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A Noncooperative Power Control Game for Multirate
CDMA Data Networks

Chi Wan SungMember, IEEEand Wing Shing WongFellow, IEEE

Abstract—The authors consider a multirate code-division mul- system throughput. However, to achieve optimality in general,
tiple acess system, in which all users have the same chip rate anda high-rate connection should maintain a higher energy per bit
vary their data rate by adjusting the processing gain. The receivers than low-rate connections.
are assumed to be implemented using conventional matched filters, . .
whose performance is sensitive to the received power levels. The au- In, Fhe I|terat.ure, power antrol studies tend tQ focus on
thors’ goal is to maximize the total system throughput by means of devising algorithms to provide acceptable quality for all
power control. A game theoretic approach is adopted. It is shown the connections (see, e.g., [5], [10], [11], [16], [17]). This
that for a certain type of pricing function, a unique Nash equilib-  js ysually translated into a minimum requirement on the
numlsol_ltmon el;('StSha”d |t“|?ots?es§hes ”'i_e gl?ball ﬁfc’pemﬁ_s'h':ortex'signal-to-interference ratio (SIR). This formulation is suitable
ample, it can be shown that for the optimal solution a high-rate . . . ; : o )
connection should maintain a higher energy per bit than low-rate for \_/0|ce traffic smce there is dubious, if any, gain in user satis-
ones. The asymptotic spectral efficiency is also derived. faction to have improvement of the SIR beyond an acceptable
threshold, commonly called thi&arget SIR For data traffic,
however, the situation is different. Typically, a data packet in
error needs to retransmit. A higher SIR reduces the number of
retransmissions, thus minimizing the delay while maximizing

. INTRODUCTION effective throughput. So there is no natural way to determine

PEECH provisioning, a low-data rate service, is the majér target SIR. In view of this, we consider a more relevant
bjective of second-generation cellular systems. Howevé&rmulation, in which the total throughput is to be maximized.
as the demand for wireless services proliferates, future wirelé2@me related studies can be found in [7] and [12].
systems should be able to accommodate more diverse servicBecently, a game theoretic approach to the power control
types. Inherently, voice, data, and video services require dtoblem for data traffic has been offered in [2], [4], [8], [9], and
ferent data rates. The bit rate requirement may range from a fe\3]- The distributed power control problem is formulated as a
kilobytes per second to as much as 2 Mb/s. For this reason, ifigcooperative game. The fundamental difference between our
necessary to support multirate transmission in third-generati§yrk and previous works lies in the definition of the payoff func-
wireless networks. tion. In [8] and [9], the payoff is defined through the bit error
In this paper, we consider the problem of providing multiratéte of a noncoherent frequency-shift keying (FSK) scheme. A
transmission using direct-sequence code-division multigiawback of this definition is that the payoff goes to infinity
access (DS/CDMA). There are different ways to design when a user transmits at zero power. This degenerate situation
multirate CDMA system. The one to be examined here is call@fises from the fact that one-half of the bits can still be received
variable spreading gain accesk this method, the signals of correctly even if one transmits nothing at all. To remedy this
all users are spread to the same bandwidth by keeping the dPfiplem, the definition was modified in ad hocway in [8]
rate identical. As a consequence, different data rates resul@f#f! [9]- In this paper, we overcome this problem by using an in-
different spreading gains. In such a scenario, the traditiorf@/mation theoretic approach. We define the payoff as the reli-
method of keeping the received power constant is mapp,@bleinformation rate through the channel [1]. When the transmit
priate. Intuitively, a solution in which the energy per bit foPOWer goes to zero, the information rate through the channel
all users is constant seems optimal. Indeed, we will show g0 diminishes to zero. So, the degenerate case does not occur

in some asymptotic situations such a solution maximizes tReoUr formulation. As a consequence of this change in the def-
inition of the payoff function, one can obtain a generalization

of the asymptotic result on the spectral efficiency of CDMA
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CDMA system is derived in [3]. We show that a multirate As a notational convenience, we define= E; ;/.Jy, ;. Note
system can achieve the same efficiency. In Section VI, thleatz; also equald’; L; where

numerical results are presented. In Section VIII, conclusions

are summarized. I,

Qi

TS Qi+ NoW'
i

9)

Il. SYSTEM MODEL FORMULTIRATE CDMA SYSTEMS

. . . . Denote the interference power experienced by ubgrl;, that
We consider a single-cell CDMA system, in which there arg P P y by

N active terminals. Terminaltransmits its signal at rat@;. All
users have the same chip rdtg, thus spreading their signal to I, = Z Q; + NoW. (10)
the same bandwidtiW” = R.. We assume thak.. is an integral oy
multiple of R; and the processing gain of useis defined by
L; = R./R; > 1. Let P, be the transmit power of terminal
The received power at the base statio®js= G; FP;, whereG; QL
is the attenuation factor. T = I
Though our results can be applied to chip-asynchronous sys-

tems, we assume that the system is chip-synchronous for sim\—Ne definef(w;) as the rate in bits per channel use at which

plicity. Let a; = +1 be the data symbol of usérandy; be Information can be reliably sent through the channel [1]. In gen-

the corresponding decision variable at the receiver output. Wh ﬁll' It is an increasing function af;, while its explicit form

matched filter is used, the channel can be modeled by the Epends onthe modu.lation and coding scheme. Since aser
lowing conditional probability: cesses the channgy; times per second, the corresponding in-

formation rate in bit per second is given by

\/;_W exp<— (y - w,/2Eb,i/J07i>/2> Rif(z;). (12)

(1) We call the above term ththroughputof useri. The total
throughput of the systendr, is given by

It follows that

(11)

P(yilai = w) =

whereE, ; = Q;L;T, is the bit energy of user and.J ; is the

interference spectral density defined by N
JO,'L _ Tc ) NO T Z
s =3 Uty @ =

i By Shannon’s channel capacity theorefiis upper bounded
This channel is called ainary-input Gaussian-output by frico Or fssc, depending on whether the channel output is

(BIGO) channel. Its capacity is given by [15] hard quantized. In this work, we do not stick to a specific mod-
00 ulation and coding scheme. We assume tha either fgico
feico(z) = —3log, 2me — / P(y)logy, P(y)dy (3) or fsc. It can be shown that for these two formsfofthe fol-
—o0 lowing conditions are satisfied (see Figs. 1 and 2 for a graphical
where illustration).
Po(y) + Po(—y) 1) f/(z) > 0 V. In particular, we have
P(y)=—A4—~ -~ 4
2 2 @ log, e, for BIGO
and 1 2 i f'(#) =1 2, for BSC
_ _ . T — logy, e, TOr .
Poly) = 7= exp[ (y vors ) / 2] : () 7

2) f"(x) < 0Vuaz.
3) f'(x) = o _2<) (x — o0).

If the output of the BIGO channel is hard quantized into two .
4) Letg(z) = 2f'(x) + xf"(z). There existz;, such that

levels, then the channel becomebiaary symmetric channel
(BSC) with crossover probability
>0, for0<uz < x

p(x) = %erfc (\/E) (6) q(a:) { =0, forx = xq

where <0, forz > xg.

From Properties 1, 2, and 4, it is easy to see that

2 [T e
of - = —t dt. (7
erfe(x) ﬁ./m ’ 2f (@) + (@ +0)f" (@) <0 Va (14)

The channel capacity of a BSC is [1
pacly 1] for some constant that is large enough. Numerically, we find

fesc(x) = 1+p(x)logy p(x)+(1—p(x)) logs(1—p(x)). (8) thatthe above statementis true for BIGQ i 1.1, and is true

" have invoked the Gaussi ondhis Gaussian di for BSCifc > 2.2.
ere, we have invoked the Gaussian assumptionghas Gaussian dis- H
tributed. Though we consider these two forms pfonly, our results

2If the signals are not chip synchronizel, ; /2, which represents the vari- can be_applied to other situations, provided tifiasatisfies
ance ofy,, should be defined a¥./3) 3", ., @, + (No/2) [6]. Properties 1-4.
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mico () portant to ensure the dynamic stability of the system. A concept
which rel his i is the so-call¢ash ilibrium
Ill. POWER CONTROL GAME ch relates to this issue is the so-callédsh equilibriu

Definition 1: A power vecto®P* is a Nash equilibrium if, for
Generally speaking, our objective is to find a power vecteery user
which maximizes the total throughput. For practical reasons, it
is most desirable if this can be achieved by letting each user ad- ui (P, PL;) > wi(Pi, PL;) VP ePi.  (16)
just its power level, based on local information. This distributed
operation fits well in a game theoretic framework proposed in
[8] and [9]. We will first describe this framework. After in-
troducing the terminology, we will construct a new game by.
defining the payoff function pertaining to our problem.
In a power control game, each mobile user is regarded as
player of the game. The strategy space of playethe interval
P; = [0, M;]. In practice, the power levels have finite celllngs
For theorgtpal study, sometimes we consider the case there is ui(P) > u;(P') (17)
no upper limit on the power levels. In that cadd;s are equal
to infinity. The joint strategy space = Py x Po x --- X Py is  and for somej
the Cartesian product of all the individual strategy spaces. Each
player chooses a power levB] € P;. The payoff function of uj(P) > u;(P). (18)
playeri is denoted by:;(P). Occasionally, an alternative nota-
tion u;(P;, P_;) is used, wher® _; denotes the power vector ] )
of all users except useér no vector which Pareto dpmmatP?;. .
Thepower control gaméPCG) can be formally expressed as The above framework is established in [8] and [9]. A PCG
is completely defined once the payoff function is specified. In
Dax ui (P, Py)  Vi=1,2,..., N. (15) this paper, we consider the game where the payoff of uger

its throughput, that is
In a PCG, each user chooses an appropriate power to maximize

his payoff. As there is no cooperation among the users, it is im- w; = R f(x;). (19)

A Nash equilibrium can be regarded as a stable solution, at
which none of the users has the incentive to change its power.
any games have several Nash equilibria. To compare the qual-
ies of two different solutions, a commonly used concept is
ledPareto dominance
efinition 2: A power vectorP Pareto dominates another
vectorP’ if, for all 4

Furthermore, a power vect®* is Pareto optimal if there exists
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To distinguish this game from that in [8] and [9], we call itbbvious that this user should not transmit at maximum power.
throughput maximization ganf@ MG). Note that the payoff of Therefore, this strategy, though Pareto optimal, is not efficient
useri depends only or;, which is completely determined byfrom the system viewpoint. We consider a way to improve the
the received power vecto€). Without loss of generality, we system performance in the next section.

treatQ;s as our independent variables. The strategy space of
useri become; = [0, M;] whereM; = G;M;, and the joint

IV. PRICING MECHANISM

strategy space i€ = Q1 X +-- X Qn.
Note that ; can be written as a function ok

[1171-/ Zy ..., 37N]

NoW
[y g
J

.’Ej—‘rL]‘

i

20
Tt L (20)

Qi(x) =

Furthermore;(x’) > Qi(x) if x’ > x. If there is no upper
limit on the power levels (i.e}4; = co Vi), then given a posi-
tive vectorx, a necessary and sufficient condition @re Q is
N

> o<
x; + L; ’

i=1 "

We call this thefeasibility condition[7]. If this condition holds,
there is a one—one mapping between nonneg&iemdx. Fur-
thermore, the following equation always holds:

Z Z; Qr

zi+Li  Qr+ NoW
whereQr = 3. Q;.

(21)

(22)

To find other strategies which improve the payoffs in a global
sense, we use the methodpfcing. This pricing mechanism
can implicitly bring cooperation to the users, yet maintaining the
noncooperative nature of the game. Weclé€) be the pricing
function of playeri. Thediscounted payoff functiois defined
as

vi(Q) = wi(Q) — i(Q).

The following is called gpower control game with pricing
(PCGP) [9]:

max v;(Qi, Q_;)

Qi€Q;:

(23)

Vi=1,2,...,N. (24)

PCGP is essentially the same as PCG, except with a different
payoff function. To distinguish between andv;, from now on,
we callu; the payoffandv; thediscounted payofif playeri.

This pricing methodology is first applied to PCG in [9]. How-
ever, it is worth noting that our purpose of using pricing is dif-
ferent from that in [9]. Due to different definitions of the payoff
function, the PCG considered in [9] possesses a Nash equilib-

rium which is not Pareto optimal. Thus they use pricing to bring

The following theorem states that a Pareto optimal solutioyoy 4 Pareto improvement. In the TMG, the Nash equilibrium
must be located at the boundary of the strategy space for a POWgb,reto optimal. Our intention of using pricing is to shape the

control game with bounded strategy space.

Theorem 1 (Pareto Optimality)For a TMG with finite upper
power ceilings for all users, a power vectQris Pareto optimal
if and only if Q; = M; for somei.

Proof: Note thatu; is a strictly increasing function aof;.
If Q; < M; for all 4, one can scale uf. The resultant;s will
all increase, thus improving the payoff of all players. Her@e,
cannot be Pareto optimal.

Now consider a vecto® with Q; = M; for somei. If Q is
not Pareto optimal, we can find another ved@rwhich Pareto
dominated). It implies thatz} > z; for all 4, andx;- > x; for
somej. SinceQ; = z;1;/L;, it follows that

9@
I I

J

By adding 1 to both sides and simplifying
Q; > Qj.

It then follows that@; > @; for all ;, which leads to a
contradiction.
Sinceu; is a strictly increasing function ap;, for any given

users’ behavior so as to improve the performance from a system
viewpoint.

When a user transmits his information through the network, it
causes interference to other users. To discourage this behavior,
it is reasonable to charge the user some price for creating the
interference. Intuitively, the pricing function of playeshould
be a monotonic increasing function of his received power. Based
on this argument, a linear pricing scheme is adopted in [8] and
[9]. However, we suggest to normalize the received power by
the total received power plus noise at the base station, that is

AQ;
N
Z Qj + NoW

J=1

¢i(Q) (25)

where) is thepricing parameter The rationale of normalizing

the received power is that the harm caused by playebased

not only on the received power of playgtbut also on the total
interference at the base station. For example, consider the case
Q; = 10. If Zj\;l Q; + NoW = 20, a large portion of the
total interference is generated by useiHowever, consider an-
other scenario wherE;-V:1 Q;+ NoW = 200. In this case, the

Q_;. Itis easy to see that the TMG has an unique Nash equili2mful effect caused by playeis comparatively small. Thus,

rium, which is achieved by setting the power of each user to

ifae impact made by playéis more accurately measured by the

maximum value. By Theorem 1, this Nash equilibrium is ParefPrmalized received power. _ _
optimal. In spite of this, this maximum power strategy may not With this pricing function, the discounted payoff function be-
be a good strategy from a global viewpoint. For instance, cof2Mes

sider a user who is closest to the base station and requires only
the lowest data rate. For the sake of other users, it is intuitively

AQ;
Qi+ 1I;

U; = RLf(LZ) - (26)
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Recall thatl; is the interference experienced by useWe Thus, the inequality

call this game thehroughput maximization game with pricing =

(TMGP). > = o<1 (35)
For the pricing mechanism to be effectiveshould not be too A

large or too small. To see this, we differentiate (26) with respegbids if A is within the range

to Q;

A< A< WF(0). (36)
E)’Ui / w /\L
90; = f'(wi) T (Qi+ )2 (27) When )\ decreases frori f/(0), =} increases strictly from
zero for alli. Consequently, by (20), all th@;s strictly increase
If X > ((M;/I;) + 1)2f(0)W, thendv; /dQ; is always less from zero and approach infinity astends ta\. Since the power
than zero. Thus the optimal solution is obtained by setting &pntrol problem has finite upper bounds, there exists an unique
Q;s to zero. On the other extreme Xf= 0, it reduces to the A* > A such tha? < M; for all i, andQ; = M; for some;.
original TMG. The following theorem describes some proper- SinceQ; = Mj for somej, by Theorem 1, the solutio@*
ties of the TMGP for a certain range of values)of is Pareto optimal. O
Theorem 2 (Existence and Uniqueness of Nash Equilib-For this theorem to be valid, it requirds > 2 for the BIGO
rium): Consider a power control problem with finite uppemodel, and.; > 3 for the BSC model. From now on, we assume
power bounds for all users. If the processing gdin,of each that this condition always holds, since this is a mild condition
user is greater than two for the BIGO case, and is greater thahich is satisfied in almost all CDMA systems.
three for the BSC case, then there exists an uni§usuch Now we derive a property about the Nash equilibrium. Con-
that for anyA € [A*, W f/(0)), there exists an unique Nashsider the cas&®; > R,. From (30), it can be seen that
equilibrium, Q*(A), for the TMGP, and when\ = \*, the

solution is Pareto optimal for the original TMG. ki(z) > kj(z) V. (37)
Proof: We rewrite (27) as follows: From (29), for any giver\, we have
8vi / A * *
Ii 5 0. = W (;) — Ao i) (28) Ty > @ (38)
) ) Hence, we have proven the following.
Forz; to be a stationary point, we must have Theorem 3 (UnequaE,/.J, at the Nash equilibrium):If
A R; > Rj, thenz] > .
ki(wi) = w (29) We have established a pricing mechanism for the wireless net-
work. The only global information needed is the pricing param-
where eter A and the total received power plus noise. Then the trans-
2\ 2 ceiver of each user can be treated as independent entities. Each
ki(z;) = <1 + f) f' () (30)  receiver monitors the throughput and the received power of the
‘ corresponding user. The discounted payoff can then be com-
Differentiatingk;(x;), we have puted and used to drive a close-loop power control algorithm.
ki(z;) = (H_Z,:M 2f"(z;) + (Li + z;) f"(z:)].  (31) V. GLOBAL PROPERTY

We have considered a family of games with pricing parameter

By (14), we havey(z;) < 0 Vi, provided that \. Now we show that playing this family of games is equivalent

' 1.1, for BIGO to solving a family of constrained optimization problems with
min s > {2.2, for BSC. (32)  parametey..
The following theorem shows that the Nash equilibrium
Note that k;(0) =  f'(0) and by Property 3, Q*()) has a nice global property.
lim,, . ki(x;) = 0. Hence, for any\ € (0, W f/(0)), wecan  Theorem 4 (Constrained Global Maximum on Total
find a uniquez; such that Throughput): For any A € [\*, W f’(0)), the Nash equi-
£0 <. » librium of the PCGP,Q*()\), maximizesCr, subject to the
v; ig’ :f g-_xéf T (33) constrainty , Q; = p for somep. Furthermorey is a strictly
0Q; <0’ it Jf S x; decreasing function of.
’ v N Proof: First consider the constrained optimization

In other wordsy; attains the global maximumaf. Note that problem with parameteru. With the equality constraint
¥ is a strictly decreasing continuous functionoDenote this >, @i = u, there is a one—one monotonic mapping between
relation asz} (). It is easy to see that! — oo when\ — 0, nonnegativey);s andz;s
andz} — 0 when\ — W f/(0). Thus we can find a uniqug Qi L; Qi L;

Ir; = —
such that p— Qi + NoW I;

x
i, (34) 1, G 40
,Zixi-l'[’i 1+ x;/L; w+ NoW- (40)

(39)
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Thus, itis legitimate to treat;s as our independent variables. Sincex yields the global maximum, there exigtsuch that

Furthermore, the equality constraint can be rewritten as - -
v; (a:f7 /\) < v; (:ﬁi7 /\) (53)
N
Z _ S g e — (41) which violates the fact that the solution is Pareto optimal as
= Lrai/Li o+ NoW guaranteed by Theorem 2. O

To solve the problem, we make use of the method of Lagrangelthough the solutiorQ*(A) maximizesCr on the hyper-
multiplier. We define the Lagrangian plane)". Q; = p, it may not be a global maximum over the
whole strategy spac&. Now we assume that the system is in-

N N , terference limited. We make the approximation th&at = 0.

Y T4 H

L= Z Rif(zi) — A (Z zi+ Li  p+ NOW) - (42)  penote the maximal value @f; overQ by Cmax. We have the
=1 =1 following result.

To maximizeCr, the following N + 1 equations must be  Corollary 1: WhenNy = 0, Cr(Q*(\)) = Chax for any

satisfied: A€ X, Wf(0)).
oL AL Proof: WhenN, = 0, scaling a power vector has no effect
=Rif'(x;) — ———5 =0 Vi (43) on the vectox. Thus, there is no loss of generality to restrict
Oz (i + Li) the strategy space into a hyperplapg Q; = u. Hence, by
oL " N " Theorem 4Q* is optimal. O

Sk _ vty (44)
OX  pANoW = @it Li VI. ASYMPTOTIC ANALYSIS

By simple algebraic manipulation, one can show that (43) hasin, this section, we study a large-scale system in which the

the same root as (27) (with = )), since number of usersly, and the bandwidtH}’, are both large. We
oL I, Ov; assume that there is no upper bound on the power levels and the
a5 T T .30 (45)  transmission rate of each user is bounded as follows:
ox;, L; 0Q;

Denote the root by*. Thus, the stationary point;, of this op- 0 < Rumin £ Ri < Rpax Vi (54)

timization problem is just the Nash equilibrium of the TMGP Furthermore, we define the spectral efficiengyas the total
with the Lagrange multiplier), as the pricing parameter. Thethroughput per unit bandwidtiq}z /W
nature of this stationary point is governed by the second deriva-

. N
tives 1
- = > Rif(w:). (55)
0’L " 2M\L; =
o =Rif" (@) + 3 (46) _ _
Ox; (zi + Li) We summarize our results in two theorems.
and ) Theorem 5:Let N = oW, wherea is a constant. There
"L —0, i . (47) exists) such that for any\ € (A, W f’(0)), whenWW — oo,
0z;0z; we have
Due to (47), a sufficient condition for the stationary point to . (1—=c\))W Vi
be a local maximum becomes i N '
> R
0%L . i=1
| <0 fori=1,2,..., N. (48)
O3 |- wherec()\) is a continuous monotonic increasing function\of
If we substitute (43) into (46), we have with
92L o 2R, ., . c(Wf'(0) =1
o7 =R f"(x7) + it f'(xi) 49 g
WLi =
T AE ki(=7) (50) «(d) =0.
0 T (51) Proof. Recall that the solutio™ satisfies the following
<? equations{=1, 2, ..., N):
Thus,x* yields a constrained local maximum. B 5 . A
SinceC is upper bounded by, R;, a global maximum ki(zi) = (L4 i/ Li) " f'(zi) = 57 (56)
eX|s.ts. (;A‘SSLUTe t~hat ~the con§tra|ned*glgpal mr:]mmunLc@ Occasionally, we use the notatiafi(\) to explicitly show the
attained ak = (21, ©9, ..., Zn) # x*. Since the constraint dependency ok* on ).

is met, the maximum value df is independent of the value of

~ Define 3 to be the value such that
. So, we can assumeis chosen to be* of Theorem 2. Note p

; A
that L can be written as "B) = = 57
i ) ') = - (57)
I = s (% 5\) + Ap ) (52) This equation establishes a one—-one mapping between
; p+ NoW B € [0, 00) andX € (0, W f(0)].

1=1
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Define S(x) as follows:
N

x,RL
Recall that the feasibility condition of requires that
S(x) < 1. (59)

By the property that;(x;) is a monotonic decreasing func-
tion of z;, it can be shown that? > ( for all i. ThusS is lower
bounded as follows:

spectral efficiency (n)

N
Z (60)

ﬂRmm
67
S (61)
W + ﬂRmin 0 L I 1 I 1 1
This lower bound is equal to one when 0 ! 2 common €, (b ® ¢ !
8= 1 1 . (62) Fig. 3. Spectral efficiency for BIGO channel.
Rmin o — %
Define 3, as follows: Due to the bounding condition oR;, whenN — oo, we
) ) must have(l — ¢(\)) Rumax/ Y, R; — 0. Hence, we obtain
Bo = (63) the value ofg
Rmin (67 W
0
: . (1 —c(\))W
whereW, is an arbitrary constant greater thgfw.. Denote the o —F- (68)
corresponding value of by Ag, that is S R;
_ o =

WhenW > W, we haveS(x*()\g)) > 1. Theorem 6: The maximal spectral efficienayis given by

Note thatS(x) is a strictly increasing function of each. log, e(~1.44), for BIGO
Moreover, by (56), allzfs are strictly decreasing function n=14 2
of . Therefore,S(x*()\)) is a strictly decreasing function —logy ¢(=0.92), for BSC.

of \. When\ = W f/(0), all zfs equal zero. Consequently, Proof: We have seen that for lard&, =, — 3 = (1 —

S(x*(W f(0))) = 0. ¢(\)W/ S, R; for all i. It is easy to see that the supremum of
Hence, for any¥ > Wy, there exists a uniqug (whichis g s

greater tham\o) such thatS(x*(A)) = 1. Thereforex*()\) is

feasible ifA < A < W f/(0). B = sup B = . (69)
ForanyA € (A, Wf'(0)), we haveA/W > \/W = e, W 1(0)) R,

f'(Bo). Therefore \/W is lower bounded away from zero. By

(56), allz}s are finite. Hence whel — oo, we haver}/L; —

0. By (56) and the continuity of’(z), we haver: — g for all

Mﬂg

1

-
Il

With this 3, the spectral efficiency can be simplified as fol-

i. This proves that all users achieve the saig.Jo. lows:
To determine the value ¢f, we use the following equality: N A
.El Rif (ﬂ) 1 ( A)
_ n="——==f(0). (70)
Z [3R _|_ W - c(A) (65) W 3

The spectral efficiency for BIGO and BSC are plotted against
[3 in Figs. 3 and 4, respectively. Note thas a decreasing func-
tion of /3 It can be shown that the spectral efficiency is maxi-
mized when3 — 0. Thus

wherec()\) is a continuous monotonic increasing functiomof .
with ¢(W f7(0)) = 1 andc(A) = 0.
SinceRyin g R; < Rpax, We have

65 R 65 R ﬁ:pmf@) 71)
S S TP ) [ — — (66) B—0
W+ B Rmin W + fRmax log, e(~1.44), for BIGO
which can be rearranged as follows: ={ 9 (72)
(1—c(\)W Ch< (1—c(\)W p log, e(~0.92), for BSC.
N - - N O
.E B; — (1 = ¢(A)) Rnin Z Ri — (1 = ¢(X)) Rinax This maximal spectral efficiency is the same as that derived

1

=1 7

(67) in a single-rate CDMA system [3]. Thus a multirate CDMA
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Fig. 4. Spectral efficiency for BSC channel.
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Fig. 5. Tradeoff between the power consumption and the total throughput.

system, with any given rate vecfBr, can achieve the same spec-

tral efficiency as a single-rate system.

VII. NUMERICAL RESULTS
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region, and large)r can reduce the effect of noise. When
Qr > 1, the system becomes interference limited. Further in-
crease it has little improvement and the curve levels off.

VIIl. CONCLUSION

In this paper, we define a new payoff function for the
noncooperative power control game. A new pricing function
which improves the system performance is introduced. With
this pricing function, the game is shown to possess a unique
Nash equilibrium. Furthermore, this equilibrium is shown to
maximize the total throughput over a hyperplane with fixed
total power. The distance between the hyperplane and the
origin can be changed by adjusting a pricing parameter, which
is broadcasted by the system.

Moreover, we have studied the system behavior under some
asymptotic situation. When both the bandwidth and the number
of users are large, the Nash equilibrium can be approximated
by keeping the bit energy of all users constant. The resulting
spectral efficiencies under the BIGO and the BSC model are
derived.
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