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Abstract In the study of multiple-access in the collision channel, conflict-avoiding

code is used to guarantee that each transmitting user can send at least one packet

successfully in the worst case within a fixed period of time, provided that at most k

users out of M potential users are active simultaneously. The number of codewords in a

conflict-avoiding code determines the number of potential users that can be supported

in a system. Previously, upper bound on the size of conflict-avoiding code is known only

for Hamming weights three, four and five. The asymptotic upper in this paper extends

the known results to all Hamming weights, and is proved to be tight by exhibiting

infinite sequences of conflict-avoiding codes which meet this bound asymptotically for

all Hamming weights.
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feedback
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1 Introduction

Let Zn = {0, 1, 2, . . . , n − 1} denote the group of residues modulo n and Pn
w the

collection of all subsets of size w in Zn. For a subset A of Zn, we define the set of

differences between pairs of distinct elements in A as

d∗(A) := {x− y : x, y ∈ A, x 6= y}.

A conflict-avoiding code (CAC) of length n and weight w is a collection of subsets in

Pn
w, satisfying the property that

d∗(A) ∩ d∗(B) = ∅
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for any A 6= B in this collection of subsets. Each subset in a CAC is also called a

codeword, and n is also called the code length. Given n and w, we use the notation

CAC(n,w) for a CAC of length n and weight w

We note that for each codeword A, we can always find an integer b such that the

translation {x + b ∈ Zn : x ∈ A} contains the zero element in Zn. As the set of

differences d∗(A) is invariant under translation, we assume without loss of generality

that A 3 0 for every codeword A.

A codeword A represents a binary sequence of length n, denoted by sA, with the

t-th component equal to 1 if and only if t ∈ A, i.e.,

sA(t) :=

{
1 if t ∈ A
0 if t 6∈ A

for t = 0, 1, . . . , n− 1. In other words, A is the characteristic set of sA. The definition

of CAC is equivalent to the requirement that, for two distinct codewords A and B, the

Hamming crosscorrelation between the corresponding sequences sA and sB , defined as

HsAsB (τ) :=

n−1∑
t=0

sA(t)sB(t+ τ),

is either 0 or 1 no matter what the relative delay offset τ is. Here, the addition + is

done modulo n. Indeed, if HsAsB (τ) ≥ 2 for some relative delay offset τ , then there

are two distinct time indices t0 and t1, such that

sA(t0) = sB(t0 + τ) = 1 = sA(t1) = sB(t1 + τ),

which implies t0 and t1 belong to A and t0 + τ and t1 + τ belong to B, and hence

0 6= t1−t0 ∈ d∗(A)∩d∗(B), contradicting the defining property of CAC. The Hamming

weight of a binary sequence s of length n is defined as
∑n−1

t=0 s(t). By construction, the

Hamming weight of sA(t) is w for each codeword A.

Conflict-avoiding codes find applications in the multiple-access collision channel

without feedback, and is also called protocol sequences in this context [1–3,13,14,22].

In multiple-access collision channel, there are M users who share a common transmis-

sion medium and want to send packets to a common destination node. We consider

the synchronous model, in which time is divided into slots and all users are slot-

synchronized, i.e., a packet sent from user must be within the duration of a time slot.

If exactly one user transmits a packet in a time slot, while the others are silent, then

the packet can be received successfully without error. However, if two or more users

transmit in the same time slot, a collision occurs, and the collided packets are assumed

unrecoverable.

Each user is assigned a protocol sequence, which is a binary sequence of period n.

Suppose after a duration of being inactive, a user becomes active at time T . A user

sends a packet in slot T + i if the i-th component of the protocol sequence is 1, or

keep silent if 0. Packets are transmitted continually by repeating the protocol sequence

periodically, until there is no more data to send. At that time the user will become idle,

and remain inactive for at least n time slots before he becomes active again. Because the

users become active at different times, we have relative delay offsets among the protocol

sequences. A set of M binary sequences is called an (M,k, n,w) protocol sequence set if

each sequence in this set is of length n and Hamming weight w, such that in a period

of n slots, each active user can successfully send at least one packet without suffering
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collision no matter what the relative delay offsets are, provided that there are at most

k simultaneously active users. It is easy to see that in order to support k active users,

each user must send at least k packets in a period. Otherwise, there is a combination

of delay offsets such that all packets of a particular user are collided.

In this paper, we consider the (M,k, n,w) protocol sequence set with w = k, i.e.,

the number of active users is exactly equal to the Hamming weight of the protocol

sequences. As we have mentioned in the previous paragraph, this is the smallest Ham-

ming weight for k simultaneously active users. Given a CAC of length n and weight

w, we construct a protocol sequence set by generating binary sequence sA of length n

for each codeword A. By the defining property of CAC, there is at most one collision

between sA and sB for any delay offset τ . If there are no more than w active users, then

each user suffers at most w − 1 collisions in a period, and hence can send at least one

packet successfully. The constructed protocol sequence set is thus an (M,w, n,w) pro-

tocol sequence set. Conversely, we can see that the characteristic sets of the sequences

in a (M,w, n,w) sequence set form a CAC of length n and weight w.

A codeword A is called equi-difference if the elements in A form an arithmetic

progression, i.e.,

A = {a, a+ δ, a+ 2δ, . . . , a+ (w − 1)δ}

for some a and δ in Zn. A CAC is said to be equi-difference if all codewords are

equi-difference. We use the symbol CACe(n,w) for an equi-difference CAC.

Example 1 Let n = 45, w = 5. Consider the following equi-difference codewords

{0, 1, 2, 3, 4}, {0, 5, 10, 15, 20}, {0, 9, 18, 27, 36}, {0, 19, 38, 12, 31}, {0, 28, 11, 39, 22} and

{0, 37, 29, 21, 13}. The sets of differences

d∗({0, 1, 2, 3, 4}) = {1, 2, 3, 4, 41, 42, 43, 44},
d∗({0, 5, 10, 15, 20}) = {5, 10, 15, 20, 25, 30, 35, 40},
d∗({0, 9, 18, 27, 36}) = {9, 18, 27, 36},
d∗({0, 19, 38, 12, 31}) = {7, 12, 14, 19, 26, 31, 33, 38},
d∗({0, 28, 11, 39, 22}) = {6, 11, 17, 22, 23, 28, 34, 39},
d∗({0, 37, 29, 21, 13}) = {8, 13, 16, 21, 24, 29, 32, 37}.

are disjoint. We thus have an equi-difference CAC of length 45 and weight 5, consisting

of six codewords.

More examples of CACs of weights 3, 4 and 5 are available online at [21].

In this paper, we are interested in the largest number of codewords in a CAC of

length n and weight w. Denote the maximal number of codewords in the class of all

CACs with length n and weight w by M(n,w). A CAC(n,w) is said to be optimal if the

number of codewords is equal to M(n,w). We let Me(n,w) be the maximal number of

codewords in the sub-class of equi-difference CACs of length n and weight w.

The main result in this paper is the following

Theorem 1 For all w ≥ 2, we have

lim sup
n→∞

M(n,w)

n
= lim sup

n→∞

Me(n,w)

n
=

1

2w − 2
. (1)
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Remark: Recall that the limit superior of a sequence (ai)
∞
i=1 of real numbers is less

than or equal to a constant c if and only if for each ε > 0, ai is less than c + ε for all

but finitely many i. The limit superior of (ai)
∞
i=1 is larger than or equal to c if and

only if for each ε > 0, there are infinitely many ai which are larger than c− ε [20].

Theorem 1 can be interpreted as follows. Given weight w and arbitrarily small real

number ε > 0, the number of codewords in a CAC(n,w), normalized by the code length

n, is less than (2w − 2)−1 + ε for all sufficiently large n, i.e., there is an integer N(ε),

such that
M(n,w)

n
≤ 1

2w − 2
+ ε, for all n ≥ N(ε). (2)

This provides an asymptotic upper bound on the number of codewords in CAC. Fur-

thermore, this bound is tight, meaning that if (2w − 2)−1 in (2) is replaced by any

number strictly smaller than (2w − 2)−1, then (2) no longer holds for all ε > 0.

Since obviously M(n,w) ≥Me(n,w), we have

lim sup
n→∞

M(n,w)

n
≥ lim sup

n→∞

Me(n,w)

n
.

We thus divide the proof of Theorem 1 into two parts:

1. lim supn→∞
M(n,w)

n ≤ 1
2w−2 , and

2. lim supn→∞
Me(n,w)

n ≥ 1
2w−2 .

The first part is proved in Section 3 (Prop. 2) by establishing a general upper bound on

the size of CAC, which may or may not be equi-difference. The second part is proved

in Section 4 (Prop. 3), by exhibiting, for each w, infinitely many equi-difference CACs,

with size larger than (2w− 2)−1− ε times the code length. We note that in the second

part we do not need to show that Me(n,w)/n ≥ (2w − 2)−1 − ε for all sufficiently

large n. We only need to show that there are infinitely many such n.

This paper is organized as follows. In Section 2, we review some existing bounds on

the number of codewords for w = 3, 4, 5. Two constructions of CAC in the literatures

are also presented. A new upper bound on the size of CAC is derived in Section 3.

In Section 4, we construct an explicit sequence of CACs which achieve this bound

asymptotically.

2 Results Previously Reported in the Literatures

2.1 Existing Bounds on Size of CAC

A lot of works have been done for the case w = 3. In [10], Levenshtein derived the

upper bound M(n, 3) ≤ (n+ 1)/4, especially for n ≡ 2 mod 4,

M(n, 3) = (n− 2)/4,

and for the sequence of all odd integers n,

M(n, 3) ∼ n/4 (3)

as n→∞. When n is a multiple of 4, Jimbo et al. [7] showed that

n

6
+O(log4(n/4)) ≤Me(n, 3) ≤ 3

16
n+ δ,
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where δ is a constant depending on the congruence of (n/4) mod 12. They also gave

optimal constructions of CAC(n, 3) for n ≡ 8 mod 16. Some optimal constructions of

CACe(p, 3) for prime p is considered in [16, 17]. For length divisible by 16, optimal

constructions can be found in [15].

For w = 4 and 5, constructions and bounds for CAC(n,w) is studied in [18]. It can

be derived from [18] that

lim sup
n→∞

M(n, 4)/n =
1

6
,

and

lim sup
n→∞

M(n, 5)/n =
1

8
.

Relatively less result is known for w ≥ 6. In this paper, we extend the above

asymptotic results to w ≥ 6.

2.2 Known Constructions

Let p be an odd prime, n = pr for some integer r larger than or equal to 2, and

w be (p + 1)/2. For each integer c, 0 ≤ c < pr, consider the p-ary representation

c = c0 + c1p + . . . cr−1p
r−1. Let S be the set of integer c, 0 ≤ c < pr, whose first

nonzero symbol in its p-ary representation is 1. Consider the collection of codewords

in the form {0, c, 2c, . . . , (w − 1)c} with c ∈ S. Obviously S contains (pr − 1)/(p − 1)

elements. The set of nonzero differences of a codeword A is of the form

d∗(A) = {±jc mod pr : j = 0, 1, . . . , (p− 1)/2}.

It can be shown that the equality ±jc = ±jc′ mod pr, for j, j′ = 0, 1, . . . , (p−1)/2 and

c, c′ ∈ S, c 6= c′ holds only when j and j′ are both zero. This implies that it is a CAC

with (pr − 1)/(p− 1) codewords of weight w.

Theorem 2 ( [9–11])

M(pr, (p+ 1)/2) ≥ pr − 1

p− 1
=

n− 1

2w − 2
.

Example 2 Let p = 5, r = 2. We have n = 25 and w = 3. The following 6 codewords

{0, 1, 2}, {0, 5, 10}, {0, 6, 12}, {0, 11, 22}, {0, 16, 7}, {0, 21, 17}

form a CAC of length 25 and weight 3.

The CAC in Theorem 2 is conjectured to be optimal by Levenshtein in [10]. We

will prove later that Levenshtein’s conjecture is true.

The next construction uses some result about quadratic residues [6]. Given an odd

prime p, a nonzero element a ∈ Zp is called a quadratic residue if we can find an

element x ∈ Zp such that a = x2 mod p, otherwise, a is called a quadratic non-residue.

The quadratic residues under multiplication form a subgroup of index 2 within the
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multiplicative group of nonzero elements. Hence there are precisely (p−1)/2 quadratic

residues and (p− 1)/2 non-residues mod p. The Legendre symbol on Zp is defined as

(
a

p

)
:=


0 if a = 0 mod p,

1 if a 6= 0 is a quadratic residue mod p,

−1 if a 6= 0 is a quadratic non-residue mod p.

It can be shown that the Legendre symbol is multiplicative, i.e.,(
ab

p

)
=

(
a

p

)(
b

p

)
. (4)

The following construction is an adaptation from a construction in [18, Theorem

3.7].

Theorem 3 ( [18]) Let p be an odd prime and w be an integer such that 2 ≤ w ≤ p.

If −1 is a quadratic non-residue mod p and(
i

p

)(
i− w + 1

p

)
= −1 (5)

for i = 1, . . . , w − 2, then there exists a conflict-avoiding code consisting of (p − 1)/2

codewords, with length (w − 1)p and weight w.

We include the proof for completeness.

Proof Since w− 1 < p, w− 1 and p are relatively prime. The cyclic group Z(w−1)p can

be identified with Zw−1⊕Zp via the Chinese remainder theorem [6]. We will construct

a CAC on Zw−1 ⊕ Zp.

Let Q be the set of quadratic residues mod p. For each g in Q, we define a codeword

Ag := {(0, 0), (1, g), (2, 2g), . . . , (w − 2, (w − 2)g), (0, (w − 1)g)}.

This is an arithmetic progression in Zw−1⊕Zp with common difference (1, g). The set

of differences d∗(Ag) can be written as

{(i, ig) : i = 1, . . . , w − 2} ∪ {(i, (i− (w − 1))g) : i = 1, . . . , w − 2} ∪ {(0,±(w − 1)g)}.

Suppose for the sake of contradiction that d∗(Ag) ∩ d∗(Ah) is non-empty for some

g and h ∈ Q, with g 6= h. Let the common element be (i, j). We consider two cases.

Case 1, i = 0. We have (w − 1)g = ±(w − 1)h, and this implies that g = ±h.

Since g 6= h, we get g = −h, and consequently −1 = gh−1. However, g and h are

both quadratic residues by definition. This contradicts the assumption that −1 is a

quadratic non-residue.

Case 2, i = 1, 2, . . . , w − 2. There are four possibilities: (i) j = ig = ih, (ii)

j = ig = (i − (w − 1))h, (iii) j = (i − (w − 1))g = ih, and (iv) j = (i − (w − 1))g =

(i− (w− 1))h. In case (i) and (iv), we have g = h, which is false by assumption. If (ii)

holds, then by taking the Legendre symbol on both side of ig = (i−(w−1))h, and using

the multiplicative property in (4), we get
(

i
p

)
=
(

i−(w−1)
p

)
, which contradicts (5).

Similar argument shows that (iii) cannot hold as well.

This concludes that d∗(Ag) and d∗(Ah) must be disjoint, and hence the (p− 1)/2

codewords form a CAC on Zw−1 ⊕ Zp. Via the isomorphism between Zw−1 ⊕ Zp and

Z(w−1)p, we obtain a CAC on Z(w−1)p with (p− 1)/2 codewords of weight w. ut
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Example 3 Let p = 19 and w = 6. The quadratic residues mod 19 are 1, 4, 5, 6, 7, 9,

11, 16 and 17. We can check that(
−1

p

)
,

(
1

p

)(
−4

p

)
,

(
2

p

)(
−3

p

)
,

(
3

p

)(
−2

p

)
,

(
4

p

)(
−1

p

)
are all equal to −1. The CAC obtained by the construction in Theorem 3 is of length

95, consisting of the following 9 codewords

{0, 1, 2, 3, 4, 5}, {0, 61, 27, 88, 54, 20}, {0, 81, 67, 53, 39, 25},
{0, 6, 12, 18, 24, 30}, {0, 26, 52, 78, 9, 35}, {0, 66, 37, 8, 74, 45},
{0, 11, 22, 33, 44, 55}, {0, 16, 32, 48, 64, 80}, {0, 36, 72, 13, 49, 85}.

We note the CACs in Theorem 2 and 3 are equi-difference.

3 Upper Bound on Number of Codewords

An upper bound on the size of CAC is derived in this section. The main idea of is that,

despite some exceptional cases, each codeword provably contributes at least 2w − 2

distinct differences. If we can show that the number of exceptional codewords is very

small, then, as the differences cannot overlap, the number of codewords is roughly

speaking no larger than n/(2w − 2).

To formulate the upper bound, we need some result in additive number theory. We

first introduce some notions for abelian group in general. Let G be an abelian group.

For two subsets A,B ⊂ G, the sum set of A and B is defined as

A+B := {a+ b : a ∈ A, b ∈ B},

while the difference set is

A−B := {a− b : a ∈ A, b ∈ B}.

The self difference set A−A is denoted by

d(A) := {a1 − a2 : a1, a2 ∈ A}.

The set d∗(A) defined in the introduction is equal to d(A) \ {0}.
The following simple observation will be useful.

Proposition 1 |d(A)| ≥ |A| for any subset A in G.

Proof Suppose that A contains m elements, labeled by a1, a2, . . . , am. The m − 1

difference ai− a1, for i = 2, 3, . . . ,m are distinct and non-zero. Together with the zero

element in G, we already have m distinct elements in d(A). Hence, |d(A)| ≥ m. ut

A nonempty subset A of G is called H-periodic, where H is a subgroup of G, if it is a

union of cosets of H. In terms of set addition, it is equivalent to saying that A = A+H.

A subset is called periodic if it is H-periodic for some non-trivial subgroup H. H is

said to be a period of A if A is H-periodic. (The notion of “periodic” and “H-periodic”

should not be confused with the period of protocol sequences.) The following theorem

due to Kneser [8] is the key to the derivation of the upper bound on the size of CAC.
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Theorem 4 (Kneser [8]) Let S and T be finite nonempty subsets of a finite abelian

group G. If |S+T | < |S|+ |T | − 1, then S+T is periodic for some nontrivial subgroup

H of G.

Proofs of Kneser’s theorem can be found in [12] and [19].

By applying Theorem 4 with T = {−s : s ∈ S}, we have the following corollary.

Corollary 1 Let S be a non-empty subset in a finite abelian group. We have |d∗(S)| ≥
2|S| − 2 unless d(S) is periodic. Moreover, if H is a period of d(S), then d(S) contains

H as a subset.

Proof The first statement follows directly from Theorem 4, because, if |d∗(S)| < 2|S|−
2, then

|S − S| = |d(S)| = |d∗(S)|+ 1 ≤ 2|S| − 2 < |S|+ |S| − 1.

Hence, d(S) must be periodic for some nontrivial subgroup H of Zn. Since 0 ∈ d(S),

we have H ⊆ d(S). ut

Example 4 (Continue from Example 1) The codeword A = {0, 9, 18, 27, 36} in Z45 has

d(A) = {0, 9, 18, 27, 36} which is periodic. In fact, d(A) itself is a subgroup of Z45. For

all other codeword B, d(B) is not periodic and we can check that d∗(B) = 2|B|−2 = 8.

Example 5 Consider the codeword A = {0, 1, 4, 5, 8, 9} in Z12. We check that

d∗(A) = {1, 3, 4, 5, 7, 8, 9, 11}

and |d∗(A)| = 8 < 2|A|− 2. By Corollary 1, d(A) must be periodic. Indeed, d(A) is the

union of subgroup {0, 4, 8} of Z12 and two cosets {1, 5, 9} and {3, 7, 11}.

From Kneser’s theorem, we have immediately the following upper bound on number

of codewords when the length is prime, or when the length is a product of large prime

factors.

Theorem 5 Suppose that the length of a CAC of weight w satisfies one of the following

conditions:

(i) n is prime,

(ii) the prime factors of n are all larger than or equal to 2w − 1.

Then

M(n,w) ≤
⌊ n− 1

2w − 2

⌋
.

Proof (i) When n is prime, Zn has no nontrivial subgroup. Therefore, there is no

codeword A such that d(A) is periodic. By Corollary 1, we have |d∗(A)| ≥ 2w − 2 for

all codeword A. Since d∗(A) and d∗(B) are disjoint for any pair of distinct codewords

A and B, the number of codewords is no more than (n− 1)/(2w − 2).

(ii) Suppose that |d∗(A)| < 2w − 2 for some codeword A. Then d(A) is periodic

and contains a nontrivial subgroup of Zn by Corollary 1. However, since the smallest

divisor of n is at least 2w − 1, the smallest nontrivial subgroup of Zn has cardinality

at least 2w − 1. Therefore,

|d∗(A)| = |d(A)| − 1 ≥ (2w − 1)− 1 = 2w − 2.

It contradicts the assumption that d∗(A) has cardinality strictly less than 2w−2. Thus,

we have d∗(A) ≥ 2w − 2 for every codeword A. The proof continues as in part (i). ut
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We now show that the two constructions described in Section 2 are optimal.

Theorem 6 Let p be an odd prime, n = pr for some integer r ≥ 2 and w = (p+ 1)/2.

We have

M(pr, (p+ 1)/2) =
n− 1

2w − 2
.

Proof As p is the only prime factor of n = pr and p = 2w− 1 by definition, the results

follows from Theorem 5 (ii). ut

This proves Levenshtein’s conjecture that the construction in Theorem 2 is opti-

mal [10].

Theorem 7 Let p and w−1 are distinct odd primes such that p > 2w−2. Then there

are at most (p− 1)/2 codewords in CAC((w − 1)p, w).

Proof Let n = (w − 1)p. Note that Zn has precisely two nontrivial subgroups. Let

H1 be the subgroup which consists of all multiples of p, and H2 be the subgroup

which consists of all multiples of w − 1. H1 and H2 contain w − 1 and p elements,

respectively. If there is a codeword A with the property that d(A) is H2-periodic,

then we have |d∗(A)| = |d(A)| − 1 ≥ 2w − 2 because d(A) contains the subgroup

H2 of cardinality p, which is strictly larger than 2w − 2 by assumption. This yields a

contradiction to Corollary 1. Therefore, for any codeword A in a CAC((w − 1)p, w),

d(A) is either aperiodic or H1-periodic.

We consider two cases.

Case 1, all codewords are aperiodic. We have |d∗(A)| ≥ 2w− 2 for all codeword A.

The number of codewords is no more than⌊ n− 1

2w − 2

⌋
=
⌊ (w − 1)p− 1

2w − 2

⌋
=
⌊p

2
− 1

2w − 2

⌋
≤ p− 1

2
.

Case 2, there is at least one codeword that is H1-periodic. In this case, we cannot

have two distinct codewords A and B that are both H1-periodic, otherwise d(A) and

d(B) both contain H1 as subset and it contradicts the requirement that d∗(A) and

d∗(B) are disjoint. So there is a unique codeword, say B̃, that is H1-periodic. B̃ must

contain at least two cosets of H1, because |d(B̃)| ≥ w by Prop. 1. Therefore |d(B̃)| ≥
2(w − 1). The number of codewords is no more than

1 +
n− 2(w − 1)

2(w − 1)
.

After substituting n by (w − 1)p, we can simplify the above expression to p/2. The

number of codewords is thus less than or equal to bp/2c = (p− 1)/2. ut

This shows that the construction in Theorem 3 is optimal when w− 1 is prime and

p > 2w− 2. Next, we obtain a general upper bound on M(n,w) which holds for all w.

Theorem 8 Let ω(n) denote the number of distinct prime divisors of n. For n ≥ 2

and w ≥ 2, we have

M(n,w) ≤ n− 1

2w − 2
+
ω(n)

2
.
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Proof We divide the codewords into two types by checking whether the difference set

of a codeword is periodic or not. If d(A) is aperiodic, we have d∗(A) ≥ 2w − 2 by

Corollary 1. For a periodic d(B), we have d∗(B) ≥ w − 1. Since the totality of all

distinct differences cannot be larger than the number of nonzero element in Zn, we

obtain

n− 1 ≥
∑

A: d(A) aperiodic

|d∗(A)|+
∑

B: d(B) periodic

|d∗(B)|

where the first summation is over codeword A such that d(A) is aperiodic and the

second summation is over codeword B such that d(B) is periodic.

By Prop. 1 and Corollary 1, we have

n− 1 ≥
∑

A: d(A) aperiodic

(2w − 2) +
∑

B: d(B) periodic

(w − 1). (6)

Suppose that there are Mp codewords B with d(B) periodic. It follows from (6) that

n− 1 ≥ (M −Mp)(2w − 2) +Mp(w − 1),

or equivalently

M ≤ n− 1

2w − 2
+
Mp

2
. (7)

It remains to show that Mp is no larger than ω(n). Suppose that B1 and B2 are

two codewords such that d(B1) and d(B2) are periodic. Suppose that d(B1) is H1-

periodic and d(B2) is H2-periodic, for two nontrivial subgroups H1 and H2 of Zn. By

Corollary 1, d(Bi) contains Hi, for i = 1, 2. Suppose that H1 and H2 are generated by

two proper divisors of n, α1 and α2, respectively, i.e., Hi consists of the multiples of αi

for i = 1, 2. We claim that n/α1 and n/α2 must be relatively prime. Otherwise, if the

greatest common divisor of n/α1 and n/α2, denoted by g, is greater than 1, then for

i = 1, 2, we have n/αi = gxi for some integer xi, and hence n/g is a multiple of both α1

and α2. This implies that n/g is contained in both d∗(B1) and d∗(B2), contradicting

the assumption that B1 and B2 are codewords of a CAC.

Suppose that B1, B2, . . . , BMp
are the codewords with d(Bi) being periodic for

i = 1, 2, . . . ,Mp. We can find Mp proper divisors of n, say α1, . . . , αMp
such that

d(Bi) contains the additive subgroup of Zn generated by αi, for i = 1, . . . ,Mp. By the

argument in the previous paragraph, n/αi, for i = 1, 2, . . . ,Mp are mutually relatively

prime. On the other hand, the number of divisors of n which are mutually relatively

prime is less than or equal to ω(n). Therefore Mp ≤ ω(n). By replacing Mp in (7) by

ω(n), we obtain the upper bound in the theorem. ut

The function ω(n) grows very slowly in n. It was shown by Hardy and Ramanujan

that ω(n) is close to log log(n) [4, p.51]. For our purpose, it is sufficient to use the fact

that ω(n) is upper bounded by log2(n). Indeed, if n is factorized into pe1
1 · · · p

eω(n)

ω(n)
,

where p1, p2, . . . , pω(n) are distinct primes, then

n ≥ p1p2 · · · pω(n) ≥ 2ω(n).

We are now ready to prove half of Theorem 1.
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Proposition 2 For w ≥ 2,

lim sup
n→∞

M(n,w)

n
≤ 1

2w − 2
.

Proof We replace ω(n) by log2(n) in Theorem 8 and divide by n,

M(n,w)

n
≤ n− 1

n(2w − 2)
+

log2(n)

2n
.

The result follows from taking lim sup on both sides. ut

4 Tightness of the Asymptotic Upper Bound

For weight w such that 2w − 1 is a prime, we have for all integer r ≥ 1

Me(pr, w)

pr
≥ 1

pr
· p

r − 1

2w − 2

by Theorem 2, where p = 2w− 1. Hence, for each ε > 0, the ratio Me(n,w)/n is larger

than (2w − 2)−1 − ε for infinitely many n. Combining this result with Prop. 2, we get

lim sup
n→∞

Me(n,w)

n
=

1

2w − 2
,

for all w such that 2w − 1 is prime.

In this section, we show that the above equality holds for all w ≥ 2, by showing

that for each w, there exists an infinite sequence of CACe(n,w) attaining the upper

bound in Prop. 2. This will complete the proof of Theorem 1

We first consider the case w = 6. Let p = 2m + 1 be a prime. The conditions in

Theorem 3 hold if p satisfies either one of the following set of conditions:
(
−1
p

)
= −1(

2
p

)
=
(

3
p

)
= 1


(
−1
p

)
= −1(

2
p

)
=
(

3
p

)
= −1.

By quadratic reciprocity, the primes that satisfy the above conditions are congruent

to 19 or 23 mod 24, namely 19, 23, 43, 47, 67, 71, 91, and so on. They give rise to

CACe(95, 6), CACe(115, 6), CACe(215, 6), CACe(235, 6), CACe(335, 6), CACe(355, 6),

CACe(455, 6), . . ., containing 9, 11, 21, 23, 33, 35, 45,. . . codewords respectively. We

have shown in Theorem 7 that they are optimal. From Dirichlet’s theorem on primes

in arithmetic progression [6], we know that there are infinitely may prime p which are

congruent to either 19 or 23 mod 24. With p going over all such primes, we get

lim sup
p→∞

Me(5p, 6)

5p
≥ lim

p→∞
(p− 1)/2

5p
=

1

10
.

For general w, we have the following



12

Proposition 3 Let w ≥ 2 be a fixed integer. For any arbitrarily small real number

ε > 0, there are infinitely many integer n which can be written in the form (w − 1)p

for some prime number p, such that

Me(n,w)

n
≥ 1

2w − 2
− ε,

i.e.,

lim sup
n→∞

Me(n,w)

n
≥ 1

2w − 2
.

Proof If we can find a prime p such that(
a

p

)
= 1 for a = 1, 2, . . . , w − 2, and (8)(

−1

p

)
= −1, (9)

then for all i = 1, 2, . . . , w − 2, we have(
i

p

)(
i− w + 1

p

)
=

(
i

p

)(
(−1)(w − 1− i)

p

)
=

(
i

p

)(
−1

p

)(
w − 1− i

p

)
= −1.

So, the conditions in Theorem 3 are satisfied, and we can construct a CACe((w−1)p, w)

with (p− 1)/2 codewords. Suppose that there exists infinitely many such prime p, we

then have a sequence of CACe((w−1)p, w) such that the ratio of number of codewords

to code length is
(p− 1)/2

(w − 1)p
=
p− 1

p
· 1

2w − 2
.

This ratio approaches 1/(2w − 2) as p approaches infinity. Hence, given an arbitrarily

small ε > 0, there are infinitely many prime p such that

p− 1

p
· 1

2w − 2
≥ 1

2w − 2
− ε.

This implies that

Me((w − 1)p, w)

(w − 1)p
≥ (p− 1)/2

(w − 1)p
≥ 1

2w − 2
− ε

for infinitely many prime p.

Therefore it suffices to show that there are infinity many primes which satisfy the

conditions in (8) and (9). Let S = {p1, p2, . . . , pr} be the set of all the distinct prime

numbers less than or equal to w−2. For each i between 2 and w−2, let Si ⊆ S denote

the set of prime factors that appear in the factorization of i with odd multiplicity. We

can thereby express i as

i = y2
i

∏
q∈Si

q
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for some integer yi. After applying the Legendre symbol to both sides of the above

equation, we obtain (
i

p

)
=
∏

q∈Si

(
q

p

)
.

This shows that if we can find a prime p such that p1, p2, . . . , pr are all quadratic

residues of p, then
(

i
p

)
= 1 for all i = 2, 3, . . . , w − 2. Our task reduces to searching

for prime p which satisfies(
p1
p

)
=

(
p2
p

)
= . . . =

(
pr

p

)
= 1

and
(
−1
p

)
= −1. The infinitude of such primes is established by appealing to the follow-

ing theorem, which roughly says that there are infinitely many primes with prescribed

quadratic residues and non-residues. ut

Theorem 9 ( [5]) Let a1, a2, . . . , am be integers such that the product of powers

au1
1 au2

2 · · · a
um
m

is a square only if all ui are even. Then there are infinity many primes p which satisfy(
ai
p

)
= ci, for i = 1, 2, . . . ,m, with ci taken arbitrarily in {1,−1}.

A proof of Theorem 9 can be found in [5, §49]. The proof of Prop. 3 is completed

by choosing ai = pi and ci = 1 for i = 1, . . . , r, and ar+1 = cr+1 = −1.

Example 6 Consider the case w = 11. By Theorem 9, there are infinitely many primes

such that (2/p) = (3/p) = (5/p) = (7/p) = 1 and (−1/p) = −1. Any such prime

p corresponds to a CACe(10p, 11) with (p − 1)/2 codewords. The primes that satisfy

these requirements are 311, 479, 719, 839, 1151, 1319, 1511, 1559, 2351, 2399 and so

on. If we take the limit over this sequence of primes, we have

lim
p→∞

(p− 1)/2

10p
=

1

20
.

Therefore, for each arbitrarily small ε > 0, there are infinitely many prime p such that

Me(10p, 11)

10p
≥ (p− 1)/2

10p
≥ 1

20
− ε.

This verifies Prop. 3 when w = 11.

5 Conclusion

We obtain an asymptotic upper bound on the size of CAC, which holds for all weights

in general, and thus extend previously known upper bounds on the size of CAC. By

constructing asymptotically optimal sequences of CAC with increasing length, we show

that this asymptotic upper bound is tight. By the result in this paper, some existing

constructions of CAC are proved to be optimal as well.
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