This can be
seen by observing the throughput calculated in (2) is a positive
constant. However, the SI sequences have the drawback that
the period grows exponentially in the number of users. In order
to minimize delay, our objective is to design UI sequences with
period as short as possible.

If K users are active simultaneously, each user must trans-
mit at least K packets in a period in order to avoid complete
blockage by others. Otherwise, if a user, say user K, transmits
only K−1 packets in a period, we can arrange the delay offsets
of users 1 to K−1, so that the j-th packet of user K in a period
collides with a packet from the j-th user, for 1 = 2, . . . , K−1.
Then the throughput of user K will drop to zero. In this
paper, we restrict out attention to the case where each user
transmits exactly K packets in a period, and assume that the
Hamming weight of each sequence is exactly K. The sequence
that satisfies this requirement has the additional property that
it is the most energy-efficient while user irrepressibility is
maintained.

The following is a running example that we shall refer to
continually.

Example 2: s1, s2 and s3 form a set of three UI sequences:

s1 = [1 0 0 0 0 0 1 0 0 1 0 0]
s2 = [1 0 0 0 1 0 0 0 1 0 0 0]
s3 = [1 1 1 0 0 0 0 0 0 0 0 0].

We can verify that no matter how we cyclically shift the
three sequences, each user can send out at least one packet
successfully in a period.

A sequence will be represented in a compact way by
specifying the characteristic set of a sequence, which is the
set of locations of the K ones in a period. For example, the
characteristic sets of the three sequences in Example 2 are
respectively, I1 := {0, 6, 9}, I2 := {0, 4, 8}, I3 := {0, 1, 2}.
Cyclic shift of a sequence by τ is equivalent to adding τ
modulo L to the corresponding characteristic set.

A. An Equivalent Condition for User Irrepressibility

A necessary and sufficient condition for K sequences, each
of Hamming weight K, being user-irrepressible is that the
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pairwise Hamming crosscorrelation is either 0 or 1, for all
pairs of distinct sequences, i.e., H(τ1, τ2; (i, j)) ≤ 1 for all i,
j such that 1 ≤ i < j ≤ K. Suppose, on the contrary, that
the pairwise Hamming crosscorrelation between user 1 and 2
is larger than or equal to 2. Then there are at least 2 packets
of user 1 are in collision. There are at most K − 2 remaining
packets, which can be completely blocked by users 2 to K if
the delay offsets are chosen appropriately.

This motivates the following notation: set of differences. Let
ZL be the additive group of residues modulo L. For a subset
S of ZL, we let d(S) := {a1 − a2 : a1, a2 ∈ S}, and call it
the set of differences in S . If δ ∈ d(S) occurs as difference
of two distinct pairs of elements in S , it is only counted once;
multiplicity is irrelevant. Since zero is always in d(S) for any
subset S , we will consider d∗(S) := d(S)\{0}, the differences
between pairs of distinct elements in S .

We have the following equivalent condition for user irre-
pressibility.

Theorem 3. Let Ij , j = 1, 2, . . . , K, be the characteristic sets
of K sequences of period L, such that Ij contains exactly K
elements in ZL for all j. The corresponding sequence set is
user-irrepressible iff for all pairs of distinct i and j, d∗(Ii)
and d∗(Ij) are disjoint.

B. A Lower Bound on Period

For j = 1, . . . , K, let Ij be the characteristic set of the
j-th sequence. From Theorem 3, we see that the number of
nonzero elements in ZL must be at least

∑K
j=1 |d∗(Ij)|, where

|·| denotes the cardinality of a set. A lower bound on sequence
period can be obtained by lower bounding the size of d∗(Ij).
This is done by appealing to a theorem in additive number
theory, called Kneser’s theorem. We state a version of Kneser’s
theorem, which is tailored to what we need here. A proof of
Kneser’s theorem can be found in [12].

Theorem 4 (Kneser [13]). If a subset I in ZL satisfies

|d∗(I)| < 2|I| − 2,

then there exists a proper divisor α of L such that

d∗(I) ⊇ {kα : k = 1, 2, . . . , (L/α)− 1},
i.e., d∗(I) contains all multiples of α.

As an illustration of Theorem 4, consider the three charac-
teristic sets I1, I2 and I3 in Example 2. We have d∗(I1) =
{3, 6, 9} and |d∗(I1)| < 2|I1| − 2 = 4. By Theorem 4, d∗(I)
must contain the multiples of a proper divisor of L = 12.
Indeed, d∗(I) consists of the multiples of 3, which is a
proper divisor of 12. For I2, it satisfies |d∗(I2)| = |{4, 8}| <
2|I2| − 2 = 4. We can again verify Theorem 4 by observing
that the elements in d∗(I2) are precisely the multiples of 4.
For I3, we have |d∗(I3)| = |{1, 2, 10, 11}| = 2|I3| − 2 = 4.
The condition in Theorem 4 is not satisfied.

Theorem 5. For a set of K user-irrepressible sequences, in
which every sequence has Hamming weight K, then we have

L ≥ 1 + (K − ω(L))(2K − 2), (5)

where ω(L) denotes the number of distinct prime divisors of L.

Proof: In view of Kneser’s theorem, we classify the
sequences into two types. We say that a sequence is in class 1
if the associated set of differences contains the multiples of a
proper divisor of L, otherwise, we say that it is in class 2.

Suppose that we have two sequences in class 1, whose
sets of differences contain multiples of α and multiples of β
respectively. We claim that L/α and L/β must be relatively
prime. Suppose on the contrary that the greatest common
divisor of L/α and L/β, denoted by g, is larger than 1. Since
g divides L/α, we can find an integer x such that gx = L/α.
Hence, we have αx = L/g and thus L/g is a multiple of α.
By similar argument, we can find another integer y such that
gy = L/β, and conclude that L/g is a multiple of β. So, L/g
is contained in two sets of differences associated with two
distinct sequences. However, the UI assumption implies that
the two sets of differences can only have zero as the common
element. This contradiction completes the proof of the claim.

If there are m sequences in class 1, then there are m proper
divisors of L, namely α1, . . . , αm, such that L/α1, . . . , L/αm

are mutually relatively prime. The largest set of mutually
relative prime divisors of L is the set of distinct prime divisors
of L, which has cardinality ω(L) by definition. We thus have
m less than or equal to ω(L).

The above argument implies that there are no more than
K − ω(L) sequences in class 2. By the UI assumption, the
sets of differences associated with the sequences in class 2
are mutually disjoint sets of nonzero elements in ZL. Ignoring
the sequences in class 1, we have L−1 ≥ ∑

I in class 2 |d∗(I)|,
with the summation running over all sequences in class 2. By
Theorem 4, each summand is larger than or equal to 2K − 2.
Therefore, L− 1 ≥ (K − ω(L))(2K − 2).

We will use the inequality log2(L) ≥ ω(L), which holds for
all positive integers L, and replace ω(L) by log2(L) in (5).
We obtain

L ≥ 1 + (K − log2(L))(2K − 2). (6)

For a given integer K larger than 1, let LK be the smallest L
such that (6) is satisfied. It yields a lower bound for the period
of a set of K UI sequences with Hamming weight K.

We have the following asymptotic version of Theorem 5.

Theorem 6. Given an arbitrarily small ε > 0,

LK ≥ 1 + 2(1− ε)K(K − 1) (7)

for all K ≥ C(ε), where C(ε) is a constant that depends on ε.
Hence, lim infK→∞ LK/(2K2) ≥ 1.

Proof: Suppose that ε and K are given and fixed. We
consider two cases: (1) L > 2εK and (2) L ≤ 2εK . In the
second case, we replace log2(L) by εK in (6),

L ≥ 1 + (K − εK)(2K − 2) = 1 + 2(1− ε)K(K − 1).

Therefore, every integer L that satisfies (6) must be larger than
or equal to the minimum of 2εK and 1 + 2(1− ε)K(K − 1),

LK ≥ min{2εK , 1 + 2(1− ε)K(K − 1)}.
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Let C(ε) be the smallest value of K such that

2εK ≥ 1 + 2(1− ε)K(K − 1).

The constant C(ε) certainly exists because 2εK increases
exponentially in K but 2(1 − ε)K(K − 1) = O(K2). The
inequality in (7) holds for for all K ≥ C(ε). The result about
lim inf of LK follows directly from (7).

C. An Asymptotically Optimal Construction

Theorem 6 asserts that the period of a set of K UI sequences
with Hamming weight K is lower bounded by approximately
2K2 when K is large. In the remainder of this section
we will give a construction that achieves this lower bound
asymptotically.

Theorem 7. Let ΦK be the shortest period among all sets of
K UI sequences, each with Hamming weight K. Then

lim inf
K→∞

ΦK/(2K2) = 1.

The construction is based on Chinese remainder theorem.
The mapping f : Zpq → Zp ⊕ Zq defined by f(a) :=
(a mod p, a mod q) is a bijection from Zpq to Zp⊕Zq when
p and q are relatively prime [14], and preserves addition and
multiplication by integers. When the period of a sequence
is in the form of pq, with p and q relatively prime, the
characteristic set can be mapped to a subset of Zp⊕Zq , which
consists of ordered pairs in the form (x, y) with 0 ≤ x < p
and 0 ≤ y < q. We will construct sequences by specifying
characteristic sets in Zp ⊕ Zq .

Construction: Given K, we set q to be 2K − 1, and p the
smallest prime larger than or equal to K and relatively prime
to 2K − 1. For j = 0, 1, . . . , K − 1, we let

I ′j := {(jy mod p, y) ∈ Zp ⊕ Z2K−1 : y = 0, 1, . . . ,K − 1}
and obtain the characteristic sets of the sequences, Ij , by
taking the inverse image f−1(I ′j) for j = 0, . . . , K − 1.

Since f is a bijection, we have |Ij | = K for all j, and
the Hamming weight of each constructed sequence is K. To
show that the resulting sequences are UI, we define d∗(I ′j) in
the same way as d∗(Ij), but with the addition and subtraction
done in Zp⊕Z2K−1 instead of Zp(2K−1). UI holds if d∗(I ′0),
d∗(I ′1), . . . , d∗(I ′K−1) are mutually disjoint. Suppose for the
sake of contradiction that, we can find two distinct α and β
in {0, 1, . . . , K − 1} such that d∗(I ′α) and d∗(I ′β) share a
common element. Then

(αy′1, y
′
1)− (αy1, y1) = (βy′2, y

′
2)− (βy2, y2)

for some y′1 6= y1 and y′2 6= y2. By equating the second compo-
nents on both sides, we see that y′1−y1 = y′2−y2 mod 2K−1.
Since the range of y1, y′1, y2 and y′2 is between 0 and K − 1,
we must have y′1 − y1 = y′2 − y2. From the first component,
we obtain (α − β)(y′1 − y1) ≡ 0 mod p, which implies that
y′1 = y1. This contradicts the assumption that y′1 6= y1.

In order to show the asymptotic result in Theorem 6, we
consider the sequence of prime numbers p1, p2, . . ., and let
q` = 2p` − 1 for ` = 1, 2, . . . . It is clear that p` and

q` are relatively prime. So, we obtain a sequence of UI
sequence sets. The `-th sequence set comprises p` sequences
of period p`(2p`−1) and Hamming weight p`. This sequence
of UI sequence sets shows that the asymptotic lower bound in
Theorem 6 is tight. This proves Theorem 7.

IV. CONCLUDING REMARKS

Two extreme ends in the design of protocol sequences are
investigated. We proved that the shortest UI sequences studied
in this paper have period 2K2, where K is the number of
users. In the worst case, there is only one successful packet
per user in a period; the worst-case individual throughput
decays as 1/(2K2). On the other hand, SI sequences have
good and stable performance measure in terms of throughput;
when the duty factor of every user is 1/K, the worst-case
individual throughput is around e−1/K, yet the period grows
like KK . There is clearly a tradeoff between period length and
worst-case throughput. Sequence sets that lie between these
two extreme cases are of interests. One such construction,
called wobbling sequences, is studied in [6]. The wobbling
sequences are of period O(K4) with worst-case individual
throughput lower bounded by 0.25/K. The optimal tradeoff
between period and worst-case throughput is an interesting
direction for further studies.
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