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On Pairwise Shift-Invariant Protocol Sequences
Yijin Zhang, Kenneth W. Shum Member, IEEE, and Wing Shing Wong Fellow, IEEE

Abstract—Protocol sequences offer an approach to implement
random-access channel without feedback. For these sequences,
it is desirable that their cross-correlation should be as low as
possible and that the length of their period should not be short.
Completely shift-invariant sequences form an important class of
protocol sequences which have perfect cross-correlation property
but exponential growth period as a function of the number of
users. We investigate in this paper a broader class of protocol
sequences which are only pairwise shift-invariant. Results on
minimum period and bit-pattern structure are presented.

Index Terms—Hamming cross-correlation function, protocol
sequence, random-access channel without feedback.

I. INTRODUCTION

B INARY sequences have found applications in many civil-
ian and military systems. One of such applications is to

define multiple access protocols. In wireless sensor networks
or ad hoc networks, due to computing power limitation and
strict energy constraints, it is desirable to have simple multiple
access protocols which do not require frequent monitoring of
the channel for feedback information and complicated pro-
cessing. This motivates the investigation of protocol sequences
without feedback that was pioneered in [1].

A protocol sequence uses a periodic binary sequence to
specify when a user can transmit and when to be idle.
Some related works can be found in [2]–[5]. Guaranteed
throughput and least common period are two common per-
formance measures for such sequences. As users may join
and depart at different times, sequences with long period are
undesirable even if they can ensure high throughput. Since
these performance measures are closely tied to the periodic
cross-correlation function, the latter is the main object of study
in this paper.

Ideally, the cross-correlation function should be invariant to
relative shift delays among the sequences, as they cannot be
assumed to be synchronized due to lack of feedback. More
specifically, pairwise shift-invariant sequences are considered
here.

II. SYSTEM MODEL AND HAMMING
CROSS-CORRELATIONS

We follow Massey’s model [1] to define a communication
channel divided into time slots of equal duration that are
shared by K active users. Each active user follows a binary
protocol sequence, S = {S(0), S(1), S(2), . . .}, and transmits
a packet at time slot i if and only if S(i) is equal to 1.
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It is assumed that the users know and align to the slot
boundaries. However, they are not required to synchronize to
each other and have different start time. At any time slot,
a packet collision occurs if more than one user transmits
simultaneously. All transmitted packets in this duration are
considered lost. Otherwise, it is assumed that the receiver can
receive the packet correctly and decode its content.

Definition 1: Let S1, . . . , Sk be k periodic binary sequences
with a common period L. Define the k-wise Hamming cross-
correlation function among these k sequences for relative
shifts τ1, . . . , τk−1 by

HS1...Sk
(τ1, . . . , τk−1) :=

L−1∑
t=0

S1(t)S2(t+τ1) · · ·Sk(t+τk−1)

The normalized version is defined to be

H̄S1...Sk
(τ1, . . . , τk−1) := HS1...Sk

(τ1, . . . , τk−1)/L.

The pairwise case HS1S2 is simply the usual Hamming cross-
correlation function for a pair of sequences. For a periodic
binary sequence with a period L, following [1], we define
its duty factor by R := 1

L

∑L−1
t=0 S(t). The k-wise Hamming

cross-correlation is said to be shift-invariant (SI) if H̄S1...Sk
is

identically equal to a constant. A set of protocol sequences is
called completely SI if the k-wise Hamming cross-correlation
is SI for all choices of k distinct sequences and for all k.
A set of protocol sequences is called pairwise SI if the 2-
wise Hamming cross-correlation is SI for all pairs of distinct
protocol sequences.

The following is a basic result on Hamming cross-
correlation [6]:

1
Lk−1

L−1∑
τ1=0

· ·
L−1∑

τk−1=0

H̄S1...Sk
(τ1, . . . , τk−1) = R1 · · ·Rk, (1)

where Ri denotes the duty factor of Si, for i = 1, . . . , k. If
the k-wise Hamming cross-correlation is SI, then it follows
from (1) that H̄S1...Sk

is identically equal to R1R2 · · ·Rk. In
particular, H̄S1S2 is identically equal to R1R2 if it is SI.

Completely SI sequences enjoy a constant individual
throughput property that is independent of any relative shift
delays. Unfortunately, it is proved that SI sequences have
long common periods [5]. This motivates the relaxation of
the completely SI assumption to pairwise SI. Obviously, the
collection of all completely SI sequence sets is a subset of
the collection of pairwise SI sequences. However, pairwise SI
sequences in general are not completely SI, which can be seen
from the following example.

Example 1: Consider a set of 3 protocol sequences with
duty factors 1/2, 1/3, and 1/5. One can check that the
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following sequence set is pairwise SI, but not completely SI:

S1 :11100 01110 00111 00011 10001 11000
S2 :11111 00000 00000 11111 00000 00000
S3 :11000 00000 11000 00000 11000 00000

For zero shift-delay, the 3-wise cross-correlation value is 2.
However, the 3-wise cross-correlation value cannot be 2 for
all shift-delays as the averaged 3-wise cross-correlation value
should be 1 by (1).

From simulation studies, one can show that some pairwise
SI sequences enjoy throughput performance close to SI se-
quences. It is of interest to understand whether short pairwise
SI sequences can be constructed. A surprising result proven
in this paper is that for some combinations of duty factors,
pairwise SI sequences are indeed completely SI. Moreover,
we will show that for pairwise SI sequences the minimum
period is exponential in the number of distinct sequences.

III. PAIRWISE SI SEQUENCES

A. Discrete Fourier Analysis

Definition 2: A periodic sequence S can be represented by
a polynomial with binary coefficients, denoted by s(x),

s(x) :=
L−1∑
t=0

S(t)xt. (2)

A complex number ω is called a primitive L-th root of unity
if ωL = 1 but ωn 6= 1 for all 1 ≤ n < L. In this paper, we
will choose and fix a complex primitive L-th root of unity and
denote it by ω. The discrete Fourier transform of sequence S
is defined as s(ωn) with n varying from 0 to L−1. A complex
L-th root of unity ψ is called a spectral null of the sequence S
if s(ψ) = 0. A cyclic shift of a sequence S by τ corresponds
to multiplying s(x) by xτ modulo xL−1. Therefore cyclically
shifting a sequence does not alter the spectral nulls.

The next lemma is the discrete analog of Plancherel’s
identity [7].

Lemma 1. Two sequences A and B with period L is pairwise
SI if and only if a(x)b(x) is divisible by (xL − 1)/(x− 1).

Proof: Let HAB(τ) be the Hamming cross-correlation
function corresponding to A and B. We have

L−1∑
τ=0

HAB(τ)xτ ≡
L−1∑
τ=0

L−1∑
t=0

a(t)b(t + τ)xτ

≡
L−1∑
t=0

a(t)x−t
L−1∑
τ=0

b(t + τ)xt+τ

≡ a(x−1)b(x) (mod xL − 1). (3)

Hence HAB(τ) is SI if and only if a(x−1)b(x) ≡ h0

∑L−1
τ=0 xτ

(mod xL−1), where h0 denotes the common Hamming cross-
correlation value. As the coefficients of a(x) are real numbers,
the spectral nulls of a(x−1) are closed under taking reciprocal.
Thus, spectral nulls of a(x) and b(x) contains all spectral nulls
of

∑L−1
τ=0 xτ = (xL− 1)/(x− 1). It follows that sequences A

and B is pairwise SI if and only if a(x)b(x) is divisible by
(xL − 1)/(x− 1).

In Example 1, the three polynomials s1(x), s2(x) and s3(x)
are respectively

(x2 + x + 1)
x30 − 1
x6 − 1

,
x5 − 1
x− 1

x30 − 1
x15 − 1

, (x + 1)
x30 − 1
x10 − 1

.

It can be verified that s1(x)s2(x), s2(x)s3(x) and s3(x)s1(x)
are all divisible by (x30 − 1)/(x− 1). Hence {S1, S2, S3} is
a pairwise SI protocol set by Lemma 1.

B. Minimum Period

In subsequent discussions, we consider a set of K pair-
wise SI sequences, S1, . . . , SK , with associated polynomial
s1(x), . . . , sK(x). Let the duty factors be ni/di, for i =
1, 2, . . . , K, with ni and di being relatively prime. Denote
the common period of this sequence set by L. Let p1, . . . , pm

be the prime factors of L, and L = pr1
1 pr2

2 · · · prm
m . Since L

must be a multiple of the denominator di of each duty factor,
the prime factorization of di can be written as pei1

1 pei2
2 · · · peim

m

with ei1 ≤ r1, ei2 ≤ r2, . . . , eim ≤ rm.
Definition 3: For n ≥ 1, the n-th cyclotomic polynomial,

fn(x), is the monic polynomial whose zeros are precisely the
complex primitive n-th roots of unity, each with multiplic-
ity 1 [8, p.194]. For example, the 6th cyclotomic polynomial
is f6(x) = (x− e2π

√−1/6)(x− e−2π
√−1/6) = x2 − x + 1.

We summarize below some results about cyclotomic poly-
nomials that we will need in this paper.

Lemma 2 ( [8] Chapter 13). (i) Cyclotomic polynomials are
monic polynomials with integral coefficients.

(ii) fn(x) is a factor of xL − 1 if and only if n divides L.
(iii) For all n, fn(x) is irreducible in the ring of polynomials

with integral coefficients, i.e., if fn(x) divides a(x)b(x), where
a(x) and b(x) are polynomials with integral coefficients, then
fn(x) divides a(x) or b(x), or both.

(iv) For a prime number p and positive integer m, the
cyclotomic polynomial fpm(x) equals (xpm −1)/(xpm−1−1).
Hence fpm(1) = p.

Definition 4: For j = 1, 2, . . . ,m, let

Nj := {fpk
j
(x) : k = 1, 2, . . . , rj}, (4)

where rj is the exponent of pj in the factorization of L.
By part (ii) in Lemma 2, every cyclotomic polynomial f(x)

in Nj divides (xL−1)/(x−1), and by part (iv) in Lemma 2,
we have f(1) = pj for all f(x) ∈ Nj . It is noted that elements
in Nj do not have common factors.

Lemma 3.
(i) For i = 1, . . . , K and j = 1, . . . , m, at least eij

cyclotomic polynomials in Nj does not divide si(x).
(ii) If Φ1(x) and Φ2(x) are polynomials in Nj such that

Φ1(x) does not divide si(x) and Φ2(x) does not divide sk(x),
for i 6= k, then Φ1(x) and Φ2(x) must be distinct.

Proof: (i) Suppose there are cij polynomials in Nj

that divides si(x), say g1(x), . . . , gcij (x). As they are monic
polynomials with integral coefficents, we can write si(x) =
gk(x)hk(x) for each k = 1, 2, . . . , cij , where hk(x) is a
polynomial with integral coefficients. Let g(x) be the product
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g1(x) · · · gcij (x). Because each factor gk(x) is irreducible,
si(x) is divisible by g(x), i.e., si(x) = g(x)h(x), for some
polynomial h(x) with integral coefficients. Then, by putting
x = 1, and using the property that g(1) = p

cij

j by part (iv) of
Lemma 2, we see that p

cij

j divides si(1). On the other hand,
si(1) = niL/di by (2) and the definition of duty factor. Since
ni is relatively prime to di, si(1) contains exactly rj − eij

factors of pj . Thus, cij ≤ rj − eij . It follows that eij is less
than or equal to rj − cij , which is exactly the number of
polynomials in Nj that does not divide si(x).

(ii) Suppose on the contrary that we can find Φ(x) ∈ Nj

such that Φ(x) does not divide si(x) and sk(x), for i 6=
k. Then by part (iii) of Lemma 2, Φ(x) does not divide
si(x)sk(x). As Φ(x) is a factor of (xL − 1)/(x− 1) by part
(ii) of Lemma 2, this contradicts the fact that si(x)sk(x) is
divisible by (xL − 1)/(x− 1).

Theorem 1. The common period of any set of K pairwise SI
sequences with duty factors ni/di, for i = 1, 2, . . . ,K, (with
ni and di relatively prime) is divisible by d1d2 · · · dK . In par-
ticular, the minimum common period is at least d1d2 · · · dK .

Proof: From Lemma 3, we conclude that Nj must contain
at least bj := e1j + e2j + . . . + eKj cyclotomic polynomials.
Hence, rj ≥ bj . Since the above inequality holds for all j, it
follows that

∏m
j=1 p

bj

j divides L. But d1d2 · · · dK =
∏m

j=1 p
bj

j

by the definition of bj . Therefore d1d2 · · · dK divides L.
It is shown in [5] that the minimum common period of

a set of K completely SI sequences, with duty factors as
in Theorem 1, is at least d1d2 · · · dK . We conclude from
Theorem 1 that relaxing the completely SI requirement to
pairwise SI cannot shorten the common period.

C. Structural Theorem

Theorem 11 in [5], although stated for completely SI
sequences, depends only on the pairwise SI property. These
results imply interesting structures for pairwise SI sequences.

Theorem 2 ( [5]). Suppose that the duty factors of a set of K
pairwise SI sequences are ni/p, for i = 1, . . . , K, and p is a
prime number. If the common period meets the lower bound
in Theorem 1, i.e., the common period is pK , then the least
periods of the sequences are p, p2, . . . , pK . Moreover, suppose
that the sequence with least period pi has duty factor ni/p.
For each r with 0 ≤ r ≤ pi−1 − 1, there are exactly ni ones
located among positions

r, r + pi−1, r + 2pi−1, . . . , r + (p− 1)pi−1. (5)

Theorem 3. Let p be a prime. If K pairwise SI protocol
sequences with duty factors ni/p, for i = 1, 2, . . . , K, have a
common minimum period pK , then they are completely SI.

Proof: Theorem 2 implies that such pairwise SI sequences
possess the structure described by (5). Theorem 8 in [5]
established that such sequences are completely SI.

Example 2: Consider the case that K = 3, L = 27 and
the duty factors are all 2/3. We can verify that the following

sequence set is pairwise SI by Lemma 1. It follows from
Theorem 3 that it must be also completely SI.

S1 :110 110 110 110 110 110 110 110 110
S2 :111 111 000 111 111 000 111 111 000
S3 :111 111 111 111 111 111 000 000 000

Remark: Theorem 3 explains why the construction in [3],
which is targeted for pairwise SI sequences actually leads
completely SI sequences.

D. Numerical Studies

Consider p pairwise SI sequences, each with duty factor R
and period L. The sum throughput has a lower bound:

p∑

i=1

[
R−

∑

j 6=i

H̄SiSj
(0)

]
= p[R−R2(p− 1)] (6)

For prime p, we can take R = (p+1)/(2p2) in the construction
of wobbling sequences to obtain a lower bound on the sum
throughput that approaches 1/4 as p approaches infinity [4].
Under the same condition, the sum throughput of pairwise SI
sequences also approaches 1/4 from (6).

Protocol Max. pairwise L Asymp. throughput
sequences cross-correlation lower bound

Pairwise SI R2 pp 1/4
Wobbling (p+3)R2

p+1 p4 1/4

If the pairwise cross-correlation function can vary slightly, as
in wobbling sequences, the minimum period can be reduced.
The two families of sequence sets achieve roughly the same
throughput performance when p is large.

IV. CONCLUSION

In this paper, pairwise SI protocol sequences are introduced.
We have explored basic properties of its minimum period.
Furthermore, if duty factors of the sequences satisfy some
technical conditions, the sequence set is completely SI.
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