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New Protocol Sequences for Random-Access
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Abstract—With recent developments in ad hoc networks and
sensor networks, random-access protocol without feedback is
a technique that deserves a closer look. This paper is based on
Massey’s model on random-access channel without feedback. A
central concept of this model is the idea of protocol sequences.
For these sequences, it is desirable that their cross correlation
should be as low as possible and that the length of their period
should not be too long, even if there is a large number of active
users. Another useful feature is to be able to support multirate
communication. Based on these considerations, a new family of
protocol sequences is proposed in this paper. These new protocol
sequences are built on the concept of prime sequences. It is shown
that these sequences possess properties that make them suitable
candidates for designing random access protocols for certain ad
hoc or sensor networks.

Index Terms—Hamming cross-correlation function, linear con-
gruence sequence, prime sequence, protocol sequence, random-
access channel without feedback, wobbling sequence.

I. INTRODUCTION

THE idea of using deterministic coding sequences to de-
fine random-access protocol without feedback can be

traced back to the seminal work of Massey and Mathys [1],
[2]. Nguyen, László, and Massey [3] made a subsequent key
contribution by applying constant-weight cyclically permutable
codes to this problem. Other related works were reported in
[4]–[7]. With recent developments in ad hoc networks, sensor
networks, and radio-frequency identification (RFID), the issue
of designing simple and efficient multiple-access algorithms
for these systems calls for a revisit of this approach. Sensor net-
works (see, for example, [8]–[11]) pose an interesting challenge
in particular. In addition to having a large number of devices
distributed over a dynamically changing network topology,
the sensors typically have very stringent size and power con-
sumption requirements. Hence, it is desirable to implement
simple random-access protocols that do not require frequent
monitoring of the channel for feedback information and can
avoid complicated processing such as back-off algorithm or
random number generation.

A central concept in Massey’s approach is the protocol se-
quence. A protocol sequence is a periodic binary sequence as-
signed to each user, which succinctly captures the information
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of when a user can transmit (sequence values equal to ) and
when to remain silent (sequence value equal to ). Evaluating
the performance of protocol sequences is a complicated issue
and the outcome is dependent to some degree on the nature of
the intended application. Nevertheless, the following criteria are
commonly considered.

1. The number of active users that can be supported simulta-
neously.

2. Throughput performance, measured for example by the
amount of successful transmissions that can be guaranteed
in a common period.

3. The length of the shortest common period for all active
users. A shorter period tends to ensure less variability in
performance.

4. The maximum number of distinct sequences that can be
defined.

5. Support for multirate users. To do so, a scheme should
include protocol sequences with a variety of duty factors.
This is desirable since different sensors or communication
nodes may have different data rate requirements.

6. Overhead issues. One example is the overhead for ad-
dressing the identification problem which deals with the
issue of identifying the sender of a successfully received
packet [2], [3].

Protocol sequences proposed in the literature provide dif-
ferent performance guarantees with regard to these criteria. It
this paper, we propose a new family of protocol sequences,
called the wobbling sequences, and discuss their performance
characteristics with respect to the criteria described.

The construction of these sequences is based on the con-
cept of prime sequences. Prime sequences were proposed by
Shaar and Davies [12] and independently by Prucnal and his
coworkers [13], around the same time when [1] was published.
It was observed by Shaar that prime sequences are closely re-
lated to the frequency-hopping sequences introduced by Title-
baum [14] in 1981. The concept of a prime sequence has been
further extended, such as in [15]–[18], with a particular view to-
wards optical communication applications.

Wobbling sequences are periodic binary sequences. They
have cross-correlation properties making them suitable for
defining random-access protocols without feedback. It will be
shown that these sequences are easy to generate and to decode.
Protocols based on these sequences can accommodate a large
number of active users and enjoy good sum rate. The period
of these sequences does not grow exponentially as a function
of the number of active users. For example, for the symmetric
case where all users have equal rates, the minimum period of
these sequences can be set to be the fourth power of the number
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of active users. The proposed protocol sequences can also
accommodate multirate channels. However, a drawback of the
scheme is that additional overhead bits are required in order to
identify the packets, although such overheads are not unusual in
multiple-access channel (MAC) protocols. (As an example, one
can consider the MAC frame format specified in IEEE 802.11
[19].) Moreover, throughput lost due to such overheads can be
made small if the amount of user data sent per transmission
session is sufficiently large. For sensor network applications,
the required data rate may be low, but the total amount of data to
be transmitted over a session may be large. For example, each
measurement from a sensor may be contained in a small-sized
packet, but the measurements need to be repeated many times
over a session. For such applications, initialization packets can
be sent at the beginning of a transmission session, but overhead
bits in subsequent packets in the same session can be avoided
as explained in Section VI.

The organization of the rest of the paper is as follows. In
Section II, we recall the basic communication model used by
Massey to describe the random-access channel without feed-
back. This is the basic model assumed in this paper. Notations
and definitions used in the later sections are also introduced.
In Section III, we introduce the linear congruence sequences,
which are a simple generalization of the prime sequences. These
sequences are then used to construct the wobbling sequences in-
troduced in this paper. Basic correlation properties of linear con-
gruence sequences are presented in Section IV. The wobbling
sequences are introduced in Section V along with descriptions
of their fundamental correlation properties. In Section VI, we
present the performance characteristics of a random-accessing
scheme based on the wobbling sequences. Concluding remarks
are provided in Section VII.

II. A RANDOM ACCESS CHANNEL MODEL

WITHOUT FEEDBACK

A model for a collision channel without feedback has been
considered previously in [1], [2]. We adopt this model here.
Consider a communication channel that is shared by ac-
tive users. It is assumed that each of these users has an infinite
backlog of packets to send. The channel is divided into time
slots of equal duration. The users know the slot boundaries but
are otherwise unsynchronized. Following [1], [2] we define a
protocol sequence, , to be a binary se-
quence. An active user is said to transmit according to a pro-
tocol sequence if the user transmits a packet at time slot if
and only if . A receiver in the system listens to all time
slots. (This assumption can be relaxed but it will not be consid-
ered here.) At any time slot, if only a single user transmits, the
intended receiver can receive the packet correctly. The receiver
then identifies who the sender of the packet is and decodes its
content. If more than one user transmits, a collision occurs and
all transmitted packets in that time slot are lost. It is further as-
sumed that users employ coding across packets to recover data
lost due to collisions. For practical considerations, one would
like to remove the assumption that the slot boundaries are syn-
chronized. It is, in fact, possible to do so and to allow the users
to be completely unsynchronized. However, this more general
scenario is not considered in this paper.

For a periodic binary sequence with a minimum period ,
following [2], define its duty factor by

(2.0)

Users employing different duty factors transmit at different
data rates. Given a protocol sequence set, denote the total
number of distinct sequences that are defined by . Denote the
shortest common period of a sequence by . If users are
active, let represent the minimum number of packets that can
be sent by any user without suffering any collision within one
period. For a protocol sequence set in which all sequences have
the same duty factor, for example, when binary constant-weight
cyclically permutable codes are used [3], [5], the ordered set

is an important characteristic of the protocol
sequence set.

Define the rate of a sequence as the ratio . The sum of
the rates of all active users is referred to as the sum rate. For the
case where the rates of all the users are symmetric, it has been
shown in [2] that there exist protocol sequences with sum rate
approaches as the number of active users tends to infinity.
However, the period of these protocol sequences grows expo-
nentially in .

Sum rate is one way to measure the throughput performance
of a protocol sequence set. For some sensor network or RFID
applications, the required transmission data rate may be low,
however, it is important to ensure that all transmitters can suc-
cessfully transmit information at least once in a given time pe-
riod, say in time slots. We call such a property un-suppress-
ibility. All protocol sequences reported in [1]–[7] can guarantee
un-suppressibility, however the condition under which un-sup-
pressibility can be guaranteed varies. These conditions include
the maximum number of active users allowed and the length of
the guarantee period .

In some applications, transmitters are required to transmit
at different data rate. However, not all protocol sequence sets
proposed in the literature can support multirate sequences. For
example, protocol sequences defined by using constant-weight
cyclically permutable codes all have the same duty factor.
The approach taken in [2], [7] allows simultaneous users with
different duty factors. However, construction of the protocol
sequences depends explicitly on the combination of the duty
factors; different combinations may lead to different protocol
sequences. In the approach proposed in this paper, multirate
sequences are supported, although not all rates are permissible.
The formulation of a sequence depends on its duty factor but
is otherwise independent of other sequences. Hence, users
requiring different duty factors can join or leave the system
dynamically without affecting the protocol sequences of other
users.

The protocol sequence set proposed in this paper is defined
by means of a family of binary sequences called the wobbling
sequences. It will be shown that such a protocol sequence set
has good sum rate performance, allows for multirate transmis-
sions, and can guarantee un-suppressibility for a large number
of active users.
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For construction of the proposed sequences, we need to em-
ploy some elementary number-theoretic concepts and notation.
To fix ideas for subsequent discussions, recall that a prime is a
positive integer that has no factor other than and itself. Two
distinct positive integers are relatively prime to each other if they
have no common factors other than . Note that is always rel-
atively prime to any number. We represent the highest common
factor of two integers and by . If is a real
number, the notation represents the largest integer less than
or equal to and represents the smallest integer greater than
or equal to . Given two real numbers and , let denote the
maximum number; hence, .
Given three (possibly negative) integers , , and , the equation

(2.1)

holds if and only if there exists an integer (possibly negative)
such that

(2.2)

III. LINEAR CONGRUENCE SEQUENCES

Let be a binary sequence. Such
a sequence can also be represented by indexing the positions at
which it assumes the value of . That is, one can represent by

, where denotes the position at
which the th entry of “ ” in appears. The following lemma
relates the duty factor with the period of a sequence.

Lemma 1: If the sequence is periodic with period then
for all nonnegative integers

(3.0)

where is the duty factor of the sequence. Conversely, if for all
nonnegative integers

(3.1)

then is periodic with period and the duty factor of is
.

The proof of this result is straightforward and is omitted.
The concept of prime sequences was introduced in [12]–[14];

it can be generalized to nonprimes. Let be a positive integer
and be a nonnegative integer such that . Define the linear
congruence sequence generated by as follows.

Definition 1: Let represent the
linear congruence sequence generated by , then

(3.2)

The integer is known as the key generator of the sequence.
When is a prime, the sequence defined in (3.2) is simply a

prime sequence ([12], [13]). The following result for linear con-
gruence sequences is well known for prime sequences; it is in-
cluded here for the sake of completeness.

Proposition 1: The minimum period of the linear congruence
sequence generated by divides and has a duty factor
of . If and are relatively prime, then is the minimum
period.

The proof of this result, which is based directly on the rep-
resentation (3.2), is provided in Appendix A. As an illustrative
example, the sequence generated by has an representa-
tion and a period of ,
which divides . On the other hand, the sequence generated by

has a period of .
If one considers the difference between two neighboring ele-

ments in a linear congruence sequence, one can see that

(3.3)

The sequence defined by

is well known as a most regular binary sequence. (See, for ex-
ample, [20] and also [21].)

IV. CORRELATION PROPERTIES OF LINEAR

CONGRUENCE SEQUENCES

Definition 2: Let and be two
periodic binary sequences with a common period . As in
[22], define the Hamming cross-correlation function between

and for a shift by

(4.0)

In this paper, we prefer to use a normalized form of the Ham-
ming cross-correlation function

(4.1)

A nice property of the normalized form is that it always yields
the same value no matter what common period is used. If

, then the function in (4.1) is a normalized Hamming autocor-
relation function. Note that for any integer

(4.2)

If one averages the normalized cross-correlation function
over all shifts, the average value is simply the product of the
duty factors of the sequences. This is a well-known fundamental
result [23].
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Lemma 2 [23]: Let and be periodic sequences with
period and duty factors and respectively. Then

(4.3)

It is known that the cross-correlation function for prime se-
quences has a maximum value of . This is not true for linear
congruence sequences in general. However, the following result
holds.

Theorem 1: Let , , and be integers satisfying
, and . Let

and be the linear congruence sequences generated by
and , respectively. For any shift , the
normalized Hamming cross-correlation function satisfies

(4.4)

where is the duty factor of the sequence. Moreover, for
if or , then

(4.5)

The proof of this theorem is provided in Appendix B.
If is a prime number, the relative prime condition of The-

orem 1 is automatically satisfied. Hence, Theorem 1 is a gen-
eralization of the result in [12]. In subsequent discussions, we
also need to investigate the autocorrelation property of these
sequences. In particular, the following basic property of linear
congruence sequences is needed for the construction of wob-
bling sequences.

Proposition 2: Let and satisfy , and let be a
linear congruence sequence generated by . If

if (4.6)

For the case with and relatively prime

for (4.7)

Moreover, given any integer with , let be the
unique solution that satisfies , and

(4.8)

Then and are the only
nonzero terms for shifts of the form . is
equal to the number of integers satisfying , and

(4.9)

is equal to the number of integers
satisfying and

(4.10)

Proof: Equations (4.6) and (4.7) are straightforward. The
proof of the rest of the proposition mimics the proof of The-
orem 1. In particular, the inequalities (4.9) and (4.10) are the
corresponding versions of (B9) and (B15). Details are omitted.

Note that (4.9) and (4.10) imply that

(4.11)

It is also clear that is strictly less than if both
the generator of the sequence and the shift are positive. How-
ever, it can achieve values of up to . In other words,
it is possible to resolve the relative shifts of by means of au-
tocorrelation. However, the resolution is not robust to error and
interference.

The following cross-correlation property of linear congru-
ence sequences is crucial to the construction of wobbling
sequences.

Proposition 3: Let , , and be integers satisfying the
conditions stated in Theorem 1. For , let be a linear
congruence sequence generated by , respectively. Then
for any integers , with and ,
the following holds:

(4.12a)

and

(4.12b)

The proof of this proposition is provided in Appendix C.
When the period of a linear congruence sequence is a power

of a prime number, the following theorem explicitly describes
the distribution of the cross-correlation values as a function of
the shift value.

Theorem 2: Let be the power of a prime number and let
integers and satisfy the conditions:
, , and . Denote by and

the linear congruence sequences generated by and ,
respectively. Let , satisfying, , be the unique
solution to

(4.13)

Then, for shifts varying between and , of them
satisfy the cross-correlation value

(4.14)

of them satisfy

(4.15)

and of them satisfy

(4.16)

Proof of this theorem is provided in Appendix D.
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TABLE I
H (c + 8c ) = 64H (c + 8c )

For example, if is the linear congruence sequence gener-
ated by and by , then in (4.13) is equal to .
As shown in Table I, there are 16 shifts with a cross-correlation
value of (that is, a normalized value of ) and 16 shifts
with value of .

Theorem 2 shows that in general the normalized cross-cor-
relation function between two linear congruence sequences is

for some shifts. So the bound in Theorem 1 is tight. On
the other hand, one can show that for any two linear congru-
ence sequences with period and duty factor , the normal-
ized cross-correlation function between them must be equal to
or bigger than for some shifts. Hence, a natural question
is whether there are families of periodic sequences with period

and duty factor such that the normalized cross-correla-
tion function between any two sequences is exactly for any
shift.

In [24] (see also [18]), the concept of an extended prime se-
quence was introduced by padding extra zeroes in the prime
sequences. It was shown that the maximum cross correlation
for these sequences is . However, there are only distinct se-
quences, with a duty factor of before padding and a common
period of . So after padding, the duty factor of these
sequences is roughly with at most active users. In [25],
a different approach to this question was presented. In that case,
the system can support distinct sequences each with a duty
factor of . However, a drawback of that approach is that
the period of the sequences is exponential in . We address this
problem here by means of the wobbling sequences to be intro-
duced in Section V.

Theorem 1 describes the Hamming cross-correlation function
for linear congruence sequences with the same duty factor. To
support multirate channels, sequences with different duty fac-
tors are needed. We present below a cross-correlation relation
result for linear congruence sequences with different duty fac-
tors. First, the following lemma holds.

Lemma 3: Let and be positive integers, such that
for some that is a power of . Let and be positive

integers relatively prime to . For any , the equation

(4.17)
has at least distinct solutions with .

Proof of this result is presented in Appendix E.

Remark: One can check directly that this result still holds if
we let while keeping relatively prime to . However,
the result does not hold for .

Let and be positive integers, such that for some
that is a power of and let be a positive integer and

be a nonnegative integer. It is further assumed that and (if
it is nonzero) are relatively prime to . Let and be the
linear congruence sequence generated by and ,
respectively. and have a period with duty factors

and , respectively. Hence, the cross-correlation
function between the two sequences is well defined.

Theorem 3: For the linear congruence sequences and
previously defined

(4.18)

for all nonnegative .
Proof: For any , with , is equal to

the number of solutions, to (4.17) with .
By Lemma 3

(4.19)

By Lemma 2

(4.20)

It follows that the inequality in (4.19) must in fact be an equality.

Corollary: Let and be positive integers, such that
for some that is a power of . Let and be positive

integers relatively prime to . For any , the equation

(4.21)

has exactly distinct solutions over any time period starting
from , .

V. WOBBLING SEQUENCES AND THEIR

CORRELATION PROPERTIES

In subsequent discussions, we consider to be a power of a
prime number. That is

(5.0)

for some prime number and positive integer . We call the
corresponding linear congruence sequence, a prime power se-
quence. For , denote by the prime power se-
quence generated by . Let represent the operator that
shifts a sequence by one element to the left. That is

(5.1)

Definition 3: Let , with , be a prime power. Let
be an integer satisfying . For , the wobbling
sequence generated by , , is defined by

(5.2)
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For and , is defined by

(5.3)

Proposition 4: For with , , and
, the wobbling sequence , has a duty factor

equal to .
Proof: For the case , and are relatively prime.

By (4.7), the cross correlation between and for
any pair of distinct, nonnegative integers and is zero. Simi-
larly, (4.6) ensures that the cross correlation between and

for any pair of distinct, nonnegative integers
and is zero. Hence, in both cases, the number of
the occurrences of “ ” in is times the number of the
occurrences of “ ” in , and the duty factor of is
as claimed.

The same arguments also show that for , is
a binary sequence that can be represented as

(5.4)

For , is a binary sequence that can be represented
as

(5.5)

For illustration, consider the case , .
The linear congruence sequence has an representation

. and can
be represented by and

, respectively. The wob-
bling sequence is then defined to be

The duty factor of this sequence is and its period is .

Theorem 4: Let and where
, , , , . If

, then for all shift

(5.6)

where are the duty factors of the respec-
tive sequences. If , then

(5.7)

Proof: From (5.4) and (5.5) it follows that if , then

(5.8)

By Proposition 3, (5.8) can be reduced to the inequality

(5.9)

If

(5.10)

Equation (5.7) follows from Theorem 1. The case can
be proven similarly.

Theorem 5: Let be a prime number and for some
positive integer with . Let for some that is a
power of . Let and be integers satisfying ,

. For , , let
and with respective duty factor and

. Then

(5.11)

for all nonnegative .
Proof: This proof is similar to Theorem 4. It follows from

(5.4) and (5.5) together with Theorem 3.

Definition 4: For any prime and integer with ,
construct a family of binary sequences as follows.

1. The wobbling sequence is in .
2. For , let . For all such and for all

satisfying , the wobbling sequences are
in .

Remark: There are infinite number of sequences in
with different duty factors and periods. The periods of se-
quences in are of the form, with duty
factors , respectively.

VI. BASIC PERFORMANCE OF WOBBLING SEQUENCES

Theorem 6: Consider the case
consisting of elements in (note that ) with a
common period . Let represent the duty factor of .
Assume that satisfies the condition

(6.0)

Then for any and any combinations of shifts,
, the following inequality holds:

(6.1)

Proof: Let the duty factor of be . Let be the total
number of sequences in the set with duty factors equal to

. By definition of , all these sequences are of the form
with the same and but different generators, . Since

there are at most such generators

(6.2)
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By Theorem 4 and 5

(6.3)

Proposition 5: For a system of wobbling sequences of the
form for a fixed satisfying , and all gen-
erators satisfying , the sum rate has a lower
bound

(6.4)

Proof: There are a total of users in the system with a
common period of . For a user using a nonzero generator, the
number of collisions in a period of slots with another user
who is also using a nonzero generator, is bounded above by

according to Theorem 4. There are such other
users. On the other hand, there is one user using the generator
zero. The number of collisions with this user is . Hence, the
number of successful transmission for one of the users
using a nonzero generator is bounded below by

(6.5)

For a user using the generator zero, the number of successful
transmission is bounded below by

(6.6)

The proposition then follows from combining these lower
bounds.

We can now compare the performance of the wobbling se-
quences with the protocol sequences proposed in [2], [3], [5]
with regard to the criterions stated previously.

Given any number of active users with duty factors
, the protocol sequences proposed by Massey

and Mathys have a common period of , which is of
exponential growth in . The sum rate is given by

(6.7)

If and tends to infinity, then the sum rate
tends to . The un-suppressibility property holds for this
scheme and multirate protocols can be supported. However,
the protocol sequences are dependent on the duty factor vector

. The sequences can solve the identification
problem without extra overhead; however, to find the packet
location, a user has to send out initialization packets in the
initial transmission periods [2].

Constant-weight cyclically permutable codes are used in
[3], [5] which are constructed by means of linear cyclic codes
over GF (with a prime) and a clever application of the
Chinese Remainder Theorem correspondence. Performance of
such sequences depends on the linear cyclic codes used and
is complicated to analyze. However, some estimates based
on Reed–Solomon (RS) or Bose–Chaudhuri–Hocquenghem
(BCH) codes are presented in [5]. Recall that the quadruple

captures the key performance characteristics of
such protocol sequences. For the code constructed in [5]

(6.8)

Here, are code parameters, is the
Hamming weight, and is the cyclic minimum distance, which
is defined to be the minimum Hamming distance from a code-
word to its cyclic shifts or to cyclic shifts of another codeword
[5]. To guarantee un-suppressibility, it follows from (6.8) that
the number of active users that can be supported is

(6.9)

For large , the lower bound is roughly equal to .
If one uses this as an estimate of the number of active users,
then at most users can be supported, since . In this
case, the sum of the duty factors of all the active users roughly
equals only. Moreover, according to [5], for large , the
lower bound for the sum rate is

(6.10)

Multirate sequence is not supported by this approach. How-
ever, there is no additional overhead for handling the identifica-
tion problem or the packet location problem.

For wobbling sequences, there are sequences with a period
and a duty factor , sequences with a period

and a duty factor . For the case , that is, if is
used as the protocol sequence set, then as long as the total sum
of duty factors does not exceed , then over a common period,
say slots, Theorem 6 guarantees that for any user with duty
factor , the user can transmit at least

(6.11)

packets that will not be blocked by other users. Hence, the
un-suppressibility property can be guaranteed as long as (6.0)
holds. In particular, if one uses only wobbling sequences of
the form , then there are distinct sequences to support

active users, so that and the period is
polynomial in unlike the sequences of Massey and Mathys.
Moreover, unblocked slots can be guaranteed once every
cycle of slots. Unlike the constant-weight cyclically per-
mutable code approach, multirate users can be supported by
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using wobbling sequences and the sequence formulations are
independent of the duty factors of other users.

On the other hand, a drawback of the wobbling sequences is
that overheads are needed for solving the identification problem
and the packet location problem. One can deduce from Propo-
sition 2 that the autocorrelation function for linear congruence
sequences is not strong enough to uniquely identifying a se-
quence when other users are also transmitting. This holds true
for wobbling sequences. One simple approach to address the
identification and the packet location problem is to require a
user to precede the payload data transmission with initializa-
tion packets at the first transmission period. This approach is
similar to the approach taken in [2] to solve the packet loca-
tion problem. Each initialization packet in the first transmission
period for that user should contain a user identity, a key gen-
erator, a packet sequence number, and duty factor information.
This information packet is sent repeatedly during the first trans-
mission period according to the protocol sequence assigned to
the user. With the un-suppressibility condition being satisfied, a
receiver is guaranteed to receive at least one uncorrupted initial-
ization packet from this user. The duty factor information then
enables the receiver to identify the period of the sequence used
by this particular user. With the other information provided, the
receiver is able to uniquely identify transmissions in subsequent
periods from this user even if those packets no longer contain
any identity information. (If other users start to transmit at sub-
sequent periods, more packets may become corrupted, but these
events are detectable by the receiver.) To decode the payload in-
formation, packets from each period are grouped together; cor-
rupted packets from a user in the same period can be treated as
“erasures.” Coding and decoding can then follow the approach
described in [2] provided a minimum number of uncorrupted
packets from a user can be guaranteed.

If the transmissions from users are sporadic and do not last
over many sequence periods, then a second approach is to re-
quire the identity information be contained in each packet. This
is suitable if the maximum number of active users and the max-
imum sequence numbers are relatively small in comparison to
the data payload. As radio transmission technology improves,
even for RFID systems, which are considered to be extremely
low data rate, the popular EPC Class-1 Generation-2 standard
specifies that the number of bits in a burst can range from 32 to
528 bits, with 16 protocol control bits [27]. If the identity over-
head requires only a few additional bits, this second approach
may not cause a heavy burden on system performance.

To obtain a protocol sequence with good sum rate perfor-
mance, one can consider a system consisting of all wobbling
sequences of the form for a fixed . If is a prime
then it follows that for , a lower bound of the sum
rate is

(6.12)

As approaches infinity, the lower bound approaches .
This is lower than the theoretical limit of that can be

achieved by the sequences of Massey and Mathys. However,
it is higher than the lower bound in (6.10). Note that this is a
lower bound only; the actual throughput could be higher.

For illustration, consider the case and , the max-
imum cross correlation between and is . The
maximum cross correlation between and is .
The maximum cross correlation between and is

. Hence, there are at least 26 successful transmissions, yielding
a lower sum rate bound of as predicted by (6.12). By
simulation, the actual minimum throughput of the system is in-
deed .

If one increases to , then according to the lower bound
(6.4), there sum rate is at least 7/27, which is lower than the

case. Simulation shows that the actual minimum throughput
is and is higher than the case. In comparison, ac-
cording to [3] and [5], the minimum sum rate achieved using RS
or BCH is . Of course, in these cases, there are no identity
overheads.

VII. CONCLUSION

Building on the idea of prime sequences, a new class of binary
sequences with desirable cross-correlation properties is intro-
duced. The wobbling sequences are shown to be suitable candi-
dates for serving as protocol sequences. The performance char-
acteristics of wobbling sequence are quite different from other
traditional protocol sequences. Hence, they can offer alternative
design options for MAC protocols, in particular for applications
to sensor networks or RFID systems. The approach introduced
here may also lead to constructions of other binary sequence
families with interesting cross-correlation properties.

APPENDIX A

Proof of Proposition 1: It is easy to check that for all

(A0)

Hence, is a period of the sequence and its minimum
period divides . It also follows that the duty factor of the
sequence is . Now assume that and are relatively prime.
Suppose that is a solution to (3.1) for the minimum period

. From Lemma 1, it follows that

(A1)

Moreover, for all nonnegative integers

(A2)
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Fig. 1. Computation of l �H (s).

Hence, by choosing to be , it follows that

(A3)

This equality holds only if divides . Since and are
relatively prime, it follows that is a multiple of . In particular,
it is easy to check that indeed provides a solution to (3.1)
with

(A4)

Hence, is the minimum period.

APPENDIX B

Proof of Theorem 1: One can show that is
equal to the number of distinct solutions of the form ,
with , to the equation

(B0)

It also follows from (B0) or from Fig. 1 that if there is a so-
lution to (B0) of the form , with , then .
Represent in the form with , .
Then one can rewrite (B0) as

(B1)

By the definition of and the definition of , the following
inequality holds:

(B2)
Hence, a solution to (B1) must satisfy

or
(B3)

Assume the first case and set

(B4)

with . Then (B1) is reduced to

(B5)

Since and , there is one and
only one solution to (B5), , with . (See, for
example, [26].) Let

(B6)

with . From (B5) it follows that

(B7)

However, for a solution to (B1), the following equality must
hold:

(B8)

So, (B8) is satisfied by if and only if

(B9)

Now consider the second case of (B3) holds. It follows that a
solution to (B1) satisfies

(B10)

For clarity in argument, denote by . Then,
(B1) becomes

(B11)

Hence

(B12)

Since and , there is one and only
one solution to (B12), , with . Let

(B.13)

with . Then, is a solution to (B11) if and
only if

(B14)

and the latter equation holds if and only if

(B15)

In summary, (B0) has two solutions with
if both of the following inequalities hold:

(B16)

where

;
(B17)

and

.
(B18)
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There is only one solution if only one of the two inequalities in
(B16) holds. There is no solution if none of the two inequalities
holds. Hence

(B19)

To complete the proof of the theorem note that if or
, then

(B20)

Therefore, exactly one equation in (B16) holds.

APPENDIX C

Proof of Proposition 3: Let , for , be the
solution satisfying and

(C0)

Similarly, define to be the solution satisfying
and

(C1)

Hence

(C2)

Let and be nonnegative integers less than
satisfying

(C3)

Then

(C4)

If represents the total number of distinct solutions
to (B16)–(B18) for the shift , then for

is equal to the number of inequalities that
are satisfied in the following system:

...

(C5)

Due to (C4), is at least equal to with the
possibility of upward adjustments from the “boundary terms”:

(adding if the corresponding inequality holds) and

(adding if the corresponding inequality holds.)
Hence

(C6)

For , so exactly one of the two
corresponding inequalities is valid, so

(C7)

APPENDIX D

Proof of Theorem 2: If or then
and the result follows from Theorem 1. So assume and

. Let , so
that and . Since

, it follows that and

(D0)

Define . To prove (4.14), let , satisfying the
condition , be the solution to

(D1)

One can show that is of the form , with
, so that

(D2)

It follows that . Let , for ,
be the solution satisfying and

(D3)

Let be a nonnegative integer less than satisfying

(D4)

Denote by , then

(D5)

Hence

(D6)

Since and are relatively prime, this implies

(D7)



2070 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 53, NO. 6, JUNE 2007

Since , as cycles from to ,
cycles through distinct modulus equivalent classes. One
can view this as a sequence of state transitions. Call this the
transition sequence for . Moreover, at each step , whenever

crosses , that is, whenever the following inequal-
ities hold simultaneously:

(D.8)

the cross-correlation function at the corresponding shift
is equal to . Label such a transition a -transition. We want
to count the number of -transitions as and cycle, respec-
tively, from to , because this yields the total number of
instances where the cross-correlation function is equal to .

Since , consider first the case . In this case

(D9)

For any fixed as cycles from to , the state sequence
cycles through values from to in some order,
repeating times. Note that changing the value of only
affects the starting point of the cycle sequence. Note also that
at a -transition

(D10)

This implies that

(D11)

Here, the notation represents the value between and
that is -equivalent to . Note that from (D1)

(D12)

Hence

(D13)

It follows from (D11) that there is no -transition if

(D14)

Consider now transition states satisfying
. Represent such a state as . There are totally

such states, each being visited times as cycles from
to . Consider a transition jumping from to . For
different , such a transition occurs at different value of , but
nevertheless it will occur. It is not easy to characterize exactly at
what value of and that such a transition is a -transition. It
is, however, relatively easy to count the number of -transitions
as ranges from to . To do so, we want to count the
number of cases where such a transition from to crosses
the threshold in the sense defined by (D8) as varies.
To satisfy (D8), the threshold value must lie in the interval

. So the number of -transitions affiliated with as

varies is equal to the length of the jump, that is, . Summing
over all the possible states of , and counting their
multiplicity of occurrences , one obtains the total number
of -tranisions as

(D15)

One can show that the same result occurs for the case
by using similar but slightly modified arguments.

Hence, the number of shifts such that is
. By Lemma 2

(D16)

So the number of shifts with is equal to

(D17)

The rest of the theorem then follows.

APPENDIX E

Proof of Lemma 3: Consider a fixed shift value which
can be represented as

(E0)

with . For any fixed integer , satisfying
, and any integer , satisfying , we

want to construct an explicit solution to (4.17) parameterized by
.

Let denote the unique integer satisfying and
the equation

if ,
otherwise.

(E1)

Define an integer by

if
otherwise.

(E2)

Note that . Since is relatively prime to , there
exists a unique integer such that and

(E3)

Since

(E4)

it follows that

(E5)

Let

if
otherwise.

(E6)
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If , then by combining (E6) with (E1), one can show
that

(E7)

Hence

(E8)

This provides a solution to (4.17). Similarly, if , one
can show that

(E.9)

Moreover

(E10)

Therefore, this also provides a solution to (4.17).
Note that there are possible values for (and hence,

possible values for ) and possible values for . For each
distinct pair, the corresponding solutions are
distinct. Hence, for any fixed , there are at least solutions to
(4.17) with .
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