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Distributed Power Control for Time Varying Systems:
Performance and Convergence Analysis

Huanshui Zhang, Member, IEEE, Chung Shue Chen, Student Member, IEEE, and Wing Shing Wong, Fellow, IEEE

Abstract—This paper deals with a class of power control prob-
lems where the system link gains are assumed to be time varying
and the signal-to-interference ratio (SIR) estimates are allowed to
be corrupted with bounded noises. A simple control algorithm is de-
vised by applying a distributed, fixed step approach. It is a feedback
algorithm that requires only local information. By modifying the
distributed, fixed step power control algorithm proposed by Sung
and Wong, we obtain here a more robust version that can handle
time varying link gains and measurement noises. The convergence
property of the new algorithm is established and simulation studies
were carried out to show that it is effective.

Index Terms—Cellular mobile system, distributed algorithm,
power control, time-varying channels.

I. INTRODUCTION

POWER control is an important component of resource man-
agement in a cellular communication system. The aim is

to assign to each user a transmitter power level so that a global
quality-of-service (QoS) performance index of the system is op-
timized. Various classes of power control problems can be for-
mulated depending on the optimization objective. In the power-
balancing formulation, the problem has been identified as an
eigenvalue problem for nonnegative matrices. In early works,
such as [1]–[3], the proposed algorithms are synchronous, cen-
tralized, and link gains are assumed to be known. Due to practi-
cal considerations, distributed algorithms have been developed,
see for example [4]–[7]. However, in these algorithms, either
a global normalization factor or some communication among
users are needed, which weakens the distributed nature of these
algorithms.

Another approach for power control is QoS tracking, which
is adopted by Foschini and Miljanic [8]. Instead of optimizing
the worst case signal quality, the aim is to find a solution such
that the power consumption is minimized while meeting QoS
constraints. This approach has been further investigated in pa-
pers such as [9]–[11]. A distributed fixed step power control
algorithm has been proposed by Sung and Wong [12], which
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effectively is a discretized version of the Foschini and Miljanic
algorithm. A discrete algorithm is more applicable in practice
since transmitter power outputs are typically quantized into dis-
crete levels.

Another practical issue that needs to be addressed is measure-
ment error. For example, it is shown in [13] that the Foschini
and Miljanic algorithm does not converge to the optimal solu-
tion if measurements for signal-to-interference ratio (SIR) are
corrupted by errors. The effect of measurement error in mobile
radio environment has been studied in [14], and a distributed
algorithm which is less sensitive to measurement error was pro-
posed. However, it is only for time invariant systems. In [15],
Ulukus and Yates applied the idea of stochastic approximation
to a power control problem, thus providing a practical approach
to the issue of measurement errors.

A third practical issue is the time varying nature of chan-
nels due to fading and user mobility. For most of the results
reported in the literature, the underlying models tend to focus
on cases where the link gains are assumed to be fixed or quasi-
stationary. Some investigations on time varying systems can be
found in [15]–[18]. For example, [16] gives a variant of the dis-
tributed constrained power control algorithm [19] by scaling up
the SIR target with a close to optimal factor computed in ad-
vance from environment parameters and fading statistics with
respect to an expected outage probability. In [13], the stochastic
approximation technique is applied to derive a power update
algorithm that can handle both measurement errors as well as
randomness in link gains.

In this paper, we concentrate on studying a power control
problem in the presence of fading as well as SIR measure-
ment errors. The primary goal is to ensure that all users under
time-varying channel conditions can maintain SNR above a pre-
defined target and achieve a minimum performance threshold.
A new, distributed, fixed step algorithm is obtained by building
on the approach of [12]. The proposed algorithm extends the
Foschini and Miljanic model to allow fading and measurement
errors. It is established that under the algorithm, the SIR of each
user converges to a target region. The size of the region depends,
among other things, on the variances of the link gains and the
measurement errors. The modified algorithm can operate un-
der time varying channels and is robust to measurement errors.
Convergence of the algorithm is proved as long as a feasible
solution exists for an associated power control problem defined
by the system bounds. The approach is completely independent
of stochastic approximation technique and offers a new solution
direction.

The rest of the paper is organized as follows. Section II states
the system model. Section III presents the proposed algorithm.
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Section IV shows the numerical studies. Finally, some conclud-
ing remarks are given in Section V.

II. SYSTEM MODEL

We consider here a mobile cellular communication system
with M active users. The i-th user homes on to a base station
(BS), labeled as ci . For different i and j, ci , and cj could be
identical or different, depending on the multiple access method
used. For each user, there is a pair of orthogonal channels for
mobile-to-base (uplink) and base-to-mobile (downlink) com-
munication. Since there is no interference between the uplink
and downlink channels, we consider power control only for the
uplink channels in this paper. The results can be applied to the
case for downlink channels as well.

Propagation loss and multipath effects are captured by the
link gains. The notation Gij (t) is used to represent the path gain
from the transmitter of the j-th user to the BS ci . The M by
M matrix, G(t) = {Gij (t)}, is known as uplink gain matrix.
In wireless communication, the link quality is usually measured
by the SIR. Under our model, the SIR of user i at time t,Γi(t),
is given by

Γi(t) =
Gii(t)Pi∑

j �=i Gij (t)Pj + η0
i

(1)

where η0
i is the receiver noise at BS i and Pi represents the

transmit power level of the i-th user. For simplicity of discussion,
denote

Zij (t)
∆=

Gij (t)
Gii(t)

. (2)

Then (1) can be rewritten as

Γi(t) =
Pi∑

j �=i Zij (t)Pj + ηi(t)
(3)

where ηi(t) = η0
i /Gii(t). The following assumption is made

throughout the paper.
Assumption 2.1: The gain Zij (t) is a stochastic, time-varying

process with lower bound Zij and upper bound Z̄ij , respectively,
i.e.,

Zij ≤ Zij (t) ≤ Z̄ij . (4)

Similarly, the receiver thermal noise ηi(t) has a lower bound
η

i
and an upper bound η̄i , respectively, i.e.,

0 ≤ η
i
≤ ηi(t) ≤ η̄i . (5)

In view of (4) and (1), it follows that

Pi∑
j �=i Z̄ijPj + η̄i

≤ Pi∑
j �=i Zij (t)Pj + ηi(t)

≤ Pi∑
j �=i ZijPj + η

i

. (6)

We denote

Γ̄i
∆=

Pi∑
j �=i Z̄ijPj + ηi

(7)

where Γ̄i is known as the lower bound SIR of Γi(t).

In addition, we define

αij
∆=

Zij

Z̄ij
, (8)

αi
∆= min

j
{αij} (9)

where Zij and Z̄ij are the minimum and maximum values of
Zij (t) respectively. It is assumed that the time varying channel
has a system bound. Consequently, the upper and lower bounds
on Zij (t) can be determined in accordance with, for example,
channel statistics, or evaluated from environment parameters.
Following (8) and (9), αi ≤ αij ≤ 1. One can interpret αi as an
indicator of the amplitude of link gain fluctuations. It represents
how much the time varying gains will change. More specifically,
the larger the αi is, the less the link gains vary. The smaller the
αi is, the more the link gains change.

In practice, it is impossible to measure the SIR, Γi(t), exactly,
since measurement errors cannot be completely avoided. This
should be included in the system model. We assume that the
measured or estimated SIR, yi(t), contains an additive noise
and is related to Γi(t) via the equation

yi(t) = Γi(t) + vi(t) (10)

where vi(t) is a random noise process. The only assumption on
the noise process is that it has a known lower bound, vi , and a
known upper bound, vi . That is,

vi ≤ vi(t) ≤ vi. (11)

In this paper, the channel link gain is modeled as a product of a
distance dependent path loss and a shadow fading component for
numerical studies. Multipath fading is assumed to be resolved
by appropriate coding and interleaving techniques [16], [20]. As
a result, Gij (t) varies in accordance with shadow fading only,
and the effect of multipath fading is averaged out. For each time
instant, we have

Gij (t) =
10−Ai j (t)/10

dα
ij (t)

(12)

where dij (t) is the distance between BS i and its user j, and α is
the path loss exponent. According to Gudmundson [20], Aij (t)
can be modeled by the following Gauss–Markov process [21]

Aij (t + 1) = ρAij (t) +
√

1 − ρ2W (t) (13)

where ρ is the correlation coefficient in the fading and W (t)
has a normal distribution with mean zero and variance σ2. This
model is employed for the performance evaluation.

Remark 2.1: It is worth pointing out that the proposed algo-
rithm is not limited to the above channel model, but can operate
under different time varying systems as long as the power con-
trol problem can be defined by the system bounds.

Remark 2.2: For systems without explicit upper and lower
bounds of link gains, one of the solutions is to set αi and the
target region according to the distribution of link gains. For
example, with the Gauss–Markov model, based on (12) and
(13), we can determine the thresholds from an estimated αi in a
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preferable confidence interval. This approach is adopted in our
numerical studies for a practical consideration.

III. POWER CONTROL FOR TIME VARYING SYSTEMS

Before stating the proposed algorithm, it is helpful to recall
some background results from the work [12]. In the follow-
ing discussions, the time index t is restricted to an iteration
approach, i.e., t = 1, 2, . . ., for a discrete time model.

A. Algorithm for Fixed Link Gains

In [12], the SIR is assumed to be known exactly and the link
gains are not time varying. Each mobile unit adjusts its transmit
power P

(n+1)
i at iteration (n + 1) in a discrete time manner

according to the following updating rule

P
(n+1)
i =




δP
(n)
i , if Γ(n)

i < δ−1γi

δ−1P
(n)
i , if Γ(n)

i > δγi

P
(n)
i , otherwise

(14)

where δ > 1. It can be seen from the above description that a
SIR target region [δ−1γi, δγi ] is defined for each mobile unit. If
the SIR is below the region, the BS will instruct the mobile unit
to raise the power to the next higher level. If the SIR is above
the region, the power will be adjusted downwards by one level.
The upper threshold is 2δ(dB) higher than the lower threshold.
(The sign x(dB) is used to denote the decibel value of x, i.e.,
x(dB) = 10 log10 x.)

It has been proved in [12] that under suitable conditions, the
algorithm given by (14) converges to a fixed point P0, which
is the optimal solution for power control. In the following sub-
section we are concerned with the power control for the system
with time varying link gains.

B. Algorithm for Time Varying Systems

For time varying link gains with SIR measurement errors, we
modify (14) to define an updating algorithm as follows. The
transmit power of user i at each iteration n is adjusted in a
discrete time manner according to

P
(n+1)
i =




δP
(n)
i , if y

(n)
i < δ−1γi + vi

δ−1P
(n)
i , if y

(n)
i > δγ0

i + vi

P
(n)
i , otherwise

(15)

where δ > 1, γ0
i = α−1

i γi and αi is defined as in (9). This algo-
rithm is a generalized version of the previous work (14), which
is a special case of (15) when α−1

i is equal to 1. Since the algo-
rithm (14) is only applicable to time invariant systems, we have
extended the result to handle time varying systems. Besides,
measurement error is addressed for practical consideration. As
a result, the SIR thresholds include the lower and upper bounds
of the measurement noises.

The designated target region is associated with the variation of
system link gains. The width of target region [δ−1γi + vi, δγ

0
i +

vi ] increases as α−1
i since γ0

i = α−1
i γi . A small αi implies that

the link gain Gij , as well as Zij , will vary in a large range.

Consequently, we need to set the target region wide enough.
Otherwise, it may lead to an uncertainty in the SIR convergence.

Remark 3.1: Since α−1
i ≥ 1, the presented algorithm (15) for

time varying systems generally has a wider SIR target region
than that in (14) for a time invariant system.

Remark 3.2: It is worth emphasizing that the main objective
of the proposed algorithm is to enable all users to be above the
minimum performance threshold.

1) Quantization of Power Level: The following basic as-
sumption is made throughout the paper.

Assumption 3.1: For any i, there exists a nonnegative vector
P ∗ such that

Γ̄i(P ∗) ≡ P ∗
i∑

j �=i Z̄ijP ∗
j + ηi

= γi (16)

for i = 1, 2, . . . , N .
We say the set of SIR targets γi , where i = 1, . . . , N , are

lower bound feasible if there is a nonnegative finite vector P ∗

satisfies (16). As in [12], the power level in our model is quan-
tized. The difference between two consecutive levels is equal to
δ(dB). Since the power has been quantized into discrete levels,
we can only require the SIR to converge to a specified target
region, instead of an exact target value. In the following, we will
establish a convergence result for the proposed algorithm. Our
approach is based on the idea presented in [12]. However, as the
gains Zij are time varying and SIR estimates are corrupted, the
proof is more complicated.

Lemma 3.1: If there exists a power vector P ∗ such that (16)
holds for all i, then there exists a quantized power vector P̂
such that

δ−1γi ≤ Γi(n, P̂ ) ≤ δγ0
i (17)

for all i, where γ0
i = α−1

i γi .
Proof: Given P ∗

i , we can always find one and only one
discrete power level P̂i such that δ−1/2P ∗

i ≤ P̂i < δ1/2P ∗
i . Let

P̂ be the quantized vector corresponding to P ∗. Then,

Γi(n, P̂ ) ≡ P̂i∑
j �=i Zij (n)P̂j + ηi(n)

≥ P̂i∑
j �=i Z̄ij P̂j + ηi

≥ P ∗
i δ−1/2∑

j �=i Z̄ijPj
∗δ1/2 + ηi

≥ δ−1 P ∗
i∑

j �=i Z̄ijP ∗
j + ηi

= δ−1γi. (18)
On the other hand,

Γi(n, P̂ ) ≤ P̂i∑
j �=i Zij P̂j + η

i

≤ P ∗
i δ1/2∑

j �=i ZijP
∗
j δ−1/2 + η

i

≤ δ
P ∗

i∑
j �=i ZijP

∗
j + η

i

. (19)
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From (8), Zij = Z̄ijαij ≥ Z̄ijαi and η
i
≥ ηiαi . Thus,

Γi(n, P̂ ) ≤ δ
P ∗

i∑
j �=i αij Z̄ijP ∗

j + η
i

≤ δ
P ∗

i∑
j �=i αiZ̄ijP ∗

j + αiηi

= δα−1
i

P ∗
i∑

j �=i Z̄ijP ∗
j + ηi

= δγ0
i . (20)

The Proof of Lemma 3.1 is now established.
One can see from the above Lemma that a feasible solution

exists if for all users i the target region is [δ−1γi, δγ
0
i ].

2) Convergence Property: In this section we study the con-
vergence property of the proposed algorithm (15). For the con-
venience of discussion, we make the following definitions,

Γ(n)
i ≡ P

(n)
i∑

j �=i Z
(n)
ij P

(n)
j + η

(n)
i

(21)

Γ(n)
i (P̂ ) ≡ P̂i∑

j �=i Z
(n)
ij P̂j + η

(n)
i

(22)

where Z
(n)
ij and η

(n)
i are the values of Zij (t) and ηi(t) at the

n-th iteration in the discrete time manner.
Theorem 3.1: If there exists a power vector P ∗ such that (16)

holds for all i, then under the fixed step algorithm (15), the
power vector, P (n), at any iteration n has an upper bound and
a lower bound which depend only on the gain matrix and the
initial power vector.

Proof: The proof follows from a straightforward modifi-
cation of the proof in [12].

Lemma 3.2: Let y
(r)
j be the value of yj (t) at r-th iteration.

If P
(m )
j ≥ δxP

(n)
j and y

(r)
j < δ−1γj + vj , for r < m < n and

x ≥ 1, then there exists k �= j such that P (s)
k ≥ δx+1P

(l)
k , where

r ≤ s < m ≤ l < n.
Proof: From the lemma assumption, it follows that Γ(r)

j <

δ−1γj where

Γ(r)
j =

P
(r)
j∑

i �=j Z
(r)
j i P

(r)
i + η

(r)
j

. (23)

If P
(r)
j < δ−1P

(m )
j , then there exists s such that

r < s < m,P
(s)
j = δ−1P

(m )
j , and y

(s)
j < δ−1γj + vj . Thus,

Γ(s)
j < δ−1γj . If P

(r)
j ≥ δ−1P

(m )
j , we let s = r.

Since P
(m )
j ≥ δxP

(n)
j , there exists l, where m ≤ l < n,

such that P
(l)
j = δP

(n)
j and y

(l)
j > δγ0

j + vj . Thus, Γ(l)
j > δγ0

j .
Therefore,

P
(s)
j ≥ δ−1P

(m )
j ≥ δx−1P

(n)
j = δx−2P

(l)
j . (24)

Denote the interference at the n-th iteration at BS j by I
(n)
j ,

i.e.,

I
(n)
j ≡

∑
k �=j

Z
(n)
jk P

(n)
k + η

(n)
j . (25)

Since y
(s)
j < δ−1γj + vj (thus, Γ(s)

j < δ−1γj ) and y
(l)
j >

δγ0
j + vj (thus, Γ(l)

j > δγ0
j ), by (24), we have

δγ0
j <

P
(l)
j

I
(l)
j

≤
P

(s)
j

I
(l)
j δx−2

<
I
(s)
j γj δ

−1

I
(l)
j δx−2

(26)

where I
(l)
j is the value of Ij (t) at l-th iteration. It follows that

δxI
(l)
j < αj I

(s)
j ≤ αjI

(s)
j ≤ αj Ī

(s)
j ≤ I

(s)
j (27)

where Ī
(s)
j =

∑
k �=j Z̄jkP

(s)
k + ηj and I

(s)
j =∑

k �=j ZjkP
(s)
k + η

j
. On the other hand, note that

I
(l)
j ≥

∑
k �=j

ZjkP
(l)
k + η

j
≡ I

(l)
j . (28)

From (27) and (28), we obtain

δx


∑

k �=j

ZjkP
(l)
k + η

j


 <

∑
k �=j

ZjkP
(s)
k + η

j
. (29)

Which implies that there exists k such that

P
(s)
k > δxP

(l)
k . (30)

Since the power level is quantized into discrete levels with
step δ, we have

P
(s)
k ≥ δx+1P

(l)
k . (31)

This completes the proof.
Theorem 3.2: Consider a time varying system defined by

(1)–(5). Suppose Assumption 2.1 and 3.1 hold, then the fixed
step power control algorithm given by (15) converges to a fixed
point P̂ such that (17) is satisfied.

Proof: Since the power level is quantized into fixed step
size, by Theorem 3.2, the set of reachable states is finite. We
denote it by S = {S1, . . . , SN0}. Let S∗ = {S1, . . . , SN1} be
the subset that consists of states which appear infinitely often.
There exists n0 such that, for all n > n0, only elements in S∗ can
appear. If the algorithm does not converge, N1 > 1. This implies
that there exists S1 �= S2, where S1, S2 ∈ S∗. Let Ni � N0. For
each Si , there exists a time sequence T i

1(n) < · · · < T i
Ni

(n)

such that P (T i
1(n)) = · · · = P

(T i
N i

(n)).
Define an iteration interval as a basic block in which ev-

ery Si appears at least twice and, between the first and last
appearance of a state Si , all the other states Sj , where i �= j,
must appear at least once. Secondly, as P (n) is nonzero and
bounded, there exists a positive integer K such that δK =
maxSi ,Sj ∈S,k{Si(k)/Sj (k)} < ∞, where Si(k) denotes the
state i of user k, because Si �= 0 and S is finite.

Let B1 be a basic block that starts at n = n0. Construct a
sequence of K consecutive basic blocks {B1, B2, . . . , BK }.



1900 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 54, NO. 5, SEPTEMBER 2005

TABLE I
THRESHOLD ON αi IN DECIBEL VALUE FOR DIFFERENT OUTAGE PROBABILITIES

Look at BK , there exists states S1, S2 and time instances in BK

such that P (n1) = S1 = P (n1−T1) and P (m1) = S2, where n1 −
T1 < m1 < n1. Moreover, we can assume P

(m1)
i = δP

(n1)
i for

some i. (If P
(m1)
i = δ−1P

(n1)
i , we can reverse the roles of S1

and S2.) Thus, there exists r such that y
(r)
i < δ−1γi + vi (thus,

Γ(r)
i < δ−1γi), where n1 − T1 ≤ r < m1. By Lemma 3.2, there

exists a user j (j �= i) such that P
(s1)
j = δ2P

(t1)
j , where r ≤

s1 < m1 ≤ t1 < n1.
In BK−1, one can find time instances m2 and n2 such that

P (m2) and P (n2) are in the same states as P (s1) and P (t1)

respectively. Thus, we have P
(m2)
j = δ2P

(n2)
j . By repeating the

argument, there exists a user k such that P (s2)
k = δ3P

(t2)
k , where

s2 < m2 ≤ t2 < n2. Iteratively, one can find a user l in B1 such
that P (sK )

l = δK +1P
(tK )
l , where n0 ≤ sK < tK . This leads to a

contradiction, since for any P
(m )
i = δxP

(n)
i , x is upper bounded

by K. The contradiction implies that the fixed step algorithm
converges. Thus, the theorem is established.

IV. NUMERICAL STUDIES

The underlying system is assumed to have a standard hexag-
onal cellular layout with 16 cochannel cells [6] corresponding
to a reuse pattern of 7. Within each cell, there is a mobile station
(MS) communicating with its nearest BS. The location of the
MS is distributed uniformly inside the cell. We only consider the
dynamics of shadow fading and assume the distance between
the i-th BS and the j-th MS is a constant. The standard devia-
tion σ in shadow fading is 4. The path loss exponent is 4. The
correlation coefficient ρ in the fading model (13) is to charac-
terize the link gain evolution due to the mobility and speeds of
transmitters or receivers. For example, in a GSM system, ρ of
0.51 and 0.94 refer to a MS traveling in an urban area with a
speed of 100 and 10 km/h, respectively [17]. We are interested
in the region 0.51 < ρ < 1.

For acceptable link quality, we assume the threshold γi is
16 dB for all i while the receiver thermal noise is 10−12 W.
Each MS generates an initial power uniformly between 0.0001
and 1 W. All the SIR values plotted in our numerical analy-
sis are computed based on the current adjusted transmit power
level attenuated with respect to the gain matrix in the next it-

eration instant. This provides a stricter setup for measuring the
algorithm performance than assuming the SIRs are measured
instantaneously. In the proposed algorithm, we use a step size
of 1 dB.

The lower and upper thresholds of the target window are set
according to [δ−1γi + vi, δγiα

−1
i + vi ] as defined in (15). Sam-

ples of SIR measurement error vi are independently drawn from
a uniform distribution such that vi ∈ (−1.26, 1.26). To deter-
mine the value of αi for the proposed algorithm with respect to
the previously mentioned Gauss–Markov model, one solution
is to choose it based on the distribution of αi associated with
the correlation coefficient ρ and the total number of iterations
n considered. Table I gives the corresponding numerical values
obtained for ρ = 0.94 and 0.51, respectively. Data for Rayleigh
fading are also shown. Results are obtained after 32000 runs for
100 and 300 iterations, respectively.

The simulation model does not require an absolute bound.
Instead, we set the thresholds according to an outage probability
of 0.01, i.e., Pr{αi > α̃i} = 0.01, where α̃i denotes the chosen
bound value on αi for the algorithm. For practical consideration,
a common α̃i is employed for all users in order to make the
system manageable. However, the proposed algorithm allows
distinct settings on αi for each user.

To investigate the performance, the proposed algorithm is
compared to Foschini–Miljanic algorithm [8] as given below.

P
(n+1)
i =

γiP
(n)
i

Γ(n)
i

. (32)

Fig. 1 shows a comparison under ρ = 0.94. The convergence
of the proposed algorithm to the target window is observed as
long as there exists a feasible solution for the system. Com-
paratively, although the Foschini–Miljanic algorithm is able to
adjust the power faster than the proposed one (since it uses a
continuous power level) and assume prefect precision in each
feedback, it cannot guarantee a convergence in the target region.
This can be observed from Fig. 1, in which the minimum SIR
in the Foschini–Miljanic algorithm frequently drops below the
lower threshold. This could lead to frequent call drops. Compar-
atively, the proposed algorithm is more stable in the sense that
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Fig. 1. Evolution of maximum and minimum SIR (decibels) with step size
δ = 1 dB and ρ = 0.94. The target window is also shown.

it guarantees all the SIRs are within the expected target window
and, more importantly, above the lower threshold.

At the same time, we have compared the proposed algorithm
with the conventional up–down power control algorithm [22]
and Sung and Wong algorithm [12]. In the up–down algorithm,
transmit power is increased or decreased by a fixed amount
when the SIR is below or above threshold, respectively. As
shown in Fig. 1, both the up–down and Sung–Wong algorithms
perform similarly to Foschini–Miljanic algorithm, but with a
slower power adjustment. They do not offer the SIR performance
guarantee as well. A detailed analysis of the up–down algorithm
under fading can be found in [22]. Results show that it is effective
only when under a slow fading.

To further demonstrate the significant difference between the
proposed algorithms and the other three algorithms, we decrease
ρ from 0.94 to 0.51. In this case, the link gain matrix will vary
with a lower correlation in each iteration such that the channel
gain fluctuation will be higher. Fig. 2 shows a typical result
from which we can see the effectiveness of the proposed algo-
rithm even under such a fluctuation. All the SIRs are still within
the guaranteed target window and above the lower threshold.
However, all the other three algorithms cannot provide such a
QoS guarantee. Comparing Fig. 2 with Fig. 1, we can find that
the SIR outage of these three algorithms is much more serious
due to the higher channel fluctuation. A simulation study of the
algorithms under Rayleigh fading [23] is also conducted. The
result is shown in Fig. 3. The proposed algorithm is effective
and outperforms the other three. As observed from Figs. 1–3, as
the modified upper threshold of target window for the proposed
algorithm is now moved upward, there could be an increase in
the power consumption. An evaluation on this is conducted and
can be found later.

Next, we investigate the effect of estimation error on the pro-
posed algorithm. Stability of the algorithm under measurement
noise is our key concern. To focus on the effect of estimation
error, we set ρ to 0.94 such that the weighting on the fluctuation

Fig. 2. Evolution of maximum and minimum SIR (decibels) with δ = 1 dB.
The correlation coefficient ρ is equal to 0.51.

Fig. 3. Evolution of maximum and minimum SIR (decibels) with δ = 1 dB
under Rayleigh fading. The output sample frequency used is 1600 Hz and the
maximum Doppler frequency shift is 200 Hz.

due to channel variation will be relatively small. Fig. 4 shows
the SIR evolutions under different estimation errors. It should
be noted that since the bounds are different, the widths of target
windows are different. Only the case of (a), which is the nar-
rowest one among the three, is shown. Results in Fig. 4 show
that the proposed algorithm is robust to measurement noise. We
can observe the SIR convergence in all three cases.

In the following, we study the power consumption of the
proposed algorithm and compare it to the Foschini–Miljanic
algorithm, which is optimal in the sense that the total transmit
power is being minimized. As reported in [24], for power saving,
a good strategy is to employ a low initial power level and then
increase it iteratively until the SIR requirement is satisfied. In
the example studied, all users start from the same initial power
of −20 dBW. As shown in Fig. 5, the average transmit power of
all users after convergence under the proposed algorithm is very



1902 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 54, NO. 5, SEPTEMBER 2005

Fig. 4. Evolution of maximum and minimum SIR (decibels) under the pro-
posed algorithm with δ = 1 dB and estimation error: (a) vi ∈ (−1.26, 1.26).
(b) vi ∈ (−2.00, 2.00). (c) vi ∈ (−3.16, 3.16).

Fig. 5. The average transmit power (decibels) of all users with fixed initial
power −20 dBW and δ = 1 dB. (a) Foschini–Miljanic algorithm. (b) Proposed
algorithm.

close to that in the Foschini–Miljanic algorithm. This implies
that the power consumption in the proposed algorithm can be
quite ideal if the initial power is set low enough initially. Fig. 6
shows the evolution of maximum and minimum transmit power
among all users.

Next, we will demonstrate the effectiveness of the proposed
algorithm under different target threshold settings with respect
to the outage probability on the specified αi . All the system
parameters are common except the target thresholds. As shown
in Fig. 7, the proposed algorithm can work well even when the
setting is not very precise. However, it should be noted that
a larger outage probability on the chosen value of αi implies
a higher chance the algorithm does not converge to the target
window, as the upper threshold is too low. A loose requirement

Fig. 6. Evolution of maximum and minimum transmit power (decibels) with
fixed initial power −20 dBW and δ = 1 dB. (a) Foschini–Miljanic algorithm
(b) Proposed algorithm.

Fig. 7. Evolution of maximum and minimum SIR (decibels) with δ = 1 dB,
ρ = 0.94, vi ∈ (−1.26, 1.26), and outage probabilities. (a) 0.0001. (b) 0.01.
(c) 0.1. (d) 0.2. The corresponding target windows are also shown while the
lower threshold is common.

on the setting may lead to system instability. However, it may
also allow a narrower convergence window.

As observed from Figs. 1–3, under the Foschini–Miljanic,
Sung–Wong and up–down algorithms, there is a frequent SIR
dropping below the lower target threshold. To alleviate this kind
of problem, the idea of adding an SIR margin to signal quality
target [16] can help to reduce the SIR outage probability due to
channel fluctuations. A numerical analysis is conducted for the
three cases of Figs. 1–3. By inspection and verification with sim-
ulations, an SIR margin of 4, 8, and 8 dB should be added to the
cases of Figs. 1, 2, and 3, respectively so as to achieve a roughly
similar minimum SIR performance as that of the proposed
algorithm. Generally, a system with high channel fluctuation
needs a large SIR margin, which corresponds to an increase in
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TABLE II
AVERAGED TRANSMISSION POWER CONSUMPTION NORMALIZED BY THAT IN

THE PROPOSED ALGORITHM

transmission power. Table II gives the ratios of average power
consumed by users of the Foschini–Miljanic, Sung–Wong, and
up-down algorithms to that used in the proposed algorithm.
Results for each case are obtained with 3000 runs. The trans-
mission power is measured from n = 50 to 100 only in order to
investigate the power consumption after an equilibrium. In the
case of Fig. 1, which has a small channel fluctuation, the average
power consumptions in all the algorithms are very close. In the
cases of Figs. 2 and 3, which have a high channel fluctuation,
the proposed algorithm consumes much less power. Besides, it
is worth pointing out that the focus and approach of our work
reported here is fundamentally different to that in [16].

V. CONCLUSION

In this paper, we propose a new algorithm to solve a power
control problem for systems with time varying link gains. It is
based on the fixed step approach in [12]. We assume that the
link gains change randomly in a bounded region with known
upper and lower bounds and the estimates of SIR are corrupted
by bounded noises. The power level of each mobile terminal
is adjusted in a distributed manner. The definition of the upper
threshold has to be modified accordingly. Convergence of the
algorithm to the target region is studied. Numerical studies show
that it is applicable to realistic systems.
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