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Abstract

A revisit of the model of collision channel without feed-
back (CCw/oFD) has motivated some interesting de-
signs on periodic binary sequences. The protocol and
system simplicity is particularly favorable for applica-
tions in certain wireless sensor and ad hoc networks.
User unsuppressibility for individual service guaran-
tee is desirable and emphasized here. We review some
protocol sequences that are user unsuppressible (UU).
Lower bounds of sequence length are obtained. Some
corresponding sequence sets are identified.

1. INTRODUCTION

In multi-access communications, random accessing
has played an important role since early works [1, 2, 3]
due to its simplicity and effectiveness in many differ-
ent systems [4, 5, 6]. Slotted ALOHA [1] is one of
the well-known examples. In the shared random access
channel, if users transmit without coordination, packet
collisions are natural and inevitable. For collision-free
transmission, one may consider a rigid scheme such
as TDMA. However, sometimes it may not be prac-
tical due to the stringent time synchronization require-
ment. Contention based random access protocols such
as IEEE 802.11 CSMA/CA [5] could provide a more
flexible scheme. However, it should be noted that they
usually require some complicated processing such as
backoff algorithms and random number generation.

In this paper, we consider a slotted multiple ac-
cess channel model called the collision channel without
feedback (CCw/oFD) [7]. It is assumed that senders
cannot synchronize transmissions between one another
as their relative time offsets are unknown to each other
due to a lack of feedback links. Periodic binary protocol

sequences are used to define channel access permission.
A user will simply transmit a packet when its proto-
col sequence refers to ‘1’. Otherwise, it keeps silent.
When more than one user transmit at a time slot, a
collision occurs and it is considered that the informa-
tion in the packet cannot be recovered. Fundamentally,
it is shown in [3] that a reliable multi-access commu-
nication under CCw/oFD is achievable with carefully
designed protocol sequences. Meanwhile, the zero error
capacity region is derived.

The system simplicity is particularly interesting and
attractive for applications in certain communication
systems such as wireless sensor, RFID, and impulse ra-
dio systems in which sharing a radio channel with the
requirement of well-coordinated transmissions and time
offsets is often hard to thin devices. It does not require
strict user synchronization, frequent channel monitor-
ing and backoff algorithms, and can provide alternative
options of distributed multiple access control.

For protocol sequences, some common design cri-
teria include the maximum number of allowable se-
quences, their cross-correlation property, and required
sequence length. In this paper, we focus on user unsup-
pressibility [8], which is a condition guaranteeing that
each user can transmit at least one packet successfully
within a certain period, no matter what the relative
delay offsets of the other users are. The individual
throughput may be low. However, it is important to
ensure that each user can successfully transmit with-
out collision to a certain amount in every deterministic
time period. Traditional designs often focus on system
throughput but little on individual guarantees. Note
that the unsuppressibility property under CCw/oFD
also fits well in defining delay-bounded MAC for unidi-
rectional wireless links [9]. In general, short sequences



are more favorable. Given M users, we want to find a
set of M user unsuppressible (UU) protocol sequences.
The goal is to minimize the length, N , of the protocol
sequences. We will review some sequence designs in the
literature that are user unsuppressible. Lower bounds
of N are derived and used to evaluate the performance
of those designs.

The rest of the paper is organized as follows. Sec-
tion 2 describes the system model. Constructions
of protocol sequences for user unsuppressibility and
shorter length are investigated and suggested in Sec-
tion 3. Section 4 provides the comparison and a fun-
damental study of the design possibility. Finally, Sec-
tion 5 contains some concluding remarks.

2. SYSTEM MODEL

The model of CCw/oFD is employed [3]. Consider
a communication channel that is shared by M active
users. It is divided into time slots of equal duration.
Each user follows a periodic binary (0/1) sequence,
W = {W (t), t = 0, 1, 2, . . .}, and will transmit a packet
at time slot t if and only if W (t) = 1. Here, we re-
strict our attention to the slot-synchronized model in
which users transmit packets aligned to the slot bound-
aries. However, users do not know the time offsets be-
tween one another and cannot synchronize their trans-
missions. They may have different transmission start-
ing time and relative delay offsets. At any t, if more
than one user transmits at the same time, all the trans-
mitted packets during the collision are considered lost.
Otherwise, a receiver can receive the packet correctly
and decode the content.

For a binary sequence W with period N , its duty
factor [3] or transmission rate is defined as:

r , 1
N

N−1∑
t=0

W (t), (1)

while its weight, w, is defined by the number of 1’s, i.e.,
w , rN . The throughput of a user is defined by the
fraction of packets it can send without suffering any
collisions.

Let W1 and W2 be two binary sequences with com-
mon period N . For any relative time shift s, their
Hamming cross-correlation is defined as:

HW1,W2(s) ,
N−1∑
t=0

W1(t)W2(t + s). (2)

3. PROTOCOL SEQUENCES WITH USER
UNSUPPRESSIBILITY

Without loss of generality, we can have many differ-
ent sequence designs which offer user unsuppressibility.
However, the allowable number of active users, M , and
their sequence common period, N , can be quite dif-
ferent [8]. The primary objective here is to have N
as small as possible for general M , while user unsup-
pressibility holds. Some interesting designs and their
characteristics are investigated below.

3.1. Wobbling Sequences

To support user unsuppressibility, one may employ
wobbling sequences, Wb,l,d. The detailed definition can
be found in [8]. We only briefly outline below. Let l
be the square of a prime p, which will generate the
shortest sequence set. For b = 0, 1, . . . , p−1, the linear
congruence sequence [10], Sb,l, is the binary sequence
defined by specifying the 1’s appearing at index set:

{nl + nb− bnb/lc l : n = 0, 1, 2, . . .} . (3)

Sb,l is of period p4. For d = 1, 2, . . . , p, the wobbling
sequence is defined by:

Wb,l,d(t) = Sb,l(t) ∨ LlSb,l(t) ∨ · · · ∨ L(d−1)lSb,l(t) (4)

where L denotes the cyclic shift operator and ∨ refers
to the logical OR operator.

Wobbling sequences support user unsuppressibility.
However, it should be noted that they are designed
mainly for high throughput but not just for user unsup-
pressibility. So, the duty factors for wobbling sequences
are high.

Let d = p, by (4), there exists p wobbling sequences
with r = d/l = 1/p and N = p4. Note that the con-
struction is limited to prime p. Throughout this paper,
we will use p to denote prime number. By the sum of
the sequence cross-correlations, even when all these p
sequences are used at the same time, unsuppressibility
holds for every user. Therefore, it provides a solution
of protocol sequences to support p active users with
unsuppressibility. We denote its characteristics by the
following triplet:

(
M = p,N = p4, r = 1/p

)
. (5)

3.2. Subset of Prime Sequences

A prime sequence [4], Sb,p, can be represented by
indexing the positions where its n-th entry of 1’s ap-
pears, denoted by IS(n):

IS(n) = np + nb− bnb/pc p (6)

where b = 0, 1, . . . , p − 1. They have r = 1/p and
N = p2. For example, given p = 3, we have three



distinct sequences: {100100100}, {100010001}, and
{100001010}.

It is known that 0 ≤ HSb,p,Sj 6=b,p(s) ≤ 2, for any
0 ≤ s ≤ p2 − 1. For b > 0, the upper bound is tight.
When b = 0, HS0,p,Sj 6=0,p

(s) = 1.
By the above cross-correlation properties, one can

support a system of active users with unsuppressibility
by a subset of the prime sequences {Sb,p} as long as
the sum of their duty factors does not exceed a certain
threshold. To begin with, S0,p is included for usage
because of its lower cross-correlation maximum, i.e., 1.
Then, we will find out what is the maximum number
of sequences allowed from the sequence set {Sb 6=0,p}.

Clearly, if the total number of potential collisions
is strictly less than p for each sequence period, user
unsuppressibility holds. After taking into account S0,p

and a sequence oneself, due to the tight upper bound
2, the maximum number of allowable sequences in the
system is thus given by:

b((p− 1)− 1)/2c+ 1 + 1 = bp/2c+ 1. (7)

So, we can have a solution of protocol sequences
with user unsuppressibility and characteristics:

(bp/2c+ 1, p2, 1/p
)
. (8)

Comparing (8) and (5), for same M , by substituting
M = bp/2c + 1, (8) requires N < 4M2, i.e., generally,
a shorter sequence period is required. A detailed com-
parison will be given in Section 4.

3.3. Extended Prime Code

It is observable that the cross-correlation between
sequences has a significant impact on the number of
potential collisions and thus M , which can be increased
if the maximum cross-correlation is reduced.

Extended prime code (EPC) was introduced in [11].
A number of (p− 1) extra zeros are padded after every
p elements in a prime sequence. Thus, N = p(2p− 1),
while r = 1/(2p − 1). For example, given p = 3,
we have {10000 10000 10000}, {10000 01000 00100}
and {10000 00100 01000}, where “00” are the extra
zeros padded. They can help to reduce the maxi-
mum cross-correlation from two to one such that 0 ≤
HWi,Wj 6=i

(s) ≤ 1, for any 0 ≤ s < p(2p − 1). It is
observable that EPC gives a solution of protocol se-
quences for user unsuppressibility in characteristics:

(
p, 2p2 − p, 1/(2p− 1)

)
. (9)

3.4. Shift Invariant Sequences

The class of shift invariant (SI) sequences [12] inher-
ently hold user unsuppressibility as they always have

positive individual throughput in each sequence period
no matter what the relative time offsets are. Besides,
there always exists the corresponding sequences. For
a number of M symmetric rate users with r = 1/k,
where k is a positive integer greater than 1, it can be
shown that N ≥ kM .

To support user unsuppressibility, if there is no con-
straint on the duty factor, a good choice for the pur-
pose of least common period is to set r = 1/2, since
N will thus be 2M . It is the least among all the possi-
ble choices. This can be shown by the fact that here,
N = kM .

For example, given r = 1/2 and M = 3, we have
N = 23 = 8 and the corresponding SI sequences:




S0

S1

S2


 =




11110000
11001100
10101010


 . (10)

Built on SI sequences, for any positive M , one can
have protocol sequences with user unsuppressibility in
the characteristic triplet:

(
M, 2M , 1/2

)
. (11)

4. COMPARISON AND ANALYSIS

In the following, a detailed comparison of the se-
quence period required in the above four potential
protocol sequences is presented. Furthermore, explo-
rations on some fundamental limits are reported.

4.1. Sequence Length and the Lower Bound

As shown in Fig. 1, SI sequences (M, 2M , 1/2) have
the smallest N among the four solutions for M ≤ 6, al-
though inherently 2M grows exponentially. Generally
speaking, for M ≥ 7, EPC has the smallest N . How-
ever, note that it requires prime p in sequence construc-
tion. Besides, when compared to wobbling sequence
and prime sequence subset, EPC has smaller N since
M ≥ 3. When M = 2, prime sequence subset has the
smallest N same as that in SI sequence. It should be
noted that the current comparison is just on the re-
quirement of N , while here we do not care much about
their duty factor and actual throughput.

Furthermore, we are interested to know what the
lower bound of N required for user unsuppressibil-
ity with respect to M is. One may guess M2 (even
if limited to prime p such that, p2) is a valid lower
bound in general. Clearly, the answer is no, by the
counter-example observed when M = 3, in which we
do have a solution from SI sequences that only requires
N = 23 = 8, which is strictly less than M2. Some valid
lower bounds are given below.
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Figure 1: Sequence period is plotted against the num-
ber of active users supported. For those whose con-
struction is limited to prime p, only the corresponding
sets are shown. Their (M, N, r) is also indicated.

Theorem 1 For any M protocol sequences that satisfy
user unsuppressibility, N is at least M(M + 1)/2 + 1.

Proof: The proof proceeds by adding the users one by
one. First, suppose that user 1 is transmitting while
the rest are silent. It must occupy at least M time
slots. Otherwise, if it occupies less than or equal to
M − 1 time slots, then we can properly choose a set of
delay offsets for users 2, 3, . . . , M , such that user 1 is
completely blocked by the others.

Next, fix the relative offset of user 1 and consider
user 2. If users 3, 4, . . . ,M are silent, user 2 must
be able to transmit at least M − 1 packets success-
fully. Otherwise, by picking some delay offsets of users
3, 4, . . . ,M , user 2 can be completely blocked. Now,
user 1 and 2 together occupy at least M + (M − 1)
time slots.

By similar argument, one can find that users
1, 2, . . . ,M−1 must together occupy at least M +(M−
1) + . . . + 2 slots.

In order to accommodate the last user, we need at
least two more empty slots. Otherwise, if the period is
M +(M−1)+ ...+2+1 only, then there is at most one
empty slot for the last user when users 1, 2 . . . ,M−1 are
active. We can pick a relative offset of user M so that
user M does not transmit in this empty slot. Then,
user M is suppressed by other users. This implies that

N ≥ 1 +
M∑

k=1

k = 1 + M(M + 1)/2. (12)

There is another simple bound for the special case
when each sequence contains exactly M ones in each
period, i.e., w = M .

Theorem 2 A user unsuppressible (UU) sequence set
with characteristic triplet (M,N,M/N) must satisfy
N ≥ M2.

Proof: A proof can be established similarly to
that in [13, Proof of Theorem 1]. For any two se-
quences W1 and W2 in an (M, N, M/N) sequence set,∑N−1

s=0 HW1,W2(s) = M2. On the other hand, for UU
to hold, the Hamming cross-correlation for each pair
of sequences cannot be greater than 1 for any s, i.e.,
HW1,W2(s) ≤ 1. Therefore,

∑N−1
s=0 HW1,W2(s) ≤ N .

Combining the above two, we get N ≥ M2.

Clearly, since EPC has r = p/(2p2 − p), i.e., M/N ,
Theorem 2 is applicable to. Comparing the required
N with the lower bound N ≥ M2, one can see that
roughly speaking, EPC has a quite good N , especially
in large M , as it is on the same order of M2.

4.2. Tight Bound and the Available Sequence
Sets

In addition, we conduct an exhaustive search of UU
sequence sets in symmetric rate case. In other words,
they have constant weight. Table 1 reports the result
and tight bounds obtained. Some related and interest-
ing sequence sets found are listed as well. Note that
since the computation time required is exponentially
increasing in M and the sequence length, the searching
is hard for large M .

When M = 2, N = 4 is optimal, i.e., it is the min-
imum necessary sequence length for user unsuppress-
ibility to hold. It also attains the bounds in both The-
orem 1 and 2. Corresponding sequences are given by
SI sequences in (2,4, 1/2), i.e.,

[
S0

S1

]
=

[
1010
0110

]
. (13)

When M = 3, N = 8 is optimal. The corresponding
sequences are given by SI: (3,8, 1/2), as shown in (10).
By Theorem 1, the minimum period is at least 7. We
will show in the Appendix that a period of 7 is impos-
sible. Hence, the minimum period is equal to 8. The
lower bound is thus improved.

For M = 3, it is also possible to have sets of UU
protocol sequences in N = 12 and r = 1/3. One of the
feasible constructions is given below:




S0

S1

S2


 =




111100000000
110011000000
101010100000


 . (14)



When M = 4, N = 16 is optimal. It is given by SI
sequences in (4,16, 1/2). We can have




S0

S1

S2

S3


 =




1111111100000000
1111000011110000
1100110011001100
1010101010101010


 . (15)

Theorem 1 says that the minimum period is at least
11. An exhaustive search is conducted for N = 11, 12,
13, 14 and 15, showing that no UU sequence set exists
for N less than or equal to 15. Hence, N = 16 is the
optimal period for 4 users.

Table 1: Results from exhaustive search. Labels: SI
sequence, EPC, PS: prime sequence subset, WS: wob-
bling sequence. Characteristic triplet: (M, N, r).

Tight bound on N , Some other interesting

M available seq. set UU sequence sets

2 N = 4, EPC: (2, 6, 1/3)

SI: (2,4, 1/2) WS: (2, 16, 1/2)

≡ PS: (2, 4, 1/2)

3 N = 8, 9 ≤ N ≤ 11: impossible

SI: (3,8, 1/2) to have UU sequence set

under these N -values.

Some UU sets available:

(3, 12, 1/4), (3, 12, 1/3),

(3, 12, 5/12), (3, 12, 1/2),

EPC: (3, 15, 1/5),

PS: (3, 25, 1/5),

WS: (3, 81, 1/3)

4 N = 16, PS: (4, 49, 1/7)

SI: (4,16, 1/2)

5 (unknown) SI: (5,32, 1/2),

EPC: (5, 45, 1/9),

WS: (5, 625, 1/5)

6 (unknown) SI: (6,64, 1/2),

PS: (6, 121, 1/11)

7 (unknown) EPC: (7,91, 1/13),

SI: (7, 128, 1/2),

PS: (7, 169, 1/13),

WS: (7, 2401, 1/7)
...

...
...

5. CONCLUDING REMARKS

An exploratory investigation of multiple access con-
trol by protocol sequences in CCw/oFD with particu-
lar interests in the assurance of user unsuppressibility
is reported. It aims to ensure individual service guar-
antee for every user and over each sequence period,
even without backoff mechanisms and strict user syn-
chronization. Four classes of periodic binary sequences
are investigated and tailored for the unsuppressibility
property. Meanwhile, sequences in minimum length are
emphasized. A detailed comparison of their required
sequence period is conducted. Besides, theoretical re-
sults of the lower bound are established. By an exhaus-
tive search, some shortest and related sequence sets
are identified. Results reported can provide interesting
alternative design options of distributed multi-access
protocols, and may also lead to a new stimulating and
challenging research area.

Appendix

In this appendix, we will show that there does not ex-
ist an UU protocol sequence set for 3 users with pe-
riod 7. The proof relies on the Cauchy-Davenport the-
orem from additive number theory (see e.g., [14]). Let
Zp denote the set of residues modulo p, where p is a
prime number p. For two subsets A and B in Zp, the
sum set A + B is defined as:

{a + b ∈ Zp : a ∈ A, b ∈ B} . (16)

The Cauchy-Davenport theorem says that for any two
subsets A and B of Zp, with p prime, if A + B 6= Zp,
then

|A + B| ≥ |A|+ |B| − 1 (17)

where | · | denotes the cardinality of a set.
Let −A denote the set {−a ∈ Zp : a ∈ A}. Then

A + (−A) is the set of differences between pairs of el-
ements in A. We will use the special case of Cauchy-
Davenport theorem when p = 7, B = −A, and |A| ≥ 4.
We state it explicitly below:

Proposition 3 If we pick a subset A of Z7 with cardi-
nality greater than or equal to 4, then A + (−A) = Z7,
i.e., if we compute the differences between all pairs of
elements in A, we will see 0, 1, 2, . . . , 6.

We will apply the above result with A consisting of
the locations of ones in a period. For example, consider
the sequence {1111000} of period 7. The ones are lo-
cated at A = {0, 1, 2, 3} ⊂ Z7. Then, −A = {0, 6, 5, 4},
and A + (−A) = {0, 1, 2, . . . , 6} = Z7.



The proof proceeds by contradiction. Suppose that
we have a set of three UU protocol sequences with pe-
riod 7. Denote the three sequences by SA, SB , and SC .
If the weight of each sequence is exactly 3, i.e., there
are exactly 3 ones in each sequence, then we know that
the period is at least 9 by Theorem 2. So, there is at
least one sequence with at least 4 ones in a period.

Suppose SA has 4 or more ones, and one of the other
sequences, say SC , has 3 ones in a period. By Proposi-
tion 3, for any difference d = 1, 2, . . . , 6, we can always
find a pair of ones in SA with difference d. So, the first
two ones in SC can be blocked by SA after picking a
suitable offset. The remaining one in SC can be blocked
by SB . Therefor, SC is completely blocked. This con-
tradicts the unsuppressibility assumption. Hence, all
the three sequences have at least 4 ones in a period.

Suppose SC has exactly 4 ones in a period. By
the same argument, the first two ones of SC can be
blocked by SA, and the last two ones can be blocked
by SB . Again, SC can be completely blocked, and user
unsuppressibility is not satisfied.

Therefore, we can conclude that one of the se-
quences must have at least 5 ones in a period. Suppose
SA has 5 ones and occupies 5 slots in a period. Then,
there is only two slots left for the other two users, one
slot for each of them. SB and SC must be all ones in
order to transmit one packet for any shift. However, it
is clear that we cannot have all-one sequence in a UU
sequence set.

Now, we have eliminated all the possible cases for
UU sequence set of period 7 for three users. Hence, it
is concluded that such a protocol sequence set does not
exist.

Acknowledgments

This work was carried out during the tenure of an
ERCIM “Alain Bensoussan” Fellowship Programme.
It was supported by the Research Council of Norway
(NFR) under the CUBAN project and by NEWCOM
project.

This work was also supported by a grant from the
Research Grants Council of the Hong Kong Special Ad-
ministrative Region under Project 416906.

References

[1] N. Abramson, “Packet switching with satellites,”
in AFIPS Conf. Proc., Nat. Computer Conf.,
vol. 42, Jun. 1973, pp. 695–702.

[2] R. G. Gallager, “A perspective on multiaccess
channels,” IEEE Trans. Inform. Theory, vol. 31,
no. 2, pp. 124–142, Mar. 1985.

[3] J. L. Massey and P. Mathys, “The collision chan-
nel without feedback,” IEEE Trans. Inform. The-
ory, vol. 31, no. 2, pp. 192–204, Mar. 1985.

[4] A. A. Shaar and P. A. Davies, “Prime sequences:
quasi-optimal sequences for OR channel code di-
vision multiplexing,” IEE Electron. Lett., vol. 19,
no. 21, pp. 888–890, Oct. 1983.

[5] IEEE Std 802.11, “Wireless LAN medium access
control (MAC) and physical layer (PHY) specifi-
cations,” IEEE-SA Standards Board, 1999.

[6] C. S. Chen, W. S. Wong, and Y.-Q. Song, “Con-
structions of robust protocol sequences for wireless
sensor and ad-hoc networks,” IEEE Trans. Veh.
Technol., vol. 57, no. 5, Sep. 2008.

[7] J. L. Massey, “The capacity of the collision chan-
nel without feedback,” in IEEE Int. Symp. In-
form. Theory, Jun. 1982, p. 101.

[8] W. S. Wong, “New protocol sequences for random
access channels without feedback,” IEEE Trans.
Inform. Theory, vol. 53, no. 6, pp. 2060–2071, Jun.
2007.

[9] B. Andersson, N. Pereira, and E. Tovar, “Delay-
bounded medium access for unidirectional wireless
links,” in 15th Intl. Conf. Real-Time Network and
Syst., Nancy, France, Mar. 2007, pp. 1–10.

[10] E. L. Titlebaum, “Time-frequency hop signals,
part I: coding based upon the theory of linear con-
gruences,” IEEE Trans. Aerosp. Electron. Syst.,
vol. AES-17, no. 4, pp. 490–493, Jul. 1981.

[11] G. Yang and W. C. Kwong, “Performance analy-
sis of optical CDMA with prime codes,” IEE Elec-
tron. Lett., vol. 31, no. 7, pp. 569–570, Mar. 1995.

[12] K. W. Shum, C. S. Chen, C. W. Sung, and W. S.
Wong, “Shift-invaraint protocol sequences for col-
lision channel without feedback,” submitted.

[13] H. Chung and P. V. Kumar, “Optical orthogonal
codes – new bounds and an optimal construction,”
IEEE Trans. Inform. Theory, vol. 36, no. 4, pp.
866–873, Jul. 1990.

[14] M. B. Nathanson, Additive Number Theory: In-
verse Problems and the Geometry of Sumsets.
Springer-Verlag, 1996.


