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Abstract—The authors consider a multirate code-division mul-
tiple acess system, in which all users have the same chip rate and
vary their data rate by adjusting the processing gain. The receivers
are assumed to be implemented using conventional matched filters,
whose performance is sensitive to the received power levels. The au-
thors’ goal is to maximize the total system throughput by means of
power control. A game theoretic approach is adopted. It is shown
that for a certain type of pricing function, a unique Nash equilib-
rium solution exists and it possesses nice global properties. For ex-
ample, it can be shown that for the optimal solution a high-rate
connection should maintain a higher energy per bit than low-rate
ones. The asymptotic spectral efficiency is also derived.

Index Terms—Multirate CDMA systems, Nash equilibrium,
noncooperative game, power control.

I. INTRODUCTION

SPEECH provisioning, a low-data rate service, is the major
objective of second-generation cellular systems. However,

as the demand for wireless services proliferates, future wireless
systems should be able to accommodate more diverse service
types. Inherently, voice, data, and video services require dif-
ferent data rates. The bit rate requirement may range from a few
kilobytes per second to as much as 2 Mb/s. For this reason, it is
necessary to support multirate transmission in third-generation
wireless networks.

In this paper, we consider the problem of providing multirate
transmission using direct-sequence code-division multiple
access (DS/CDMA). There are different ways to design a
multirate CDMA system. The one to be examined here is called
variable spreading gain access. In this method, the signals of
all users are spread to the same bandwidth by keeping the chip
rate identical. As a consequence, different data rates result in
different spreading gains. In such a scenario, the traditional
method of keeping the received power constant is inappro-
priate. Intuitively, a solution in which the energy per bit for
all users is constant seems optimal. Indeed, we will show that
in some asymptotic situations such a solution maximizes the
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system throughput. However, to achieve optimality in general,
a high-rate connection should maintain a higher energy per bit
than low-rate connections.

In the literature, power control studies tend to focus on
devising algorithms to provide acceptable quality for all
the connections (see, e.g., [5], [10], [11], [16], [17]). This
is usually translated into a minimum requirement on the
signal-to-interference ratio (SIR). This formulation is suitable
for voice traffic since there is dubious, if any, gain in user satis-
faction to have improvement of the SIR beyond an acceptable
threshold, commonly called thetarget SIR. For data traffic,
however, the situation is different. Typically, a data packet in
error needs to retransmit. A higher SIR reduces the number of
retransmissions, thus minimizing the delay while maximizing
effective throughput. So there is no natural way to determine
a target SIR. In view of this, we consider a more relevant
formulation, in which the total throughput is to be maximized.
Some related studies can be found in [7] and [12].

Recently, a game theoretic approach to the power control
problem for data traffic has been offered in [2], [4], [8], [9], and
[13]. The distributed power control problem is formulated as a
noncooperative game. The fundamental difference between our
work and previous works lies in the definition of the payoff func-
tion. In [8] and [9], the payoff is defined through the bit error
rate of a noncoherent frequency-shift keying (FSK) scheme. A
drawback of this definition is that the payoff goes to infinity
when a user transmits at zero power. This degenerate situation
arises from the fact that one-half of the bits can still be received
correctly even if one transmits nothing at all. To remedy this
problem, the definition was modified in anad hocway in [8]
and [9]. In this paper, we overcome this problem by using an in-
formation theoretic approach. We define the payoff as the reli-
able information rate through the channel [1]. When the transmit
power goes to zero, the information rate through the channel
also diminishes to zero. So, the degenerate case does not occur
in our formulation. As a consequence of this change in the def-
inition of the payoff function, one can obtain a generalization
of the asymptotic result on the spectral efficiency of CDMA
systems.

The rest of the paper is organized as follows. In Section II,
the system model is described. In Section III, we introduce
the game theoretic framework and define our game model. In
Section IV, a pricing mechanism is described. In Section V, it
will be shown that with pricing, the resulting Nash equilibrium
has a nice global property. In Section VI, we will derive the
resulting spectral efficiency, which is defined as the maximum
number of bits per chip that can be transmitted reliably through
the channel [14]. The spectral efficiency of a single-rate
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CDMA system is derived in [3]. We show that a multirate
system can achieve the same efficiency. In Section VII, the
numerical results are presented. In Section VIII, conclusions
are summarized.

II. SYSTEM MODEL FORMULTIRATE CDMA SYSTEMS

We consider a single-cell CDMA system, in which there are
active terminals. Terminaltransmits its signal at rate . All

users have the same chip rate, thus spreading their signal to
the same bandwidth . We assume that is an integral
multiple of and the processing gain of useris defined by

. Let be the transmit power of terminal.
The received power at the base station is , where
is the attenuation factor.

Though our results can be applied to chip-asynchronous sys-
tems, we assume that the system is chip-synchronous for sim-
plicity. Let be the data symbol of userand be
the corresponding decision variable at the receiver output. When
matched filter is used, the channel can be modeled by the fol-
lowing conditional probability1 :

(1)

where is the bit energy of user, and is the
interference spectral density defined by2

(2)

This channel is called abinary-input Gaussian-output
(BIGO) channel. Its capacity is given by [15]

(3)

where

(4)

and

(5)

If the output of the BIGO channel is hard quantized into two
levels, then the channel becomes abinary symmetric channel
(BSC) with crossover probability

(6)

where

(7)

The channel capacity of a BSC is [1]

(8)

1Here, we have invoked the Gaussian assumption thaty is Gaussian dis-
tributed.

2If the signals are not chip synchronized,J =2, which represents the vari-
ance ofy , should be defined as(T =3) Q + (N =2) [6].

As a notational convenience, we define . Note
that also equals where

(9)

Denote the interference power experienced by userby , that
is,

(10)

It follows that

(11)

We define as the rate in bits per channel use at which
information can be reliably sent through the channel [1]. In gen-
eral, it is an increasing function of , while its explicit form
depends on the modulation and coding scheme. Since userac-
cesses the channel times per second, the corresponding in-
formation rate in bit per second is given by

(12)

We call the above term thethroughputof user . The total
throughput of the system, , is given by

(13)

By Shannon’s channel capacity theorem,is upper bounded
by or , depending on whether the channel output is
hard quantized. In this work, we do not stick to a specific mod-
ulation and coding scheme. We assume thatis either
or . It can be shown that for these two forms of, the fol-
lowing conditions are satisfied (see Figs. 1 and 2 for a graphical
illustration).

1) . In particular, we have

for BIGO

for BSC.

2) .
3) .
4) Let . There exists such that

for
for
for .

From Properties 1, 2, and 4, it is easy to see that

(14)

for some constant that is large enough. Numerically, we find
that the above statement is true for BIGO if , and is true
for BSC if .

Though we consider these two forms ofonly, our results
can be applied to other situations, provided thatsatisfies
Properties 1–4.
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Fig. 1. f (x) and its derivatives.

III. POWER CONTROL GAME

Generally speaking, our objective is to find a power vector
which maximizes the total throughput. For practical reasons, it
is most desirable if this can be achieved by letting each user ad-
just its power level, based on local information. This distributed
operation fits well in a game theoretic framework proposed in
[8] and [9]. We will first describe this framework. After in-
troducing the terminology, we will construct a new game by
defining the payoff function pertaining to our problem.

In a power control game, each mobile user is regarded as a
player of the game. The strategy space of playeris the interval

. In practice, the power levels have finite ceilings.
For theoretical study, sometimes we consider the case there is
no upper limit on the power levels. In that case,s are equal
to infinity. The joint strategy space is
the Cartesian product of all the individual strategy spaces. Each
player chooses a power level . The payoff function of
player is denoted by . Occasionally, an alternative nota-
tion is used, where denotes the power vector
of all users except user.

Thepower control game(PCG) can be formally expressed as

(15)

In a PCG, each user chooses an appropriate power to maximize
his payoff. As there is no cooperation among the users, it is im-

Fig. 2. f (x) and its derivatives.

portant to ensure the dynamic stability of the system. A concept
which relates to this issue is the so-calledNash equilibrium.

Definition 1: A power vector is a Nash equilibrium if, for
every user

(16)

A Nash equilibrium can be regarded as a stable solution, at
which none of the users has the incentive to change its power.
Many games have several Nash equilibria. To compare the qual-
ities of two different solutions, a commonly used concept is
calledPareto dominance.

Definition 2: A power vector Pareto dominates another
vector if, for all

(17)

and for some

(18)

Furthermore, a power vector is Pareto optimal if there exists
no vector which Pareto dominates .

The above framework is established in [8] and [9]. A PCG
is completely defined once the payoff function is specified. In
this paper, we consider the game where the payoff of useris
its throughput, that is

(19)
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To distinguish this game from that in [8] and [9], we call it
throughput maximization game(TMG). Note that the payoff of
user depends only on , which is completely determined by
the received power vector, . Without loss of generality, we
treat s as our independent variables. The strategy space of
user becomes where , and the joint
strategy space is .

Note that can be written as a function of

(20)

Furthermore, if . If there is no upper
limit on the power levels (i.e., ), then given a posi-
tive vector, , a necessary and sufficient condition for is

(21)

We call this thefeasibility condition[7]. If this condition holds,
there is a one–one mapping between nonnegativeand . Fur-
thermore, the following equation always holds:

(22)

where .
The following theorem states that a Pareto optimal solution

must be located at the boundary of the strategy space for a power
control game with bounded strategy space.

Theorem 1 (Pareto Optimality):For a TMG with finite upper
power ceilings for all users, a power vectoris Pareto optimal
if and only if for some .

Proof: Note that is a strictly increasing function of .
If for all , one can scale up . The resultant s will
all increase, thus improving the payoff of all players. Hence,
cannot be Pareto optimal.

Now consider a vector with for some . If is
not Pareto optimal, we can find another vectorwhich Pareto
dominates . It implies that for all , and for
some . Since , it follows that

By adding 1 to both sides and simplifying

It then follows that for all , which leads to a
contradiction.

Since is a strictly increasing function of , for any given
. It is easy to see that the TMG has an unique Nash equilib-

rium, which is achieved by setting the power of each user to its
maximum value. By Theorem 1, this Nash equilibrium is Pareto
optimal. In spite of this, this maximum power strategy may not
be a good strategy from a global viewpoint. For instance, con-
sider a user who is closest to the base station and requires only
the lowest data rate. For the sake of other users, it is intuitively

obvious that this user should not transmit at maximum power.
Therefore, this strategy, though Pareto optimal, is not efficient
from the system viewpoint. We consider a way to improve the
system performance in the next section.

IV. PRICING MECHANISM

To find other strategies which improve the payoffs in a global
sense, we use the method ofpricing. This pricing mechanism
can implicitly bring cooperation to the users, yet maintaining the
noncooperative nature of the game. We let be the pricing
function of player . Thediscounted payoff functionis defined
as

(23)

The following is called apower control game with pricing
(PCGP) [9]:

(24)

PCGP is essentially the same as PCG, except with a different
payoff function. To distinguish between and , from now on,
we call thepayoffand thediscounted payoffof player .

This pricing methodology is first applied to PCG in [9]. How-
ever, it is worth noting that our purpose of using pricing is dif-
ferent from that in [9]. Due to different definitions of the payoff
function, the PCG considered in [9] possesses a Nash equilib-
rium which is not Pareto optimal. Thus they use pricing to bring
about a Pareto improvement. In the TMG, the Nash equilibrium
is Pareto optimal. Our intention of using pricing is to shape the
users’ behavior so as to improve the performance from a system
viewpoint.

When a user transmits his information through the network, it
causes interference to other users. To discourage this behavior,
it is reasonable to charge the user some price for creating the
interference. Intuitively, the pricing function of playershould
be a monotonic increasing function of his received power. Based
on this argument, a linear pricing scheme is adopted in [8] and
[9]. However, we suggest to normalize the received power by
the total received power plus noise at the base station, that is

(25)

where is thepricing parameter. The rationale of normalizing
the received power is that the harm caused by playeris based
not only on the received power of player, but also on the total
interference at the base station. For example, consider the case

. If , a large portion of the
total interference is generated by user. However, consider an-
other scenario where . In this case, the
harmful effect caused by playeris comparatively small. Thus,
the impact made by playeris more accurately measured by the
normalized received power.

With this pricing function, the discounted payoff function be-
comes

(26)
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Recall that is the interference experienced by user. We
call this game thethroughput maximization game with pricing
(TMGP).

For the pricing mechanism to be effective,should not be too
large or too small. To see this, we differentiate (26) with respect
to

(27)

If , then is always less
than zero. Thus the optimal solution is obtained by setting all

s to zero. On the other extreme, if , it reduces to the
original TMG. The following theorem describes some proper-
ties of the TMGP for a certain range of values of.

Theorem 2 (Existence and Uniqueness of Nash Equilib-
rium): Consider a power control problem with finite upper
power bounds for all users. If the processing gain,, of each
user is greater than two for the BIGO case, and is greater than
three for the BSC case, then there exists an uniquesuch
that for any , there exists an unique Nash
equilibrium, , for the TMGP, and when , the
solution is Pareto optimal for the original TMG.

Proof: We rewrite (27) as follows:

(28)

For to be a stationary point, we must have

(29)

where

(30)

Differentiating , we have

(31)

By (14), we have , provided that

for BIGO
for BSC.

(32)

Note that and by Property 3,
. Hence, for any , we can

find a unique such that

if
if
if .

(33)

In other words, attains the global maximum at . Note that
is a strictly decreasing continuous function of. Denote this

relation as . It is easy to see that when ,
and when . Thus we can find a unique
such that

(34)

Thus, the inequality

(35)

holds if is within the range

(36)

When decreases from , increases strictly from
zero for all . Consequently, by (20), all the s strictly increase
from zero and approach infinity astends to . Since the power
control problem has finite upper bounds, there exists an unique

such that for all , and for some .
Since for some , by Theorem 1, the solution

is Pareto optimal.
For this theorem to be valid, it requires for the BIGO

model, and for the BSC model. From now on, we assume
that this condition always holds, since this is a mild condition
which is satisfied in almost all CDMA systems.

Now we derive a property about the Nash equilibrium. Con-
sider the case . From (30), it can be seen that

(37)

From (29), for any given , we have

(38)

Hence, we have proven the following.
Theorem 3 (Unequal at the Nash equilibrium):If

, then .
We have established a pricing mechanism for the wireless net-

work. The only global information needed is the pricing param-
eter and the total received power plus noise. Then the trans-
ceiver of each user can be treated as independent entities. Each
receiver monitors the throughput and the received power of the
corresponding user. The discounted payoff can then be com-
puted and used to drive a close-loop power control algorithm.

V. GLOBAL PROPERTY

We have considered a family of games with pricing parameter
. Now we show that playing this family of games is equivalent

to solving a family of constrained optimization problems with
parameter .

The following theorem shows that the Nash equilibrium
has a nice global property.

Theorem 4 (Constrained Global Maximum on Total
Throughput): For any , the Nash equi-
librium of the PCGP, , maximizes , subject to the
constraint for some . Furthermore, is a strictly
decreasing function of.

Proof: First consider the constrained optimization
problem with parameter . With the equality constraint

, there is a one–one monotonic mapping between
nonnegative s and s

(39)

(40)
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Thus, it is legitimate to treat s as our independent variables.
Furthermore, the equality constraint can be rewritten as

(41)

To solve the problem, we make use of the method of Lagrange
multiplier. We define the Lagrangian

(42)

To maximize , the following equations must be
satisfied:

(43)

(44)

By simple algebraic manipulation, one can show that (43) has
the same root as (27) (with ), since

(45)

Denote the root by . Thus, the stationary point, , of this op-
timization problem is just the Nash equilibrium of the TMGP
with the Lagrange multiplier, , as the pricing parameter. The
nature of this stationary point is governed by the second deriva-
tives

(46)

and

(47)

Due to (47), a sufficient condition for the stationary point to
be a local maximum becomes

for (48)

If we substitute (43) into (46), we have

(49)

(50)

(51)

Thus, yields a constrained local maximum.
Since is upper bounded by , a global maximum

exists. Assume that the constrained global maximum ofis
attained at . Since the constraint
is met, the maximum value of is independent of the value of

. So, we can assumeis chosen to be of Theorem 2. Note
that can be written as

(52)

Since yields the global maximum, there existssuch that

(53)

which violates the fact that the solution is Pareto optimal as
guaranteed by Theorem 2.

Although the solution maximizes on the hyper-
plane , it may not be a global maximum over the
whole strategy space,. Now we assume that the system is in-
terference limited. We make the approximation that .
Denote the maximal value of over by . We have the
following result.

Corollary 1: When , for any
.

Proof: When , scaling a power vector has no effect
on the vector . Thus, there is no loss of generality to restrict
the strategy space into a hyperplane . Hence, by
Theorem 4, is optimal.

VI. A SYMPTOTIC ANALYSIS

In this section, we study a large-scale system in which the
number of users, , and the bandwidth, , are both large. We
assume that there is no upper bound on the power levels and the
transmission rate of each user is bounded as follows:

(54)

Furthermore, we define the spectral efficiency,, as the total
throughput per unit bandwidth,

(55)

We summarize our results in two theorems.
Theorem 5: Let , where is a constant. There

exists such that for any , when ,
we have

where is a continuous monotonic increasing function of
with

and

Proof: Recall that the solution satisfies the following
equations ( ):

(56)

Occasionally, we use the notation to explicitly show the
dependency of on .

Define to be the value such that

(57)

This equation establishes a one–one mapping between
and .
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Define as follows:

(58)

Recall that the feasibility condition of requires that

(59)

By the property that is a monotonic decreasing func-
tion of , it can be shown that for all . Thus is lower
bounded as follows:

(60)

(61)

This lower bound is equal to one when

(62)

Define as follows:

(63)

where is an arbitrary constant greater than . Denote the
corresponding value of by , that is

(64)

When , we have .
Note that is a strictly increasing function of each.

Moreover, by (56), all s are strictly decreasing function
of . Therefore, is a strictly decreasing function
of . When , all s equal zero. Consequently,

.
Hence, for any , there exists a unique (which is

greater than ) such that . Therefore, is
feasible if .

For any , we have
. Therefore, is lower bounded away from zero. By

(56), all s are finite. Hence when , we have
. By (56) and the continuity of , we have for all
. This proves that all users achieve the same .

To determine the value of, we use the following equality:

(65)

where is a continuous monotonic increasing function of
with and .

Since , we have

(66)

which can be rearranged as follows:

(67)

Fig. 3. Spectral efficiency for BIGO channel.

Due to the bounding condition on , when , we
must have . Hence, we obtain
the value of

(68)

Theorem 6: The maximal spectral efficiencyis given by
for BIGO

for BSC.

Proof: We have seen that for large ,
for all . It is easy to see that the supremum of

is

(69)

With this , the spectral efficiency can be simplified as fol-
lows:

(70)

The spectral efficiency for BIGO and BSC are plotted against
in Figs. 3 and 4, respectively. Note thatis a decreasing func-

tion of . It can be shown that the spectral efficiency is maxi-
mized when . Thus

(71)

for BIGO

for BSC.
(72)

This maximal spectral efficiency is the same as that derived
in a single-rate CDMA system [3]. Thus a multirate CDMA
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Fig. 4. Spectral efficiency for BSC channel.

Fig. 5. Tradeoff between the power consumption and the total throughput.

system, with any given rate vector, can achieve the same spec-
tral efficiency as a single-rate system.

VII. N UMERICAL RESULTS

In this section, we investigate the effect of the pricing param-
eter, , on the total throughput, . For simplicity, we consider
a single-rate system. The matched filter output is assumed to
be hard quantized such that a BSC model applies. Assume that
there are 20 users. Each of them transmits at rate Mb/s.
The system bandwidth is 20 MHz. The noise power is normal-
ized such that unity received power has a signal-to-noise ratio
of 10 dB.

As we mentioned before, the effect ofis to constrain the
total received power . The larger the value of, the smaller
the total received power . Fig. 5 shows the tradeoff between
the power consumption and the total throughput. When
, the total throughput grows at a high speed when is in-

creased. This is because the thermal noise dominates in this

region, and larger can reduce the effect of noise. When
, the system becomes interference limited. Further in-

crease in has little improvement and the curve levels off.

VIII. C ONCLUSION

In this paper, we define a new payoff function for the
noncooperative power control game. A new pricing function
which improves the system performance is introduced. With
this pricing function, the game is shown to possess a unique
Nash equilibrium. Furthermore, this equilibrium is shown to
maximize the total throughput over a hyperplane with fixed
total power. The distance between the hyperplane and the
origin can be changed by adjusting a pricing parameter, which
is broadcasted by the system.

Moreover, we have studied the system behavior under some
asymptotic situation. When both the bandwidth and the number
of users are large, the Nash equilibrium can be approximated
by keeping the bit energy of all users constant. The resulting
spectral efficiencies under the BIGO and the BSC model are
derived.

REFERENCES

[1] T. M. Cover and J. Thomas,Elements of Information Theory. New
York: Wiley, 1991.

[2] D. Goodman and N. Mandayam, “Power control for wireless data,”
IEEE Personal Commun., pp. 48–54, Apr. 2000.

[3] J. Y. Hui, “Throughput analysis for code division multiple accessing of
the spread spectrum channel,”IEEE J. Select. Areas Commun., vol. 2,
pp. 482–486, July 1984.

[4] H. Ji and C. Y. Huang, “Non-cooperative uplink power control in cellular
radio systems,”Wireless Networks, vol. 4, pp. 233–240, 1998.

[5] K. K. Leung, C. W. Sung, W. S. Wong, and T. M. Lok, “Convergence
theorem for a general class of power control algorithms,” inIEEE Proc.
ICC, Helsinki, Finland, June 2001, pp. 811–815.

[6] T. S. Rappaport,Wireless Communications: Principles and Prac-
tice. Englewood Cliffs, NJ: Prentice Hall, 1995.

[7] A. S. Sampath, P. S. Kumar, and J. M. Holtzman, “Power control and re-
source management for a multimedia CDMA wireless system,” inProc.
IEEE PIMRC ’95, 1995.

[8] C. U. Saraydar, N. B. Mandayam, and D. J. Goodman, “Pareto effi-
ciency of pricing-based power control in wireless data networks,” in
Proc. WCNC, 1998.

[9] V. Shah, N. B. Mandayam, and D. J. Goodman, “Power control for wire-
less data based on utility and pricing,” inProc. IEEE PIMRC, 1998, pp.
1427–1432.

[10] C. W. Sung, K. K. Leung, and W. S. Wong, “A quality-based fixed-step
power control algorithm with adaptive target threshold,”IEEE Trans.
Veh. Technol., vol. 49, pp. 1430–1439, July 2000.

[11] C. W. Sung and W. S. Wong, “A distributed fixed-step power control
algorithm with quantization and active link quality protection,”IEEE
Trans. Veh. Technol., vol. 48, pp. 553–562, Mar. 1999.

[12] , “Power control and rate management for wireless multimedia
CDMA systems,”IEEE Trans. Commun., vol. 49, pp. 1215–1226, July
2001.

[13] , “Mathematical aspects of the power control problem in mobile
communication systems,” inLectures on Systems, Control, and Infor-
mation: Lectures at the Morningside Center of Mathematics, L. Guo and
S. S.-T. Yau, Eds: International Press, 2000.

[14] S. Verdù and S. Shamai, “Spectral efficiency of CDMA with random
spreading,”IEEE Trans. Inform. Theory, vol. 45, Mar. 1999.

[15] A. J. Viterbi and J. K. Omura,Principles of Digital Communication and
Coding. New York: McGraw-Hill, 1979.

[16] R. D. Yates, “A framework for uplink power control in cellular radio
systems,”IEEE J. Select. Areas Commun., vol. 13, pp. 1341–1347, Sept.
1995.

[17] J. Zander, “Performance of optimum transmitter power control in cel-
lular radio systems,”IEEE Trans. Veh. Technol., vol. 41, pp. 57–62, Feb.
1992.



194 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 2, NO. 1, JANUARY 2003

Chi Wan Sung (M’98) received the B.Eng., M.Phil.,
and Ph.D. degrees in information engineering from
the Chinese University of Hong Kong, in 1993, 1995,
and 1998, respectively.

After graduation, he was appointed Visiting As-
sistant Professor with the Department of Information
Engineering, Chinese University of Hong Kong. He
joined the City University of Hong Kong in 2000
and was an Assistant Professor in the Department
of Computer Science. Since September 2001, he has
been with the Department of Computer Engineering

and Information Technology. His research interests include the area of wireless
networks with an emphasis on power control, resource management, and
signature sequence adaptation for CDMA systems.

Wing Shing Wong (M’81–SM’90–F’02) received
the combined M.A.B.A. degree in 1976 (summa cum
laude), from Yale University. He received the M.S.
degree in 1978 and the Ph.D. degree in 1980, both
from Harvard University, Cambridge, MA.

He joined AT&T Bell Laboratories in 1982. From
1987 to 1992, he managed a group of technical staff
working on a number of research and development
projects and consulting activities. He joined the Chi-
nese University of Hong Kong in 1992 and is now a
Professor of Information Engineering. He has been

the Chairman of the Information Engineering Department since 1995. He is ac-
tively involved in a variety of R&D projects including topics such as mobile
communication systems, search engine development, and information issues in
estimation and control. He has published over 90 refereed journal and confer-
ence papers and is the recipient of multiple competitive R&D grants from the
Hong Kong Research Grant Council and the Industry Support Fund. He leads a
project on a Chinese search engine, MoLi & ANSeRS, which has been licensed
to several high-tech companies. He is a Visiting Professor of Southeast Univer-
sity, Nanjing.

Dr. Wong was an Associate Editor of the IEEE TRANSACTIONS ON

AUTOMATIC CONTROL for four years. He is the co-Editor-in-Chief of a new
journal,Communications in Information and Systems. He is a Member of the
7th Council of the Chinese Association of Automation.


	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 


