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Abstract—Protocol sequences are used in channel access for
the multiple-access collision channel without feedback. A new
construction of protocol sequences with a guarantee of worst-
case system throughput is proposed. The construction is based
on Chinese remainder theorem. The Hamming crosscorrelation
is proved to be concentrated around the mean. The sequence
period is much shorter than existing protocol sequences with the
same throughput performance. The new construction reduces the
complexity in implementation and also shortens the waiting time
until a packet can be sent successfully.

Tags: Protocol sequences, collision channel without feed-

back, wobbling sequences.

I. INTRODUCTION

Protocol sequences are periodic binary sequences for

multiple-access control in the collision channel without feed-

back [6]. In a time-slotted scenario, each user repeatedly reads

out the value of a statically assigned protocol sequence, and

sends a packet in a time slot if the sequence value is equal

to one. If two or more users transmit simultaneously in the

same time slot, there is a collision and the collided packets

are assumed unrecoverable. If there is exactly one transmitting

user while the others remain silent, the received packet is

assumed error-free. We do not assume any feedback from

the receiver and any coordination among the transmitters.

This assumption is applicable to low-cost and low-complexity

wireless sensor networks, as it is not necessary to spare any

hardware on monitoring the channel; the transmitters simply

send a packet whenever the value of the assigned protocol

sequence is one, regardless of the channel condition. For

simplicity in presentation, we assume slot-synchronization in

this paper. This requirement can be relaxed without much

degradation in performance.

This channel model is considered in practical sensor net-

works, such as f-MAC [8]. One of the main design issues

is the construction of protocol sequences. Some design ob-

jectives are addressed in [9]. Since we do not assume any

coordination among the users, the users may not start their

protocol sequences at the same time. This incurs relative delay

offsets among the transmitters. Our first objective is to design

protocol sequences such that no matter what the relative delay

offsets are, the system throughput is provably larger than some
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positive constant. This provides a throughput guarantee in the

worst-case.

The second objective is to minimize the sequence period,

which measures the delay one has to wait until the promised

number of successful packets go through the channel. For

protocol sequences with very long period, a user may suffer

starvation in the short term even though the throughput in

the whole period is very good. This issue is alleviated if the

sequence period is minimized.

The two objectives mentioned above are contradicting, and

there is a tradeoff between them. In [3], [6], [9], a class of pro-

tocol sequences, called shift-invariant sequences are studied.

This class of protocol sequences can achieve optimal system

throughput, but the sequence period grows exponentially as a

function of the users, and hence is not of practical interests

when the number of users is large. Another class of protocol

sequences, called wobbling sequences is constructed in [10].

The system throughput is provably larger than 0.25 for any

choice of relative delay offsets, and the sequence period grows

like M4, where M is for the number of users in the system.

In this paper, we construct shorter protocol sequences with

roughly the same throughput performance by the wobbling

sequences.

Other constructions of protocol sequences are investigated

in [4], [7], sometime under the name of cyclically permutable
constant weight codes (CPCWC). The difference between

CPCWC and our protocol sequences is that the latter only

has Hamming crosscorrelation requirement, but the former has

both autocorrelation and crosscorrelation constraints. In [2],

constructions using optical orthogonal codes and cyclic super-

imposed codes are considered.

In Section II, the new construction of protocol sequences

is described. In Section III, we investigate the crosscorrelation

properties, which are crucial in the derivation of a lower bound

on system throughput in Section IV. Comparison with shift-

invariant and wobbling sequences is given in Section IV.

II. CONSTRUCTION OF PROTOCOL SEQUENCES VIA

CHINESE REMAINDER THEOREM

We will use sequence “period” and sequence “length”

interchangeably. Let Zn = {0, 1, . . . , n − 1} be the residues

of integers mod n. The components in a sequence of length L
are indexed by ZL. The Hamming weight of a binary sequence

a(t) of length L is the number of ones in a(t) in a period. For
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two binary sequences a(t) and b(t) of length L, their Hamming
crosscorrelation function is defined as

Hab(τ) :=
∑
t∈ZL

a(t)b(t+ τ),

where τ is the delay offset.

We shall construct sequences with length L = pq, where

p and q are two relatively prime integers. In this paper, we

will take p to be a prime number and q an positive integer not

divisible by p. By the Chinese Remainder Theorem (CRT) [5],

there is a bijection between Zpq and the direct sum

Gp,q := Zp ⊕ Zq.

The bijective mapping Φ : Zpq → Gp,q is given by

Φ(x) = (x mod p, x mod q).

Henceforth, we will identify Zpq with Gp,q .

CRT Construction Given a prime number p and an integer

q relatively prime to p, we define a sequence sg(t) of length

pq, for g = 0, 1, 2 . . . , p− 1, by

sg(t) :=

{
1 Φ(t) = (j̄g, j) for some j, 0 ≤ j < q,

0 otherwise,

where j̄ is the residue of j in Zp. We call the sequence sg(t)
the CRT sequence generated by g. The integer g is called the

generator of sg(t).
Alternately, we can define the CRT sequences by specifying

their characteristic sets. For each g ∈ {0, 1, . . . , p− 1}, let

Ig := {(j̄g, j) ∈ Gp,q : 0 ≤ j < q}. (1)

We note that Ig is an arithmetic progression in Gp,q with

common difference (g, 1). The CRT sequence with generator

g is obtained by setting sg(t) = 1 if and only if Φ(t) ∈ Ig.

The Hamming weight of each sequence is equal to q.

Example 1. p = 5 and q = 9. The five CRT sequences s0(t)
to s4(t) are listed as follows. The common period is 45, and
the Hamming weight of each sequence is equal to 9.

s0 : 10000 10000 10000 10000 10000 10000 10000 10000 10000,

s1 : 11111 11110 00000 00000 00000 00000 00000 00000 00000,

s2 : 10000 10000 00010 00000 01000 01001 00001 00100 00100,

s3 : 10000 10000 01000 01000 00100 00010 00010 00001 00001,

s4 : 10000 10000 00100 00101 00001 00000 01000 00010 00010.

III. CROSSCORRELATION PROPERTIES

The main idea of using CRT in constructing protocol

sequences hinges on the fact that Φ is a homomorphism of

abelian groups, so that the analysis of crosscorrelation can be

carried out in Gp,q instead of Zpq. We remark that in [1], [4],

[7], [9], the idea of CRT appears in the same way as in this

paper.

Given a one-dimensional delay τ , we denote its two-

dimensional counterpart by (τ1, τ2) := Φ(τ). For h ∈ Zp,

define the translation Ih + (τ1, τ2) of Ih by (τ1, τ2) by

{(x+ τ1, y + τ2) ∈ Gp,q : (x, y) ∈ Ih}.

The Hamming crosscorrelation Hgh(τ) can be computed by

Hgh(τ) = |Ig ∩ (Ih − (τ1, τ2))|,
where |A| indicates the cardinality of a set A. To distinguish

arithmetic operations in Zp and Zq , we use ⊕p and �p for

addition and subtraction in Zp, and ⊕q and �q for addition

and subtraction in Zq . In this notation, we have

Ih + (τ1, τ2) = {(j̄h⊕p τ1, j ⊕q τ2) : j = 0, 1, . . . , q − 1}.
By a change of variable, Ih + (τ1, τ2) can be written as

{(((j �q τ2)h)⊕p τ1, j) : j = 0, 1, . . . , q − 1}.
After comparing with the definition of Ig in (1), we see that

|Ig ∩ (Ih + (τ1, τ2))| is equal to the number of solutions to

x̄g ≡ ((x�q τ2)h)⊕p τ1 mod p. (2)

for x = 0, 1, . . . , q − 1. The problem of computing the cross-

correlation function is thus reduced to counting the solutions

to (2).

The following simple lemma is useful in the derivation of

Hamming crosscorrelation.

Lemma 1. Let p be a prime number. For each b ∈ Zp, the
number of solutions to x̄ ≡ b mod p for x going through d
consecutive integers c, c+ 1, . . . c+ d− 1, equals{

d/p if p divides d,

	d/p
+ δ otherwise,

where δ is either 0 or 1.

Proof: In the first case where d is divisible by p, if we

reduce the integers c, c+1, . . . , c+d−1 mod p, we have each

element in Zp repeated exactly d/p times. Hence, for each

b ∈ Zp, there are exactly d/p integers in {c, . . . , c + d − 1}
whose residue mod p equal b

For the second case, where d is not divisible by p, we divide

the d consecutive integers into two parts. The first part consists

of 	d/p
p consecutive integers and the second part consists of

the last d−	d/p
p integers. Among the first 	d/p
p integers,

exactly 	d/p
 of them equal b mod p. The residues of the

d−	d/p
p integers in the second part are distinct, and hence

at most one of them is equal to b. The number of integers in

{c, . . . , c + d − 1} whose residue equal b is either 	d/p
 or

	d/p
+ 1.

From Lemma 1, we obtain the crosscorrelation between

s0(t) and other sequences.

Theorem 1. For g �= 0, the Hamming crosscorrelation of
sg(t) and s0(t) is equal to either 	q/p
 or 	q/p
+ 1.

Proof: If we put h = 0 in (2), we get x̄ ≡ g−1τ1 mod
p. The number of integers in {0, 1, . . . , q − 1} which equal

g−1τ1 mod p is either 	q/p
 or 	q/p
+ 1 by Lemma 1.

For nonzero h, we can divide both sides of (2) by h and

re-write it as

x̄(h−1g) ≡ (x�q τ2)⊕p (h
−1τ1) mod p.

ISIT 2010, Austin, Texas, U.S.A., June 13 - 18, 2010

1829



For each fixed τ2, as τ1 runs through Zp, h−1τ1 also runs

through the complete set of residues mod p. Therefore, the

distribution of Hamming crosscorrelation between sg(t) and

sh(t) is the same as the distribution of Hamming cross-

correlation between sg/h(t) and s1(t). We henceforth focus

on the case h = 1 without any loss of generality.

To aid the derivation of the Hamming crosscorrelation, we

first prove the following lemma.

Lemma 2. Let g ∈ Zp\{1}, and denote Φ(τ) by (τ1, τ2). The
Hamming crosscorrelation between sg(t) and s1(t), namely
Hg1(τ), satisfies the following properties:

1) Hg1(τ) equals the number of solutions to

x̄ ≡ ag(τ1, τ2) + bgI(0 ≤ x < τ2) mod p, (3)

for x = 0, 1, . . . , q − 1, where

ag(τ1, τ2) := (g − 1)−1(τ1 − τ̄2), (4)

bg := (g − 1)−1q̄, (5)

and I is the indicator function defined as

I(P ) :=

{
1 if P is true,
0 if P is false.

2) Let τ and τ ′ denote two relative delay offsets. Suppose
that the first component of Φ(τ) and Φ(τ ′) are the same,
and the second component of Φ(τ) and Φ(τ ′) defer by
a multiple of p, then then Hg1(τ) = Hg1(τ

′).

Proof: After setting h in (2) to 1, we obtain

x̄g ≡ (x�q τ2)⊕p τ1 mod p. (6)

We want to show that the number of solutions to (6), for q =
0, 1, . . . , q − 1, is the same as the number of solutions to (3).

We consider x in two disjoint ranges: (i) 0 ≤ x < τ2, and

(ii) τ2 ≤ x < q. In the first case, x �q τ2 is congruent to

x+ q − τ2 mod q. So, for 0 ≤ x < τ2, (6) is equivalent to

x̄g ≡ x̄+ q̄ − τ̄2 + τ1 mod p (7)

where q̄ and τ̄2 are residues of q and τ2 in Zp, respectively.

In the second case, for x = τ2, τ2 + 1, . . . , q − 1, (6) is

equivalent to

x̄g ≡ x̄− τ̄2 + τ1 mod p. (8)

We combine (7) and (8) in one line as

x̄(g − 1) ≡ −τ̄2 + τ1 + q̄I(0 ≤ x < τ2) mod p,

Since g is not equal to 1 by assumption, we can divide by

(g−1) and obtain (3). This proves the first part of the lemma.

The second part of the lemma is vacuous if q < p. So

we assume q > p. (The case q = p is excluded because it is

assumed that q is relatively prime with p.) Let (τ1, τ2) = Φ(τ)
and (τ ′1, τ

′
2) = Φ(τ ′). It is sufficient to prove the statement for

τ1 = τ ′1 and τ ′2 = τ2 + p, namely, the number of solutions

to (3) and the number of solutions to

x̄ ≡ ag(τ1, τ
′
2) + bgI(0 ≤ x < τ ′2) mod p (9)

for x = 0, 1, . . . , q − 1, are the same. We note that ag(τ1, τ2)
is equal to ag(τ1, τ

′
2). However, the arguments inside the

indicator function are different. We divide the range of x into

three disjoint parts:

X1 := {0, 1, . . . , τ2 − 1},
X2 := {τ2, τ2 + 1, . . . , τ2 + p− 1},
X3 := {τ2 + p, τ2 + p+ 1, . . . , q − 1}.

Since q > p, X3 is non-empty. For x ∈ X1, I(0 ≤ x <
τ2) = I(0 ≤ x < τ ′2). Therefore (3) and (9) have the same

number of solutions for x in X1. For x ∈ X2, both (3) and

(9) have exactly one solution by Lemma 1. For x ∈ X3, (3) is

equivalent to (9), and hence has the same number of solutions

as (9) does. In conclusion, the number of solutions to (3) and

(9) for x ∈ X1∪X2∪X3 are the same. This finishes the proof

of the second part of the lemma.

From now on, we assume that q > p, which is the case of

practical interest.

Theorem 2. Let p and q be positive integers such that p is
prime, gcd(p, q) = 1 and q > p. Let m denote the quotient of
q divided by p, i.e., m = 	q/p
, and let g ∈ Zp, 0 �= g �= 1. Let
q̄ be the residue of q mod p, and bg be defined as in (5). The
Hamming crosscorrelation between sg(t) and s1(t) is bounded
between

m− 1 and m+ 1 if 0 < bg < p− q̄, or (10)

m and m+ 2 if p− q̄ < bg < p. (11)

Proof: By the second part of the previous lemma, we only

need to consider τ2 = 0, 1, . . . , p − 1. In this proof, we will

denote Hg1(τ) by Hg1(τ1, τ2), with (τ1, τ2) equal to Φ(τ).
We first prove the first case in (10) by considering two cases.

Case 1, 0 ≤ τ2 < q̄
Suppose that (3) has no solution for 0 ≤ x < τ2. As the

indicator function in (3) is zero for x = τ2, τ2 +1, . . . , q− 1,

(3) is reduced to

x̄ ≡ ag(τ1, τ2) mod p.

The number of integers in {τ2, τ2 + 1, . . . , q − 1}, say d,

satisfies 	d/p
 = m. By Lemma 1, we have either m or m+1
solutions to (3) for x ≥ τ2.

Secondly, suppose that (3) has exactly one solution for 0 ≤
x < τ2. The indicator function in (3) is equal to 1 for 0 ≤
x < τ2. Hence,

0 ≤ ag(τ1, τ2) + bg < τ2. (12)

We claim that (3) has no solution for x = τ2, τ2+1, . . . , q̄−1.

Otherwise, we have

τ2 ≤ ag(τ1, τ2) < q̄,

which, after combining with the assumption that 1 ≤ bg ≤
p− q̄ − 1, yields

τ2 < ag(τ1, τ2) + bg < p− 1.
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This contradicts with (12) and proves the claim. For

q̄ ≤ x < q,

there are exactly m solutions by Lemma 1. The total number

of solutions to (3) for x = 0, 1, . . . , q−1, is thus m+1. Hence

Hg1(τ1, τ2) = m+ 1.

Case 2: q̄ ≤ τ2 < p
By Lemma 1, (3) has either 0 or 1 solution for 0 ≤ x ≤ τ2,

and either m − 1 or m solutions for τ2 ≤ x < q. Hence,

Hg1(τ1, τ2) is within the range of {m− 1,m,m+ 1}.
For bg = p− q̄+1, . . . , p−1, we again consider two cases.

Case 1: 0 ≤ τ2 < q̄
By Lemma 1, (3) has either 0 or 1 solution for 0 ≤ x < τ2,

and either m or m + 1 solutions for τ2 ≤ x < q. Therefore,

Hg1(τ1, τ2) ∈ {m,m+ 1,m+ 2}.
Case 2: q̄ ≤ τ2 < p
Suppose that (3) has no solution for 0 ≤ x < τ2, i.e.,

τ2 ≤ ag(τ1, τ2) + bg < p. (13)

We claim that (3) must have one solution for x in the following

range

τ2 ≤ x < p+ q̄. (14)

From the assumption of q̄ ≤ τ2 < p, we deduce that

q̄ < p+ q̄ − τ2 ≤ p,

so that the range in (14) is non-empty and consists of no

more than p integers. If the claim were false, we would have

no solution to (3) for τ2 ≤ x < p+ q̄, implying that

q̄ ≤ ag(τ1, τ2) < τ2. (15)

Here, we have used the fact that the indicator function in (3)

is equal to zero for x in the range in (14). By adding (15) to

p− q̄ + 1 ≤ bg ≤ p− 1

and reducing mod p, we obtain

1 ≤ ag(τ1, τ2) + bg < τ2,

which is a contradiction to (13). Thus, the claim is proved.

For x = p+ q̄, p+ q̄ + 1, . . . , q − 1, there are exactly m− 1
solutions to (3) by Lemma 1. Totally there are m solutions,

and thus Hg1(τ1, τ2) = m.

Finally suppose that (3) has exactly one solution for 0 ≤
x < τ2. As the number of solutions to (3) for x = τ2, τ2 +
1, . . . , q−1 is either m−1 or m by Lemma 1, the total number

of solutions to (3) is either m or m+ 1.

In any case, we see that Hg1(τ1, τ2) is either m, m+ 1 or

m+ 2.

Thereom 2 asserts that for any pair of distinct CRT se-

quences, the Hamming crosscorrelation is either between m−1
and m+1, or between m and m+2. For the whole sequence

set, the Hamming crosscorrelation is therefore four-valued.

We next show that for some special choice of q, namely

q ≡ ±1 mod p, the Hamming crosscorrelation of the whole

sequence set assumes only three distinct values.

Theorem 3. Let p and q be integers as in Theorem 2.
1) If q is of the form mp+ 1 for some positive integer m,

then for g = 2, 3, . . . , p − 1, Hg1(τ) is between m − 1
and m+ 1.

2) If q be of the form mp+(p−1) for some positive integer
m, then for g = 2, 3, . . . , p − 1, Hg1(τ) is between m
and m+ 2.

Proof: For he first part of the theorem, we have q̄ equal

to 1 mod p. So

bg ≡ (g − 1)−1q̄ ≡ (g − 1)−1 mod p.

Since g is between 2 and p− 1 inclusively, g − 1 is between

1 and p − 2, and hence the inverse of g − 1 mod p is also

between 1 and p− 2. We thus obtain 0 < bg < p− 1 = p− q̄.

The result now follows from Theorem 2.

The second part can be proved similarly from Theorem 2

by putting q̄ = p− 1.

Together with Theorem 1, which says that the Hamming

crosscorrelation between s0(t) and sg(t), for g �= 0, is

either m or m + 1, we prove that the Hamming crosscor-

relation of the whole CRT sequence set is three-valued when

q ≡ ±1 mod p. The sequences in Example 1 are generated

with q ≡ −1 mod p. We can verify that the Hamming

crosscorrelation in Example 1 is either 1, 2 or 3.

IV. LOWER BOUND ON SYSTEM THROUGHPUT

The three-valued result in Theorem 3 suggests that the

variation of Hamming crosscorrelation due to relative delay

offsets is minimal when q ≡ ±1 mod p. We single out the

q ≡ −1 mod p case below and derive a lower bound on

the resulting system throughput. The case of q ≡ 1 mod p
is similar and omitted.

When q is of the form kp − 1 for some integer k ≥ 2,

the CRT construction yields p protocol sequences of length

L = kp2 − p and Hamming weight kp − 1. By Theorem 3,

the largest Hamming crosscorrelation value is k + 1.

We pick M sequences and form the CRT sequence set of

size p in order to support M users. Here, M is an integer

whose value will be optimized later. Since a user sends kp−1
packets in a period, and each other user may collide with him

in at most k+1 packets, the number of successful packets per

user per period is no less than kp− 1− (M − 1)(k+1). The

total number of successful packets, summed over all M users,

is thus lower bounded by

M [kp− 1− (M − 1)(k + 1)]. (16)

By the method of completing square, we can write (16) as

(k + 1)

[
−
(
M − k(p+ 1)

2(k + 1)

)2

+
(k(p+ 1)

2(k + 1)

)2
]
. (17)

We see that the maximum value in (16) is obtained when

M∗ = k(p+ 1)/(2(k + 1)). (18)

Since M must be an integer, after taking the floor of (18),

we obtain the following theorem.
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Theorem 4. Let p be a prime number, k ≥ 2, and M ′ be the
largest integer smaller than or equal to M∗ in (18). By picking
M ′ sequences from the CRT construction with parameters p
and q = kp− 1, the system throughput is lower bounded by

1

p(kp− 1)

[
(p+ 1)2

4
· k2

k + 1
− (k + 1)

]
(19)

Proof: Consider the expression in (16) as a function of

M , and denote it by f(M). Since the difference between M∗

and M ′ is at most one, f(M∗)−f(M ′) ≤ (k+1)(M ′−M∗) ≤
k + 1. After division by the period p(kp − 1), we have the

following lower bound on system throughput,

f(M ′)
p(kp− 1)

≥ f(M∗)− (k + 1)

p(kp− 1)

which can be readily seen to be the same as (19).

We note that the value in (19) is approximately equal to

0.25 when k and p are large.

Theorem 4 provides a hard guarantee on the worst-case

system throughput; no matter what the delay offsets are, the

system throughput is always larger than the value in (19).

Theorem 4 also indicates a tradeoff between the the lower

bound and the sequence period. If we increase the value of

k, the sequence period is increased, but the lower bound on

system throughput is also increased.

We remark that the lower bound in Theorem 4 is not

tight. The actual system throughput is higher than (19). The

next example compares the lower bound with the average

throughput over relative delay offsets.

Example 2. We consider an example with M = 19 users,

using CRT sequences with p = 37 and q = kp − 1.

The throughput is plotted against the sequence period, while

keeping the fraction of ones in each sequence fixed at 1/p. This

means that the fraction of time in which a user is transmitting,

and hence the power of each user, is kept constant. We

compare the lower bound in (19) with the average throughput

obtained by simulation in Fig. 1. For each k, 20000 delay

offset combinations are randomly generated. The mean system

throughput is about 0.31 In addition to the mean throughput,

the maximum and minimum throughput obtained among these

20000 delay offset combinations are also plotted. The variation

of throughput diminishes as sequence period increases. The

value of the lower bound (19) also increases. We see that the

minimal observed system throughput is much higher than the

lower bound in Theorem 4.

For the shift-invariant protocol sequence set for nineteen

users, the sequence period is 1919, which is astronomical.

Nevertheless, it has higher system throughput e−1 = 0.3679.

For wobbling sequences, a lower bound of 0.25 system

throughput [10, (6.12)] is guaranteed when the sequence

period is 194 ≈ 1.3×105. From Fig. 1, a lower bound of 0.25

can be obtained by using CRT sequences when the sequence

period is about 1.1 × 104, a roughly ten-fold reduction in

sequence period.
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Fig. 1. System Throughput of CRT Sequences for M = 19 users, p = 37.

V. CONCLUSION

In order to minimize the waiting time until a successful

packet is sent, while maintaining a high level of system

throughput, a class of protocol sequences with short period are

constructed. After analyzing the crosscorrelation properties,

we derive a lower bound on the system throughput. The con-

structed sequences provides flexibility on the tradeoff between

sequence period and the worst-case system throughput.
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