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Abstract—We consider collision channel without feedback in
which collided packets are considered unrecoverable. For each
user, the transmission of packets follows a specific periodical
pattern, called the protocol sequence. Due to the lack of feedback,
the beginning of the protocol sequences cannot be synchronized
and nonzero relative offsets are inevitable. It results in variation
of throughput. In this paper, we investigate optimal protocol
sequence sets, in the sense that the throughput variance is zero.
Such protocol sequences are said to be shift-invariant (SI). The
characterizing properties of SI protocol sequences are presented.
We also prove that SI sequences are identifiable, meaning that
the receiver is able to determine the sender of each successfully
received packet without any packet header. A general construction
of SI sequences that meets the lower bound on sequence length
is given. Besides, we study the least periods of SI sequences, and
show that the least periods must be distinct in some cases. The
throughput performance is compared numerically with other
protocol sequences.

Index Terms—Collision channel without feedback, protocol se-
quences.

I. INTRODUCTION

I N the context of multiaccess communication, random
accessing has attracted many research activities due to its

simplicity and effectiveness in different systems and applica-
tions [1]–[6]. In a shared channel, when two or more users
transmit without coordination, collisions will occur generally.
For example, in slotted ALOHA, where each user sends out a
packet independent of the others, packet collisions cannot be
avoided. To have a collision-free transmission, one may use a
rigid protocol such as time division multiple access (TDMA).
However, this may not be practical sometimes due to stringent
time synchronization requirement. Contention based random
access protocols such as IEEE 802.11 CSMA/CA [7] can
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provide a more flexible transmission scheme. However, they
require some backoff algorithms and a feedback link to provide
a reliable and stable communication channel.

For system simplicity, it is desirable to have a simple mul-
tiple access protocol which does not require stringent time
synchronization, frequent channel monitoring, and complicated
processing such as backoff algorithm or random number gen-
eration [6]. The result will be particularly useful in emerging
communication systems such as impulse radio [8] and wireless
sensor networks [9] in which well-coordinated transmissions
and time offsets may be too costly to devices with constrained
resource. The idea of using deterministic coding sequences,
namely protocol sequence, to define random accessing in a col-
lision channel without feedback [2] is worth a revisit. Therein,
senders cannot synchronize transmissions between one another
as their relative time offsets are unknown to each other due
to a lack of feedback link. Besides, packet retransmission and
backoff mechanisms are not employed. Each sender will just
transmit packets at the times governed by his own protocol
sequence.

Generally speaking, the idea of using protocol sequences
can be described as a derandomization of the probabilistic
ALOHA scheme. The advantages of employing deterministic
protocol sequences instead of probabilistic random accessing
are twofold. Theoretically, we can derive the zero-error capacity
region for the collision channel without feedback when deter-
ministic protocol sequences are employed. Provided that the
protocol sequences are properly designed, it can be guaranteed
that, with probability one, the throughput of each user is greater
than a positive constant regardless of their relative delay offsets.
On the other hand, practically, the sequences may have some
structures that allow the receiver to determine from whom a
packet is sent, even without header information. In other words,
the sender of a packet can be identified without overhead.

Under the model of collision channel without feedback,
Massey and Mathys have shown that a reliable multiaccess
communication is indeed achievable and a corresponding
scheme with carefully designed protocol sequences was pre-
sented in [2]. More general sequence constructions using
constant-weight cyclically permutable codes are reported in
[10], [11] afterwards. See also [12] for a recent survey on coding
for multiple access channel without feedback. In the context
of optical communications, protocol sequences are studied in
the name of optical orthogonal codes [13]. They are related but
have quite different design criteria. Another class of periodic
deterministic sequences, called linear congruence sequences
[14], is originally designed for time-frequency hopping signals
but can also be regarded as protocol sequences. Independently,
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prime sequences [15], a subset of linear congruence sequences,
are proposed and employed in optical spread spectrum systems.
Built on the concept of prime sequences, a family of protocol
sequences, called wobbling sequences [6], is designed to sup-
port multi-rate service and a large number of active users. They
are suitable to serve as random access protocols, in particular
for applications in some wireless ad hoc or sensor networks.

In the design of protocol sequence, some common concerns
include the maximum number of sequences supported for active
users, their correlation properties and resulting throughput, the
sequence length, overheads required for sender identification,
and service rate flexibility. In all the constructions mentioned
above, the protocol sequences in [2] have sequence length expo-
nential in the number of users, while all the other have polyno-
mial lengths. However, the former enjoys a special property that
the throughput of each user is constant and independent of any
relative delay offsets. This zero-variance or shift-invariant (SI)
property is favorable and also reported in a recent design in [16].
However, both constructions suffer from the same drawback that
the sequence length grows exponentially with the number of
users.

In this paper, we investigate the protocol sequences whose
throughput performance is shift-invariant in general, and discuss
several implications. After setting up the channel model and re-
quired notations in Section II, we prove several important prop-
erties of SI protocol sequences in Section III. In Section IV, we
first derive a lower bound on the period of SI protocol sequences
and then describe a construction method that can achieve this
lower bound. In Section V, it is shown that in some special cases,
the least periods of SI sequences must be distinct. Section VI
gives some numerical studies. Finally, we close in Section VII
with some concluding remarks.

II. CHANNEL MODEL AND NOTATIONS

Following the model of collision channel without feed-
back [2], we consider a communication channel in which
time is divided into time slots of equal duration and shared
by active users. Each user follows a binary sequence,

, and will transmit a packet at time slot
if . Otherwise, it keeps silent. Here, for simplicity,
we restrict our attention to the slot-synchronized model in
which users transmit packets aligned to the slot boundaries. It
is assumed that users know the slot boundaries. However, they
do not know the time offsets between one another and cannot
coordinate their transmission schedules. Generally, there are
time delay offsets between users. It should be noted in fact it is
possible to remove the assumption that users are slot synchro-
nized. Some approaches and discussions are presented in [2],
[17], and [18] with coding, interleaving, and error correction
techniques. However, this more general scenario will not be
addressed in this paper.

At any time slot, a packet collision occurs if more than one
user transmits at the same time. All transmitted packets in this
duration are considered lost. Otherwise, the receiver can re-
ceive the packet correctly and decode the content. The effec-
tive throughput of a user is defined as the fraction of packets
it can send without suffering any collision. For practical con-
siderations, forward error-correcting code can be applied across

packets to recover data lost or correct erasures due to potential
collisions [18]–[20].

Some notations and definitions are as follows. We consider
binary sequences of period . For , the th

sequence is specified by a row vector

(1)

whose components are the first bits of the sequence. The
cyclic shift of a sequence by is denoted by

(2)

where represents addition modulo . The th bit of is
denoted by . The Hamming weight of a sequence is the
number of ones in a period.

In this paper, we study the following generalized notion of
Hamming cross correlation. We denote the set of users by

. Let be the collection of all ordered tuples of
length , whose components are distinct elements in

and sorted in ascending order. It consists of -tuples in the
form for some between 1 and , and

. An element in corresponds to an ordered
tuple of users.

For with , we define
the Hamming cross correlation associated with as

(3)

In other words, it counts the number of slots in a period where
all users in transmit simultaneously. When consists of only
one user, it reduces to the Hamming weight. When consists
of two users, it is the usual Hamming cross correlation defined
for a pair of users.

A function is said to be shift-
invariant if equals identically to a constant for
every choice of . We say that a sequence set is shift-in-
variant if the Hamming cross correlation in (3) is shift-invariant
as a function of , for every in .

When only the users in the ordered tuple
are active and the offset of user is , for ,

the throughput of user is defined as

(4)
where the product is over all except . This
is the fraction of time slots in which user transmits and users

keep silent.
The fraction of time in which a user is transmitting is called

the duty factor, which equals the Hamming weight of the cor-
responding sequence divided by the period. We will denote the
duty factor of user by

(5)

Note that for all is identically equal to .
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Example 1: The following is a set of three shift-invariant pro-
tocol sequences with duty factors and

We have ,
and , for

all and .

III. PROPERTIES OF SHIFT-INVARIANT PROTOCOL SEQUENCES

We will use the following notation. Given binary se-
quences of length , and for all ,
let be the number of time indices

, such that for all .

A. Characterization

The next theorem gives a few properties of SI sequences,
which are equivalent to each other.

Theorem 1: Let be binary sequences of period .
The following conditions are equivalent.

1) The sequence set is shift-invariant.
2) For each choice of , the number of times that the

column vector appears in the matrix

...
(6)

is independent of the offsets . In other words,
is a shift-invariant func-

tion of .
3) The throughput function is shift-in-

variant for every and .
In the second property, the matrix in (6) is obtained by cycli-

cally shifting row in the sequence matrix

...

by . Hence it can be rephrased in the following equivalent
form.

2’) For each choice of delay offsets , the matrix
can be obtained by permuting the columns

in .
In the next section, we will present a construction for SI se-

quences, and use Property 2’ to show that the constructed se-
quences are indeed SI.

Proof: 1) 2). By permuting the rows of ,
we may assume without loss of generality that for

, and for . Suppose that
the relative offsets are . Let be the set of columns
in such that the top components are all one.
For , let be the set of columns in

whose th component is also equal to . By the principle of
inclusion-and-exclusion, what we want to count is equal to

(7)

The first term equals . Each sum-
mand in the first summation equals

Similarly, all summands in (7) can be written in terms of Ham-
ming cross correlations, which are assumed to be SI. Therefore,
the whole expression in (7) is SI.

is the number of columns in
that equals , and hence is shift-

invariant by the first statement in condition 2.
2) 3). Set to any arbitrary values. Suppose

that consists of the first users, i.e.,
. We sum over all combina-

tions of and obtain

As each summand in the right-hand side (RHS) is SI by assump-
tion, so is the left-hand side (LHS). By setting and
for , we conclude that, when users in
are active, the throughput of user is SI.

We have thus proved Property (3) for the case
. The proof for other choices of is similar.

3) 1). Suppose the throughput is SI. We will show that the
Hamming cross correlation is SI by induction on the length of

.
When the length of is one, i.e., for some

equals the Hamming weight of the corresponding
sequence and is obviously SI.

Suppose that the Hamming cross correlation of each con-
sisting of no more than users is SI. Let be an -tuple in

. Without loss of generality, assume that .
Suppose that the relative offsets of users are ,
respectively. Let .

By the principle of inclusion-and-exclusion, the number of
time slots in a period where user 1 transmits and users 2 to are
silent, is

By rearranging terms in the above equation, we can express
in terms of throughput ,

and with the length of , denoted by ,
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strictly less than . Therefore, can be written
in terms of functions, that are all SI by induction, and so

must be also SI.
By similar argument, we can show that for every -tuple in

, the Hamming cross correlation associated with is SI.
Having proved that the three properties in Theorem 1 are

equivalent, we see that we could define SI sequences by each
of the three properties, and the result would be the same.

B. Throughput

We see from the previous characterization theorem that when
SI sequences are used, the individual throughput is a constant,
independent of delay offsets. We determine this constant in this
subsection, and show that the throughput is the same as if user

transmits a packet in each slot independently with probability
, for all .
We first prove the following lemma, which is a generalization

of the case when in [21].

Lemma 2: Suppose that are sequences of pe-
riod . Let be the Hamming weight of for .
For , we have

(8)

In particular, putting , and
, we have

(9)

Proof: Given a time index , we have for
all if and only if

for all . We can thus express the counting function

as

Summing the above over all possible relative offsets and ex-
changing the order of summation and multiplication, we obtain

Note that the inner summation equals when , or
when . Therefore,

This proves the equality in (8).

Theorem 3: Let be SI protocol sequences
with duty factors , respectively. The throughput
of user is equal to

(10)

Proof: We set and for , and divide both
sides of (8) by . The LHS of (8) becomes

which equals the average throughput over all possible offsets.
The RHS of (8) becomes

which equals .

Unless some duty factors equal zero or one, we see from
the above theorem that the throughput of any user is always
nonzero. In other words, the number of successfully received
packets in each period is a positive constant no matter what
the offsets are. Each user can successfully send out at least one
packet in each period. We call this particular property user-ir-
repressibility, which is first investigated in [6].

When all users have the same duty factor , the individual
throughput is

It is easy to see that the individual throughput (and, hence, the
system throughput) is maximized in this symmetric case when

. When tends to infinity, the system throughput
tends to —the same as in slotted ALOHA.

C. Identifiability

It is assumed that a receiver can detect whether no packet, one
packet or multiple packets are transmitted in any given time slot.
In the case of multiple transmissions in a time slot, all packets
are assumed to be lost. We let

if time slot is idle
if exactly one user transmits at time slot
if more than one user transmits at time slot

We say that a sequence set is identifiable if the receiver can de-
termine the sender of each successfully received packet, based
on the information represented by , regardless of the off-
sets.
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Example 1 (Continued): Suppose that the relative delay off-
sets of users 1, 2, and 3 are, respectively, 0, 1, and 3. The shifted
protocol sequences are

The received pattern is

The receiver must be able to tell, based on this pattern only, that
the packets at and originates from user 1, the packets
at and from user 2, and the packet at from
user 3.

It is noted that the offsets need not be uniquely determined.
If the delay offset of user 3 is changed from 3 to 2, then the
transmitted protocol sequences are

with the same received pattern. Therefore, it is not possible to
tell from the information provided by whether the delay
offsets of user 3 is 2 or 3. However, in any case, we are sure that
the packet at is transmitted by user 3.

In [2], Massey and Mathys devised an algorithm, called dec-
imation algorithm, to solve the identification problem for the SI
sequences they constructed in their paper. In the following the-
orem, we show that the identification problem can be solved in
general for all SI sequences.

Theorem 4: If a set of protocol sequences is shift-invariant,
then it is identifiable.

Proof: Suppose that for , the delay offset
of user is . Also, suppose that, starting from time , the
receiver observes the channel for a full period, and the received
pattern is , for . We
will show how to identify the successfully transmitted packets
from user .

Let be the collection of delay offsets
so that the following two conditions are satisfied:

1) For all such that , we have equals 1
or *.

2)
= number of successful packets from user within one

period.
The actual delay offset of user , which is assumed to be

unknown to the receiver, certainly satisfies the above conditions.
Hence is nonempty. We set

.
We claim that for each , the packets with time indices

in are indeed from user . The claim is obviously true
for . For , we will prove the claim by
contradiction.

Suppose and . Since
and have the same cardinality, we can find a temporal

index in but not in , and a temporal index in
but not in . Hence and
are nonempty and have the same cardinality. As is equal
to 1 for all , the packets corresponding

are successfully received. However, these packets
are not from user . Now, suppose that the delay offset of user

were changed from to , we would have collisions for
, and empty slots for . Let

be the resulting received pattern. We would have

if
if
if
otherwise

For , the time slots at time change from
to , while for , the time

slots at time change from to . Therefore,
the number of “1” in is strictly less than that in . This
contradicts the shift invariance of throughput, and thus proves
the claim that for all .

In order to identify the successful packets from user at the
receiver, we search for a that satisfies the two conditions above.
For any such , the packets with temporal indices in are
the packets from user .

IV. AN OPTIMAL CONSTRUCTION

We will first derive a lower bound on the period of SI pro-
tocol sequences in this section. Next, a construction method that
achieves this lower bound is presented.

Lemma 5: Suppose that is a sequence set of
period . Let be the duty factor of for .
If the sequences are shift-invariant, then the period must be
divisible by

(11)

for any subset of . Here denotes the greatest
common divisor of and .

Proof: Suppose that contains elements. By definition,
is equal to a constant, say , for all .

Summing over all , we obtain from
(9)

which can be simplified to

Let be the gcd of and . We have

Since and are relatively prime, we
conclude that is divisible by .
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Theorem 6: For any set of shift-invariant sequences
with duty factors , such that

for all , the period is divisible by .
In particular, the period is larger than or equal to .

Proof: Suppose that is a prime factor of , and
is the largest power of that divides . Let be

the set of all indices so that divides . Since is a re-
duced fraction for all cannot divide both and . Therefore

is not divisible by , and .
By Lemma 5, the period is divisible by . Since this is true for
any prime power factor of , we conclude that the pe-
riod must be divisible by .

In the symmetric case where all users have the same duty
factor , the period must be at least , which increases ex-
ponentially with the number of users.

We now describe an algorithm for the construction of SI se-
quences with common period achieving the lower bound in The-
orem 6. Suppose that , are the duty factors
of sequences. We will assume that the duty factor is neither
0 nor 1. In our construction, the th sequence has period

(12)

and is a common period of the whole sequence
set. The least period of a sequence is the smallest positive
integer such that . In general, the least period of the
th sequence in our construction may be smaller than .

Construction: For , the th sequence is
constructed as follows. Select vectors of length , say

, such that the Hamming weights of them
are all equal to , and interleave these vectors in the
manner defined in (13). ( is defined as 1, as the empty
product is equal to by convention.) A period of bits in
is defined as

(13)

The construction can be described as the following inter-
leaving operation. Write down a array of zeros
and ones, such that there are ones in each row. The th
sequence is obtained by reading out the columns of this
array. The th sequence has the property that, for each be-
tween and , there are precisely ones at time

.

Example 1 (Continued): If we pick ,
, and for , we then

obtain the three sequences in Example 1.

Example 2: and the duty factors are and . We
pick , and

. The two constructed sequences are

The first sequence is obtained by repeating pe-
riodically. For the second sequence, we write down

in an array

and read out the columns from left to right.
In order to verify the SI property, we define a ma-

trix as follows. Let be given positive inte-
gers. For each , pick vectors of length

, such that each is a permutation of
. The th row of is obtained by periodically

repeating the row vector

(14)

As an example, when and for all , we pick
as for all and , .

The resulting matrix is

(15)

Lemma 7: Let be the matrix obtained by cyclically ro-
tating the th row of by , for some integers .
Then columns of are the columns of in some permuted
order.

Proof: We arbitrarily choose the offsets and fix
them. Without loss of generality, we assume that . We
will show that for , the column vector

appears in the columns of exactly once. It
is equivalent to saying that the columns of are distinct.

We can alternatively construct in a recursive manner. Let
be the matrix

The entries in are distinct by definition.
After constructing an matrix , we define

an matrix

The first rows of is a repetition of times. The
th row of is a cyclically rotated version of in (14).

For any choice of , with ,
, the column vector appears once

and only once in by induction hypothesis. Suppose that
the th column of is . Consider columns

in matrix . By
construction, the first components in these columns are
precisely . No matter how we cyclically rotate
the last row in , the last components in these columns are
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in some order. This proves that the columns of
are all distinct.

We have shown by mathematical induction that have dis-
tinct columns for . The proof is complete by
noting that equals .

Theorem 8: Using notation in the previous lemma, we map
entries in the th row of with values
to 1 and those with values to . Let
the th row of the resulting matrix be the th sequence . The
sequences are SI sequences of length
with duty factors , respectively.

Proof: The SI property of the constructed sequences fol-
lows from Lemma 7 and condition (2’) after Theorem 1.

Example 3: Apply the map in Theorem 8 to the matrix in (15),
and mapping , we obtain the following
three protocol sequences

These form a set of three SI protocol sequences, with duty factor
and common period .

This construction generalizes previously known construc-
tions in the literature. If is chosen as

i.e., we put appropriate number of “ ” in the leftmost compo-
nents, for all and , we then obtain the construction by da
Rocha [19] and Massey and Mathys [2]. The construction in
this paper also includes the construction in [16] as a special
case. However, the construction presented in this section is by
no mean exhaustive. There are examples which cannot be con-
structed using our construction. The following is an example.

Example 4: The two sequences

are SI with duty factor and . The least periods of them
are both 36. We can check that the Hamming cross correlation
equals 5 for every relative offset. However, they cannot be gen-
erated by the construction in Theorem 8.

Remarks: We have shown in Section III-C that the sender of
a successfully received packet can be uniquely identified for SI
protocol sequences in general. For the protocol sequences con-
structed by the method in this section, the generalized decima-
tion decoding described in [19] is applicable and can recognize
the sender in a more efficient way.

V. STRUCTURAL THEOREMS

This section investigates some structures in protocol se-
quence set when the denominators of the duty factors are all
equal to a prime number . Recall that the least period of a
sequence is the smallest integer such that . We

will show in this section that the least periods must be distinct
whenever the least common period is a power of prime.

The proof is based on analysis of SI sequences in the Fourier
transform domain. Let denote the complex th root of unity

. The Fourier transform of a sequence is defined as

for . The support of the Fourier trans-
form, denoted by , is the set of frequencies such
that is nonzero. We say that a set of protocol sequences
are pairwise shift-invariant if are SI for every

-tuple . For pairwise shift-invarance, there is no restriction
on for of length or higher. The
results are based on the following key property of pairwise shift
invariance in the frequency domain, which can be interpreted
as follows: The protocol sequences in a pairwise shift-invariant
sequence set are “mutually orthogonal” and occupy disjoint
bandwidth, if we neglect the “DC component.”

Theorem 9: For every pair of nonzero sequences in a pairwise
shift-invariant sequence set, the intersection of the supports of
their Fourier transforms equals .

Proof: It suffices to prove the following: If the Ham-
ming cross correlation between and is SI, then for

, either or , or both, is equal to
zero.

Since Hamming cross correlations of and are SI, the
function identically equals a
constant for all . The Fourier transform of is

On the other hand

Therefore, for . The proof is finished
by noting that if and only if .

Example 3 (Continued): For the three protocol sequences
in Example 3, the supports of their Fourier transforms are

and . We see that,
if is disregarded, they are mutually disjoint.

Theorem 10: If the least common period of a SI sequence set,
in which there is neither all-zero nor all-one sequence, is a power
of a prime number , then the least periods of all sequences in
the set are distinct.

If the lower bound on sequence period in Theorem 6 is
achieved, we have the following stronger statement.
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Fig. 1. The minimum, mean, and maximum individual throughputs from simulation are plotted. The number of users is denoted by �, and the duty factor of each
user is equal to ���. The result investigates the scenario when the system sum rate equals one.

Theorem 11: Suppose that the duty factors of a set of shift-
invariant sequences are , for , and

is a prime number. If the least common period of the protocol
sequences is , then the least periods of the sequences are ,

. Moreover, they can be constructed by the method
described in Section IV.

The proofs of Theorem 10 and 11 are contained in the
Appendix. As an illustration, consider a set of three SI se-
quences, each with duty factor . The minimum period is
by Theorem 6. For all set of three SI sequences with duty factor

, achieving the minimum period , the least periods of the
sequences must be , , and . Furthermore, we can construct
all such sequence sets by the construction in Section IV. An
example is shown in Example 3.

Corollary 12: When the duty factors are for
, the number of distinct sets of SI sequences

of period , up to relabeling and cyclically shifting of the
sequences, is

The proof is relegated to the Appendix.
For the case when there are sequences of length , with

duty factor for each sequence, the sum of duty factor equals
and the system is fully saturated. The total number of distinct

sets of SI sequences for this case is

VI. NUMERICAL STUDIES

A numerical evaluation of the throughput performance of SI
protocol sequences is presented below. The result is compared

with those achieved by linear congruence sequences [14], wob-
bling sequences [6], and a random access scheme. Nevertheless,
it is noted that originally these sequences may have different de-
sign favors or criteria for different applications.

We study the symmetric, fully saturated system in which
there are active user, each of which has a duty factor equal
to . Since the system is symmetric, it suffices to consider
the throughput of one particular user. In general, given a set
of protocol sequences, the throughput of a user depends on his
time offsets relative to the other users. To obtain an average per-
formance, we conduct simulation runs, assuming that the
time offsets of the users are uniformly distributed within the
period of a given sequence set. Note that the periods of linear
congruence sequences, wobbling sequences, and SI sequences
are , and , respectively. For comparison purpose, we
also consider the following simple random access scheme: in
each time slot, each user transmits a packet independently with
probability ; the throughput of a user is averaged over a
period of .

The throughput performance of different schemes are com-
pared in Fig. 1, for . For each , the maximum,
mean and minimum individual throughputs of the schemes are
plotted. The mean individual throughput of each scheme coin-
cides with each other. We connect the mean individual through-
puts by a piece-wise linear curve. The symbols above and below
this curve indicate the maximum and minimum throughput of
the corresponding scheme, among the simulation runs.

Remark: From Theorem 3, we can find that the mean indi-
vidual throughput of each sequence set is equal to

As expected, SI sequences yield constant throughput. Wobbling
sequences possess user-irrepressibility, thus guaranteeing a
positive minimum throughput. As linear congruence sequences
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lack this guarantee, a user can be completely blocked and has
zero throughput in the worst case. As for the random access
scheme, the difference between maximum and minimum
throughput becomes smaller and smaller when the averaging
period increases. Asymptotically, the individual throughput
converges to the mean with probability one, a fact implied by
the strong law of large numbers.

VII. CONCLUSION

There is a tradeoff between the length of protocol sequences
and the variance of throughput performance. This paper con-
siders the extreme case where the throughput of each user is not
affected by the relative delay offsets of the sequences at all. The
cost of such shift-invariant property is that the length of the se-
quences must be exponential in the number of users. We inves-
tigate some properties of SI protocol sequences. A simple con-
struction that achieves the lower bound on period is presented.
If a small variance of throughput performance is allowed, the
length of the protocol sequences can be reduced. The tradeoff
between sequence length and performance deviation caused by
offsets variation is an interesting issue for further study.

APPENDIX

We will continue using the notation as in Section V, and let
and be, respectively, and the sequence period.

We first show that the least period can be determined from its
Fourier transform [22, p. 75].

Lemma 13: Let be a sequence of period . Denote the addi-
tive group of residues mod by . The least period of is the
smallest factor of such that the support of is contained in
the subgroup of of order .

Proof: Suppose that is a period of . Then, for

Hence, . This implies that if is nonzero,
must be a multiple of , i.e., the support of is contained

in the subgroup of of order . Conversely, suppose that the
support of is contained in the subgroup of of order . By
the inverse Fourier transform

we verify that is of period .
We have shown that any integer is a period of if and

only if the support of is contained in a subgroup of order .
The least period of is the smallest factor of such that the
support of is contained in the subgroup of order in .

We denote the Galois group of the cyclotomic field ,
generated by over , by . It consists of
automorphisms of over , where is Euler’s totient
function. Each automorphism maps to for some integer
which is relatively prime to [23, p. 255].

For nonzero , let be the -adic valuation function,
which is defined as the largest nonnegative integer such that

divides . For .

Proof of Theorem 10: Assume that for some in-
teger .

Claim: For two , if ,
then there is an automorphism that maps
to . To prove the claim, we let . Then
the two integers and are not divisible
by . Hence we can find an integer ,
relative prime to , such that

In other words, there is an automorphism, say , of over
, where , with . This automor-

phism of can be extended to an automorphism of ,
meaning that there is a such that is equal
to if we restrict the domain to . This is the required au-
tomorphism and the claim is proved.

From Lemma 13, the least period of a sequence , for
, is equal to , where is the smallest valuation

in the support of ,

Suppose that there are two sequences, say and , that share
the same least period. Then there are and with the same
valuation , such that and .
However, using the claim above, there is an automorphism

which takes to , implying that

Since field automorphism is injective, is nonzero. By
Theorem 9, and cannot be nonzero at the same
time. This yields a contradiction.

Proof of Theorem 11: By Theorem 10, the least periods of
the sequences are distinct. However, in a sequence set with
common period , there are only possible choices of
least periods, namely . The least periods of the
sequences must be precisely .

We relabel the sequences so that the least period of the th
sequence is , for . It is certainly true that the
first sequence with period can be constructed by the method
in Section IV. In the following, we consider the th sequence for

.
From the proof of Theorem 10, the support of is in-

cluded in
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Hence for all nonzero with . Let
be nonnegative integer such that , i.e., is di-
visible by . We can combine like terms in the definition
of and obtain

Here, we have used the fact that is of period and
.

Since , we can further decompose the
above summation into a double summation

This motivates the definition of the following polynomial

(16)

The above arguments show that for each
that is divisible by , i.e., all th

roots of unity , except , are roots of . As the degree
of is , we have thus found all roots of . We
can write as

for some constant , with the product taken over all th roots
of unity except . Hence, we obtain

(17)

The value of can be determined by considering the number of
ones in in a period of , and substituting

Therefore, the constant must equal . By comparing coeffi-
cients of (16) and (17), we have

for all . We have thus proved that for all
, the total number of ones among

is equal to .

Proof of Corollary 12: We relabel the sequences such that
the least period of the th sequence is . For the th sequence,
there are choices for , for each in the
construction.

The th sequence so constructed has the property that, for
each , there are exactly ones at time

. (The locations of the ones are dif-
ferent for different ). Since this property is preserved by cyclic

shift, we conclude that the sequences obtained by ex-
hausting all possible choices of ’s are closed under cyclic
shift. The number of cyclically distinct sequences of least pe-
riod that can be generated is, therefore

The number of distinct sets of SI sequences with duty factors
and period specified in the corollary is obtained by multiplying
the number of cyclically distinct sequences for user , for

The corollary is proven by substituting by , and
by .
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