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Abstract—Conflict-avoiding codes are used in the multiple-ac-
cess collision channel without feedback. The number of codewords
in a conflict-avoiding code is the number of potential users that
can be supported in the system. In this paper, a new upper bound
on the size of constant-weight conflict-avoiding codes is proved.
This upper bound is general in the sense that it is applicable to all
code lengths and all Hamming weights. Several existing construc-
tions for conflict-avoiding codes, which are known to be optimal for
Hamming weights equal to four and five, are shown to be optimal
for all Hamming weights in general.

Index Terms—Conflict-avoiding code, optical orthogonal code,
protocol sequence.

I. INTRODUCTION

A set of binary sequences of length is called user-irre-
pressible [20] if after cyclically shifting each of them and

stacking them together in a matrix, we can always find
a submatrix which is a permutation matrix, regardless of
how we shift the sequences. (Recall that a permutation matrix
is a zero-one square matrix with exactly one 1 in each row and
each column [6, p. 25].) A set of binary sequences is called

-conflict-avoiding [22] if every subset of sequences out
of these sequences is user-irrepressible.

User-irrepressible and conflict-avoiding sequences find appli-
cations in collision channel without feedback [13], [21]. In a
system with active users, the collision channel is a determin-
istic channel with inputs and one output defined as follows.
Time is assumed to be partitioned into fixed-length time inter-
vals, called slots. Here, we consider the slot-synchronous case.
In each slot, each user either remains silent or transmits a packet.
If exactly one user transmits in a time slot, then the packet is
successfully received and the channel output is the same as the
packet sent by that user. If two or more users transmit in the
same time slot, a collision occurs and the channel output is an
erasure symbol “*”. If none of the users transmits in a time slot,
the time slot is idle.
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Suppose that there are potential users, but at most of
them are active at the same time. This model is applicable to
communication system in which traffic is bursty and the users
transmit signal intermittently. We assign statically each of the
users a binary sequence from a set of -conflict-avoiding
sequences. Each active user reads out the assigned sequence pe-
riodically, and sends a packet if and only if the value of the se-
quence is equal to 1. Since there is no timing information other
than that for slot synchronization, the starting time of the se-
quences may be different and relative delay offsets are incurred.
The user-irrepressible property translates to the following non-
blocking property: for each active user we can find at least one
time slot in a period in which this user transmits a packet while
the remaining active users are silent, i.e., each active user
can transmit at least one packet without collision in time slots.
This provides a worst-case guarantee of bounded delay.

There are two different but complementary design goals in the
literature of user-irrepressible and conflict-avoiding sequences.
In the first one, we consider the scenario in which all the users
are active, i.e., , and we aim at minimizing the length of
the binary sequences while keeping the user-irrepressible prop-
erty [2], [20]. We can add an inner code, such as Reed-Solomon
code, in order to recover collided packets and enhance system
throughput. In the second one, we consider a fixed sequence
length and a given number of active users, and aim at max-
imizing the total number of potential users that can be sup-
ported. Each active may repeatedly sending the same packet in
one sequence period. The packet is guaranteed to be received
successfully within the duration of a period. This viewpoint is
adopted in [8], [10], [11], [14]–[16]. In this paper, we consider
the second design goal and maximize the number of potential
users for a given sequence length. Other coding constructions
for multiple access in collision channel without feedback, such
as constant-weight cyclically permutable codes, can be found in
[1], [4], [17].

The number of ones in a binary sequence is called the Ham-
ming weight. It is easy to see that in order to support user-irre-
pressibility, each active user has to send at least packets in a
period of time slots, i.e., the Hamming weight of the sequence
is at least . Otherwise, if a user sends only packets in
a period, we can always arrange the delay offsets of the other

users so that all these packets are in collision, vi-
olating the property of user-irrepressibility. In this paper, we
focus on the extreme case where all sequences have the same
Hamming weight which equals the number of active users,
i.e., . This is the minimum weight requirement for user-ir-
repressibility. Under the assumption of , many works are
devoted to determine the maximal number of potential users for
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Hamming weight equal to three, see e.g., [8], [10], [11], [14],
[15]. Some optimal constructions for Hamming weight equal
to four and five are presented in [16]. However, the maximal
number of potential users for general Hamming weight larger
than five is unknown. We address this open question in this paper
and provide a general upper bound on the number of potential
users for all Hamming weights. An asymptotic version of this
general upper bound can be found in [19].

This paper is organized as follows. We define con-
flict-avoiding codes and set up some notations in Section II.
Three known constructions are described in Section III. The
main result in this paper is contained in Section IV, which
provides an upper bound on the number of potential users that
can be supported, given the length and Hamming weight .
In Section V, we apply this upper bound to the constructions
described in Section III. Optimal CAC with Hamming weight

are also given in Section V.

II. DEFINITIONS AND NOTATIONS

We represent a binary sequence by specifying the time
indices where the sequence value is equal to one. Let

be the set of integers reduced modulo
. A subset of is associated with a binary sequence

of length with Hamming weight , by setting
if and only if , where denotes the cardinality of .
Subsets of with cardinality are called codewords.

For a codeword , let

denote the set of differences between pairs of elements in .
Since may equal to in the definition of , it is obvious that
0 is always an element in . Let be the set of nonzero
differences in ,

It is the set of differences between pairs of distinct elements in
. A collection of codewords

is called a conflict-avoiding code (CAC) of length and weight
if

for all . We use the notation - for a con-
flict-avoiding code of length and weight . It is easy to see
that an - with codewords is equivalent to a set of

-conflict-avoiding sequences mentioned in the introduc-
tion. We sometime say that is a codeword of weight . Since
adding a constant to all elements in a codeword does not affect
the set of differences , we assume without loss of generality
that every codeword in a CAC contains the zero element 0 in .

Given positive integers and , consider the class of all
CACs with length and weight . A CAC in this class with
maximal number of codewords is called optimal, and the max-

imal number of codewords is denoted by . The objec-
tive of this paper is to derive an upper bound on for
all and .

Example 1: , . The four codewords {0, 5, 10},
{0, 1, 2}, {0, 7, 11}, and {0, 6, 12} constitute a - .
We can verify that the sets of nonzero differences

are disjoint.

Example 2: , . Consider the four codewords {0,
1, 2, 3}, {0, 4, 8, 12}, {0, 5, 10, 15}, and {0, 6, 13, 19}. Since

are disjoint, we have a (26, 4)- with four codewords.

Remark: From the definition of CAC, it follows directly
that for , the Hamming cross-correlation of the two
binary sequences associated with two distinct codewords in
an - is no more than 1 for any cyclic shift. An

- can thus be viewed as an -optical orthog-
onal code (OOC) without any autocorrelation requirement. We
refer the readers to, e.g., [3], and the references therein for
further information on OOC.

A codeword is called equidifference if the elements in
form an arithmetic progression in , i.e.

for some . In the above equation, the product is re-
duced mod , for . The element is called
a generator of this codeword. For an equidifference codeword

generated by , the set of differences is equal to

We remark that the elements , may not
be distinct mod . Hence in general we have ,
with equality holds if , are distinct mod

. If all codewords in a CAC are equidifference, then we say
that is equidifference, and the set of generators is denoted by

.
We adopt the terminology in [16] and say that a codeword

of weight is exceptional if

(1)

or equivalently, if

(2)
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From the discussion above, we see that if a codeword is equi-
difference with generator , then it is exceptional if and only if

are not distinct mod .
The CAC in Example 1 is equidifference, with generators 1, 5,

6, and 11. The codeword generated by 5 is exceptional, because

In Example 2, the codewords {0, 1, 2, 3}, {0, 4, 8, 12}, and
{0, 5, 10, 15} are equidifference, generated by 1, 4, and 5, re-
spectively. The codeword {0, 6, 13, 19} is not equidifference,
but it is exceptional, because

We see that an exceptional codeword is not necessarily equidif-
ference.

III. EXISTING CONSTRUCTIONS OF CAC IN THE LITERATURE

The following three constructions of CAC are due to [16]. We
state them in this section for the convenience of the readers. The
optimality of these constructions is known only for some spe-
cial cases. We will show later in Section V that they are indeed
optimal under more general conditions.

The first and second constructions are based on the multi-
plicative structure of finite field: given a prime , the set of
nonzero elements in , denoted by , is a cyclic group with
order under multiplication. For a divisor of , we
denote the multiplicative subgroup in of index by

and its cosets in the multiplicative subgroup by , for
. A set of elements in

is said to form a system of distinct representatives of
if each coset contains exactly one

element in .
Construction 1 ([16, Th. 3.1]): Let be a

prime number and suppose that forms a system
of distinct representatives of

. Let be a primitive element in the finite field and let
. Then the codewords of weight generated

by form an equidifference
- .

Example 3: Let , and . We can check that 2 is
a primitive element in the finite field and

Hence, {1, 2, 3, 4, 5} forms a system of distinct representa-
tives of , . The 42 codewords
generated by , , form a (421,
6)- . The generators are: 1, 29, 32, 52, 75, 86, 93, 95, 111,
115, 122, 137, 149, 170, 171, 174, 178, 182, 184, 188, 202,

205, 207, 223, 226, 229, 245, 262, 269, 286, 295, 301, 309,
311, 312, 351, 370, 385, 388, 400, 401, and 415.

Construction 2 [16, Th. 3.7]: Let be a prime that can be
written as for some integers and . If

is an integer such that each of and

for , forms a system of distinct representatives
of the cosets of , then there exists
an equidifference - with codewords.
Furthermore, the codewords satisfies

where represents the set of integral multiples of in .

Example 4: Consider , and . The prime
number satisfies the conditions in Construction 2. We
have

We can verify that each of

forms a system of distinct representatives of , ,
, . By Construction 2, we have a (111, 7)-

consisting of codewords. Indeed, the generators of this
CAC are 1, 7, 10, 16, 34, 46, 39, 70, 100.

The last construction we discuss in this section is a recursive
construction.

Construction 3 [16, Th. 6.1]: Let , and , , and be
positive integers such that is divisible by and

for . Let be an equidifference -
consisting of nonexceptional codewords so that

Let be an equidifference - with codewords.
The code with length generated by , for

, and , for is an
equidifference - with codewords.

Example 5: The prime numbers and satisfy
the conditions in Construction 2 with , and

. We have a - consisting of
codewords, and a - consisting of
codewords. Using Construction 3 with , ,

and , we obtain a - with
codewords.
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IV. UPPER BOUND ON THE SIZE OF CAC

In this section we derive an upper bound on the size of CAC.
A tool that we will use is Kneser’s theorem [9], which is a result
about the sum of subsets in an abelian group . As we only work
with , we will state Kneser’s theorem for . First we
introduce some notations.

Given two nonempty subsets and of , the sum set and
difference set of and , are defined as

respectively. Thus, is just another expression for .
We also write , for nonempty subset
and . The negative of is defined as

Given a nonempty subset , an element is called
a period of if . The stabilizer of , denoted by

, is the set of all periods of

We note that for every nonempty subset of , and
is a subgroup of . A subset is called periodic if it is

nonempty and . If is periodic with stabilizer ,
then we say that is -periodic. In other words, a subset of
is periodic if its stabilizer is a nontrivial subgroup of .

Lemma 1: For any subset , we have .
Proof: Let be an element in . Because

and , we have . This proves
that the stabilizer of is a subset of .

Note that an -periodic subset of can be written as the
summation of cosets of

Conversely, any union of cosets of a nontrivial subgroup of
is -periodic.

We use to represent the subgroup of generated by ,
i.e.

If divides , then consists of elements.
As an example, consider the subset .

The stabilizer of is , and hence is -pe-
riodic. We can see that is a union of and the coset {1, 4}.

Theorem 2 (Kneser): Let and be nonempty subsets of
, and let be the stabilizer of . If

, then

(3)

The set can be considered as the “completion” of
with respect to , because is the smallest -periodic
subset in which contains . Similarly, can be consid-
ered as the completion of with respect to . The conclusion
in Kneser’s theorem can be rephrased in words as: the cardi-
nality of the sum set of and is equal to the cardinality of
the completion of with respective to the stabilizer , plus the
cardinality of the completion of with respective to the stabi-
lizer , minus the size of .

Proof of Theorem 2 can be found in [12] or [18]. We will
apply Kneser’s theorem through the following corollary.

Corollary 3: Let be an exceptional codeword in an
- and be the stabilizer of , then is

periodic, and

(4)

Proof: Suppose that is an exceptional codeword in an
- and let be the stabilizer of . The condition

in Kneser’s theorem is satisfied with and ,
because

(5)

From (3), we obtain

In the last equality above, we have used the fact that is an
additive subgroup of and hence . This proves (4).
Since , we obtain

(6)

Putting (5) and (6) together, we have

We conclude that and therefore is periodic.

We illustrate Kneser’s theorem and Corollary 3 using Ex-
ample 1 and 2. In Example 1, consider the exceptional codeword

The stabilizer of , which is just equal to
itself, is -periodic. We can verify that

The codeword in Example 1 is equidifference
and nonexceptional. The condition in Kneser’s theorem is sat-
isfied with and , since
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We have , and

In Example 2, consider the exceptional codeword

The corresponding set of differences

is -periodic. We can check that

The next theorem provides a recipe for upper bounding the
size of a CAC.

Theorem 4: Let be an - in which codewords
are exceptional. For , denote the th exceptional
codeword by , and let the stabilizer of be . Define

(7)

Then

(8)

Proof: By definition, and are disjoint for any
pair of distinct codewords and in . We have the following
basic inequality:

(9)

Let the number of nonexceptional codewords be . Since
for each nonexceptional codeword , the

inequality in (9) becomes

From Corollary 3 we get

Therefore

After some rearrangement of terms, we get

This finishes the proof of the theorem.

We note that the value of defined in (7) is nonnegative for
all , because , and is a subset of

. We have the following corollary.

Corollary 5: Let be an - . If there are excep-
tional codewords , in , then

(10)

We make a few more definitions. The motivation of these def-
inition will be clear after Theorem 6. Let

(11)

(12)

may be empty, for example, when is prime. Let
be the collection of subsets of , such that each

pair of distinct elements in are relatively prime,
i.e.,

Given an integer , if is nonempty, define

(13)

with the maximum taken over all subsets in . If
is empty, we define as zero. We note that the

summand in (13) is positive by the condition in (12). Hence,
is nonnegative.

Theorem 6: For

(14)

Proof: Let be an - . If there is no exceptional
codeword in , then by Theorem 4.
Since is nonnegative, the size of is less than or equal
to the right-hand side (RHS) of (14).

Suppose that there are exceptional codewords in an
- , denoted by , . For ,

let be the stabilizer of . Let and consider two
distinct exceptional codewords and in . Both and

are strictly larger than one by Corollary 3. We claim
that and are relatively prime. As subgroups of ,

and can be written as and , respectively, for
some proper divisors and of , so that and
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. If and are not relatively prime, say, if
is a common divisor of and , then

for some integers and , and we get

After dividing the above equation by , we see that is an
integral multiple of both and , and hence is a common
element in and . Moreover, is nonzero mod , be-
cause . The two stabilizers and thus contain a
common nonzero element. By Lemma 1, we have
and , and so is also a common nonzero element
of and . This contradicts the defining property that

. This completes the proof of the claim.
For each , is an integral multiple of because

is a union of and its cosets. Furthermore, as we have
already noted in the proof of Corollary 3, is larger than
or equal to because contains . We thus have the
following:

The RHS in the above inequality is the smallest integral multi-
ples of which is larger than or equal to .

We next show that , for . For
each , the subgroup cannot have size strictly larger than

, otherwise by Corollary 3, we have

which is a contradiction to the definition of exceptional code-
word in (2). In addition, we must have because is
periodic by assumption. This shows that .

As a subgroup of , we see that is a divisor of . More-
over, for , satisfies

Consequently, satisfies the conditions in (11) and (12), and
hence belong to the set . We have already shown that

and are relatively prime for . Therefore

For , let be defined as in Theorem 4. We
can upper bound , which appears in the summa-
tion in (8), by

which equals the summand in (13) with substituted by .
By exhausting all possible choices of in , we have the
following upper bound

Substituting it back to (8), we have

This completes the proof of Theorem 6.

For CAC with weight and odd length , we can check
that is either empty or {3}. So in the computation of

in (13), the maximum is taken over only one number,
namely , and we get

Hence, from Theorem 6, we obtain

It can be shown that the above bound holds for even length as
well. This yields the upper bound on the size of CAC for three
active users in [11]. When and , the upper bounds
obtained from Theorem 6 coincides with the known results in
[16, Lemma 2.1, 2.3]. We illustrate Theorem 6 with .

Corollary 7: Let be an integer factorized as , where
is not divisible by 2, 3, or 7. Then we have the upper bound at

the bottom of the next page.
Proof: The value of for

is shown in the following table:

We note that 4 and 5 are not shown in the above table, because
they do not satisfy the condition in (12).

Since the value of for and
are the same, we can disregard the case in



SHUM et al.: CONSTANT-WEIGHT CONFLICT-AVOIDING CODES 3271

TABLE I
VALUES OF ���� �� AND � ��� ��

the computation of without affecting the result. We
tabulate and in Table I. By Theorem 6, we get

The upper bound in Corollary 7 is obtained after tidying up the
data in Table I.

Remark: The value of in Theorem 6 can be com-
puted by linear programming as follows. For each element
in , define a variable . Let the objective function be

, with defined by

For each prime number between 2 and , impose a con-
straint

(15)

Fig. 1. Upper bounds on size of CAC for weight 3 to 7.

where the summation is taken over all that is divisible
by . Then is the optimal solution if we maximize

subjective to the constraint in (15) for ranging
over all prime numbers between 2 and , and
for all .

Using the linear programming mentioned in the above re-
mark, the upper bounds given by Theorem 6 for weight 3 to 7
and length between 20 and 240 are plotted in Fig. 1. The lines
corresponding to and are the same as the upper
bounds on the size of CAC in [16]. For each , the growth is
roughly linear in , with slope . We note that for

, the upper bounds are not monotonically increasing with
.
The computation of amounts to solving a linear pro-

gramming, and it is not obvious from (13) how to get an estimate
on the value of . The next theorem gives an upper bound
on in closed-form expression, from which we can an-
alyze the asymptotic growth rate of .

if ,

if ,

if ,

if ,

if ,

if ,

if ,

if ,

if .
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Given a positive integer , let denote the number
of distinct prime numbers between 2 and ,

Note that also counts the maximum number of relatively
prime integers between 2 and .

Theorem 8: For

(16)

Proof: Recall that is the maximum of

(17)

taken over all subsets in . For , we observe that

and for , we have

In summary, we obtain

for all .
The number of summands in (17) is less than or equal to the

maximum number of relatively prime integers in . Since
, the number of summands in

(17) is less than or equal to the maximal number of relatively
prime integers between 2 and , namely . The
summation in (17) is thus less than or equal to ,
and hence

Theorem 8 follows by replacing by
in Theorem 6.

Remark:
The celebrated prime number theorem says that

approaches 1 when approaches infinity.
A weaker form of the prime number theorem proved by
Chebyshev [5] states that for some constants and

, we can bound by

for all . Furthermore, can be upper bounded by
for [23]. Hence, for ,

we have

(18)

V. OPTIMALITY OF EXISTING CONSTRUCTIONS OF CAC

For Hamming weight and , Constructions 1
and 2 are shown to be optimal in [16]. In this section, we use
the upper bounds on size of CAC given in Section IV to show
the optimality of some CACs by Constructions 1, 2, and 3 with
general weight.

Theorem 9: All CACs produced by Constuction 1 are op-
timal. If and satisfy the conditions in Construction 1, then
we have .

Proof: Since is prime, there is no nontrivial additive sub-
group in , and, hence, there is no exceptional codeword. The
upper bound in Theorem 4 reduces to . By
definition, , which
equals the number of codewords in Construction 1. The number
of codewords meets the upper bound and the constructed CAC
is therefore optimal.

Theorem 10: If , then any CAC with parameters stated
in Construction 2 is optimal. In other words, if , , and

satisfy the conditions in Construction 2 and , then
.

Proof: Since and , we have and
hence and are relatively prime.

Let be a CAC with length and weight .
Suppose that there are exceptional codewords in , say ,

. Let , for , respectively,
be the stabilizer of , where ’s are divisors of .
Suppose that for some . Because and are
relatively prime, must divide , and, hence, we get

and

However

(19)

which implies that , contradicting the assump-
tion that is exceptional. [We have used the assumption that

in (19).] Consequently, is divisible by for all
.

We obtain

for all , and . Since for ,
we obtain
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From Corollary 5, we obtain

From , we conclude that .

From Theorem 10, we can construct infinitely many optimal
CACs for each . The following is an illustration for

.

Corollary 11: Let be a prime number congruent to 31 or 39
mod 40. Then .

Proof: Apply Construction 2 with and . We
want to find integer such that is prime, and each
of the following:

forms a system of distinct representatives of and .

Expressed in terms of the Legendre symbol , it is equivalent
to

(20)

and

(21)

By the law of quadratic reciprocity [7], (20) and (21) are equiv-
alent to the following conditions:

which can be further simplified to or . Hence,
for each prime or , we have a -
consisting of codewords, which is optimal by Theorem
10. This proves that .

By Dirichlet’s theorem on primes in arithmetic progression
[5], there are infinitely many prime that satisfies
or . We thereby have infinitely many optimal CACs
with weight . The argument for can be adopted
to all weight to construct infinitely many optimal CACs for
each .

Applying the recursive construction in Construction 3 to
- , for , where is prime and con-

gruent to 31 or 39 mod 40, we obtain - .
By similar argument as in the proof of Theorem 10, we can
show that the resulting - is optimal. This
proves the following corollary.

Corollary 12: Let be prime number that satisfies
or , for . Then

In the remaining of this section, we apply the upper bound in
this paper to show that Construction 3 produces optimal CAC
for some special choices of input parameters.

Theorem 13: Suppose is a prime number such that is
divisible by and . If there is an equidifference

- with codewords, then

Proof: We apply the recursive Construction 3 with ,
, , and take to be a trivial

- consisting of codeword generated by 1, and
to be the given equidifference - with

codewords. It is implied by the assumption that
. So the condition

is satisfied for . Construction 3 yields a
- with codewords.

It remains to show that any - contains at
most codewords. Let be a - . Suppose
that , for , are the exceptional codewords in ,
and is the stabilizer of . For each , contains strictly
less than elements because .

We claim that any additive subgroup in of size
strictly less than is included in

Suppose on the contrary that we can find an not divisible
by . Then is a divisor of . The order
of in , which equals

is thus larger than or equal to . Since by hypothesis,
the integral multiples of in already generate more than

distinct elements, contradicting the assumption that
. Therefore, any integer which is not an integral multiple

of does not belong to .
By the above claim, we have for each . We can

write , for some between 1 and . However,
cannot be relatively prime with , otherwise, the integral

multiples of would generate and we would have
, contradicting . In particular, we

obtain
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Since for , we get

where denotes the number of integers in
which are relatively prime with . By Corollary 5, we obtain

Since

we conclude that .

Example 6: In [16], CAC of length and weight 4, con-
taining codewords, is reported for infinitely many
prime number using Construction 1. We can extend each of
them to an optimal - with codewords.
The example with smallest is a (37, 4)- with 6 codewords
generated by 1, 8, 27, 31, 26, and 23. It can be lengthened and
enlarged to an optimal (259,4)- with 43 codewords.

Theorem 14: Let , and be a prime number satisfying

(22)

where denotes the number of integers in
which are relatively prime with . We

have

Proof: We apply Construction 3 with ,
and . Let be a - containing only
one equidifference codeword generated by 1. Let be a

- containing only one equidifference codeword
generated by 1. Since and is prime, the condition

for is satisfied. By Con-
struction 3, we have a - containing
codewords.

We now show that this is an optimal CAC with length
and weight . Let be any -

with prime and satisfying the condition in (22). We show that
contains at most codewords by considering the following

two cases.
Case 1: there is no exceptional codeword in . By Theorem
4 we obtain

(23)

However, by the second inequality in (22)

Since , we get , and
hence by (23).
Case 2: there is at least one exceptional codeword in .
Let be an exceptional codeword in . We first prove the
following claim: the stabilizer of is either a subset
of or equal to . Let , where is a
proper divisor of . If is divisible by ,
then , and we have . Otherwise, if
is not divisible by , then divides . Suppose that

is factorized as . We have

If is strictly less than , then , and thus
. As by assumption, we obtain

which is a contradiction to the hypothesis that is excep-
tional. Therefore, when is not divisible by , the only
choice for is , and, hence, . This
completes the proof of the claim.

Let be the exceptional codewords in , and
be the stabilizer of , for . It follows

from the claim that

The same argument in the proof of Theorem 13 shows that at
most nonzero elements in , which is a
subgroup in of size , belong to for some .
Hence

(24)

Next, we note that and are both relatively prime
with , hence is also relatively prime with .
Thus, as a divisor of , is relatively prime with for all

. Since is an integral multiples of ,
we have

Recall that in Theorem 4 is defined as .
We thus have for .

By Theorem 4, we obtain the following upper bound on code
size:
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TABLE II
THE NUMBER OF CODEWORDS OF SOME OPTIMAL CACS FROM THEOREM 14

Note that in the last equality, we have replaced
by (24) and each by 1. After substituting by ,
we obtain

Since by assumption, we have

In the last inequality, we have used the fact that . This
completes the proof of Theorem 14.

Some new values of determined by Theorem 14 is
shown in Table II.

VI. CONCLUSION

We derive an upper bound for the size of CAC. This is the
first general bound which is applicable to any number of active
users. For fixed Hamming weight , the upper bound increases
approximately with slope as a function of length

. The upper bound is applied to some existing constructions of
CAC, and many new values of are determined.
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