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Completely Irrepressible Sequences for the
Asynchronous Collision Channel Without Feedback

Yijin Zhang, Kenneth W. Shum and Wing Shing Wong

Abstract— A collision channel is asynchronous if it is neither
frame nor slot synchronized. We consider protocol sequences
with the property that each user is able to send at least one
packet successfully in each sequence period, for the asynchronous
collision channel without feedback. Such property is called
user irrepressibility in the asynchronous channel. In this paper,
we focus on the class of the most energy-efficient completely
irrepressible protocol sequence set. We derive lower bounds on
the minimum period and present a construction method that
meets the asymptotic bound of equi-difference sequence set.

I. INTRODUCTION

A. Background and Motivation

Consider a wireless sensor network [1] with M users and
one data sink. The channel is divided into time slots of equal
duration. We model the system by a collision channel without
feedback [2]. Since there is no central coordination and no
feedback from the data sink, we cannot do packet scheduling
for media access control. Another option is a random trans-
mission scheme like ALOHA [3] [4], where each user send a
packet in a time slot with certain probability, independent of
what it did in previous time slots, and independent from the
other users. However, implementing a random number gener-
ator is sometimes too costly for users, which are both power
and complexity limited. As we do not assume that the users
are equipped with any receiver, contention based protocols,
which require listening to the channel, is not feasible. In both
random transmission and contention based protocol, there is
no guarantee on transmission delay in the worst case.

To investigate the transmission scheme with strict guarantee
of zero blocking probability within one period, we will follow
the approach in [2], and specify the transmission pattern by
a deterministic periodic sequence, called a protocol sequence.
The components of the protocol sequence are either zero or
one. Each user is assigned a protocol sequence, and reads off
the components one by one periodically. It transmits a packet
of one time slot duration if it is one, and keeps silent for one
time slot if it is zero. Suppose that the minimum common
period of assigned M protocol sequences is L slots time. For
i = 1, 2, . . . ,M , the protocol sequence associated with user i
is specified by a row vector si :=

[
si[0] si[1] . . . si[L− 1]

]
.

The n-th component of user i’s protocol sequence is equal to
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si[n mod L] for any non-negative integer n. Without loss of
generality, si[0] here is assumed to be 1 for all i.

As there is no feedback from the receiver and no cooperation
among the users, the channel is not frame-synchronized, i.e.,
there is no guaranteed that the protocol sequence will start
at the same time slot. Each user has a delay offset, which
is random but remains fixed throughout the communication
session. Let δi be the time offset of user i for i = 1, 2, . . . ,M ,
on the unit of one time slot duration. It can be interpreted as
the difference between the time shown on the receiver’s clock
and the time shown on user i’s clock. In this paper, all time
indices and time intervals mentioned are both on the receiver’s
clock and on the unit of one time slot duration. Thus user i
would start its protocol sequence or transmission scheme at
the time index δi. Then if the assigned sequence of user i
is equal to 1 at its n0-th component for some non-negative
integer n0, user i will make its packet transmission at time
interval [n0 + δi, n0 + δi + 1). Furthermore by distinguishing
two cases for the possible values of the unknown time offsets,
there are two different models of synchronization:

1) The channel is slot-synchronized if all users know the
slot boundaries of the channel, i.e., the time offsets
δ1, δ2, . . . , δM are arbitrary integers.

2) The channel is asynchronous if it is neither frame nor slot
synchronized. In this model, all users do not know the
slot boundaries of the channel. It implies the time offsets
δ1, δ2, . . . , δM are arbitrary real numbers.

Thus, if all users start their packet transmissions at an
integral time index, collisions will result only when received
packets completely overlap. In the asynchronous case, how-
ever, the users have no way to avoid collisions that result from
partial overlapping of packets. We further assume one packet
in the asynchronous channel is received correctly without
suffering any collision and is unrecoverable when collided.
In other words, a packet is assumed to be successful if and
only if it is not completely or partially overlapped by any other
packet. For the asynchronous channel, some studies were made
in [5] by using RS coding for recovery from tail-end collisions.
However, this more general scenario is not considered in this
paper.

For some sensor network applications, the required min-
imum number of successful packets by each user within
one period may be low, however, it is important to ensure
that all users can successfully transmit information at least
once in a period L time slots. We call such a property user
irrepressibility [6]. Considering user irrepressibility in the slot-
synchronized channel, we say that a protocol sequence set
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Fig. 1. (a) Packets from user 1, (b) packets from user 2, (c) packets from
user 3.

is user-irrepressible (UI) if each user can send out at least
one packet successfully in each L slots, no matter what the
integer-delay offsets are. It guarantees that each user can
transmit a message within L time slots delay in the worst
case in the slot-synchronized channel. UI sequence sets have
been studied extensively in [6]–[10] and is also addressed in
another context, under the name of conflict-avoiding codes
(CAC) (see e.g [11]–[14] and the references therein) with
different perspective. However, one can check all known UI
sequence sets cannot guarantee the user irrepressibility for
the asynchronous channel if some delay shifts are non-integer
numbers, from the following example.

Example 1: s1, s2 and s3 form a UI sequence set:

s1 = [1 1 1 0 0 0 0 0 0 0 0 0]

s2 = [1 0 0 1 0 0 1 0 0 0 0 0]

s3 = [1 0 0 0 1 0 0 0 1 0 0 0].

In the asynchronous channel, for δ1 = 0, δ2 = 0.5 and δ3 =
2, as illustrated in Fig. 1, we can find all packets from user
1 are lost due to two partial overlapping collisions and one
completely overlapping collision.

In this paper, we consider the user irrepressibility in the
asynchronous channel. More strictly, a protocol sequence set
with period L is said to be completely irrepressible (CI) if user
i can send out at least one packet successfully in each time
interval [δi + k, δi + k + L) with any non-negative integer k
for any δ1, δ2, . . . , δM and any i ∈ {1, 2, . . . ,M}. Obviously,
given M , the collection of all CI sequence sets is a subset of
the collection of all UI sequence sets. It is because that the
collection of all possible time offsets in the slot-synchronized
channel is just a subset of that in the asynchronous channel.
In other words, a CI sequence set must be UI.

B. Notations
If x is a real number, the notation bxc represents the largest

integer less than or equal to x. The smallest integer larger
than or equal to x is denoted by dxe. We use | · | to denote
the cardinality of a set.

Given a binary sequence s :=
[
s[0] s[1] . . . s[L− 1]

]
, we

define its Hamming weight as

w(s) :=

L−1∑
n=0

s[n].

We say the one at position n of s is unblocked in a given
sequence set if the n-th bit of other sequences are all equal

to zero. Otherwise, it is blocked. If all ones in s are blocked,
we say sequence s is blocked. Otherwise, s is unblocked.

Given that the delay offset of s is an integer τ . The cyclic
shift of s by τ is denoted by

s[τ ] :=
[
s[0− τ ] s[1− τ ] . . . s[L− 1− τ ]

]
.

The substraction n − τ is performed modulo L for n =
0, 1, . . . , L− 1.

Define fs(t) as a protocol signal generated by s with

fs(t) := s
[
btc
]

for all t ∈ [0, L).
Given two sequences s1 and s2, define the asynchronous

Hamming crosscorrelation of fs1 and fs2 by

hfs1fs2 (δ) :=

∫ L

0

fs1(t)fs2(t− δ) dt.

The substraction t− δ is performed modulo L. When δ is an
integral number τ , it reduces to the usual notion of Hamming
crosscorrelation and can be written by

Hs1s2 [τ ] :=

L−1∑
n=0

s1[n]s2[n− τ ].

A sequence can also be represented in a compact way
by specifying the characteristic set of a sequence, which is
defined as the set of all time indices in a period where the
value of the protocol sequence is equal to 1. For a sequence
s, its characteristic set can be written as

Is := {a1, a2, . . . , aw(s)}.
Cyclic shift of a sequence by integer τ is equivalent to
adding τ modulo L to the corresponding characteristic set.
For Example 1, the characteristic sets of s3 and s3

[2] are
respectively Is3 = {0, 4, 8} and I

s
[2]
3

= {2, 6, 10}.
Let ZL be the additive group of residues modulo L. For a

subset S of ZL, we let d(S) := {ai − aj : ai, aj ∈ S}, and
call it the set of differences in S. Since zero is always in d(S)
for any subset S, we will consider d∗(S) := d(S) \ {0}, the
differences between pairs of distinct elements in S.

A sequence s is called equi-difference if the elements in Is
form an arithmetic progression in ZL, i.e.,

Is = {0, g, 2g, . . . ,
(
w(s)− 1

)
g}

for some g ∈ ZL. In the above equation, the product jg is
reduced mod L, for j = 1, 2, . . . , w(s) − 1. The element g
or L − g is called a generator or common difference of this
sequence. For an equi-difference sequence generated by g or
L− g, the set of differences is equal to

d(Is) = {0,±g,±2g, . . . ,±
(
w(s)− 1

)
g}.

If each sequence in a sequence set is equi-difference, this se-
quence set is said to be an equi-difference sequence set. Given
two equi-difference sequences s1 and s2 with w(s1)g1 6= 0
mod L and w(s2)g2 6= 0 mod L, we say they are distinct if
we have

g1 6= g2 or L− g2.

Example 1 continued: We have d∗(Is1) = {1, 2, 10, 11},
d∗(Is2) = {3, 6, 9} and d∗(Is3) = {4, 8}. Thus, the sequence
set is equi-difference and has three distinct sequences.
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C. Preliminaries

We have the following property for asynchronous Hamming
crosscorrelation considering all δ ∈ [0, L).

Proposition 1. Given two binary sequences s1 and s2, both
with period L, we have∫ L

0

hfs1fs2 (δ) dδ = w(s1)w(s2).

Proof:∫ L

0

hfs1fs2 (δ) dδ =

∫ L

0

∫ L

0

fs1(t)fs2(t− δ) dtdδ

=

∫ L

0

fs1(t)

∫ L

0

fs2(t− δ) dtdδ

=

∫ L

0

fs1(t)

∫ L

0

fs2(δ) dtdδ

=

∫ L

0

fs1(t)w(s2) dt = w(s1)w(s2).

When just considering all integer δ at [0, L), the result in
Proposition 1 reduces to the below elementary property of
Hamming crosscorrelation due to [15].

Proposition 2 ( [15]). Given two binary sequences s1 and s2,
both with period L, we have

L−1∑
τ=0

Hs1s2 [τ ] = w(s1)w(s2).

The following proposition provides a lower bound of Ham-
ming weight of each sequence in any CI sequence set.

Proposition 3. If a sequence set {s1, s2, . . . , sM} is CI, then
we have w(si) ≥M for i = 1, 2, . . . ,M .

Proof: We will prove the claim by contradiction. Suppose
w(si) < M for some i. Then we can arrange the delay offsets
of other M − 1 sequences, so that the i-th one of user i in
a period is blocked by a one from sj , for j = 1, . . . , j 6=
i, . . . ,M . Then the sequence si is blocked and the number of
successful packets from si will drop to zero, which contradicts
the definition of CI sequence set. Thus, we obtain w(si) ≥M
for i = 1, 2, . . . ,M .

Then from the construction presented in section IV, for any
M , we can see there exists a CI sequence set of M sequences,
each with Hamming weight M . Thus we find the lower bound
in Proposition 3 can be achieved for any M . In order to
enhance battery life of sensor network, we want to design
CI protocol sequence set with the number of packets sent in
each period as small as possible. Thus we say a CI sequence
set of M sequences is the most energy-efficient CI (ECI) if the
Hamming weight of each sequence is M . We use ECIS(L,M)
to denote a ECI sequence set of M sequences with period
L. Specially we denote an equi-difference ECIS(L,M) by
ECISe(L,M).

D. Main Results

In order to minimize the transmission delay or latency in
the worst case, the objective in this paper is to construct
ECI protocol sequence set with period as small as possible.
Furthermore, to investigate the shortest latency that we can
achieve, we are interesting in Lmin(M), the smallest period
L such that a ECIS(L,M) exists.

Equi-difference sequence set is an important class of proto-
col sequence sets with user irrepressibility. Some bounds and
constructions of equi-difference UI sequence set have been
investigated in [13] and [14]. Thus we also focus on Lemin(M),
the smallest period L such that a ECISe(L,M) exists.

This paper is organized as follows. After proving several
important properties of CI sequence set in Section II, we
establish a lower bound on Lmin(M) and an asymptotic
lower bound on Lemin(M) in Section III. Then a construction
that meets the asymptotic bound on Lemin(M) is presented
in Section IV. Section V gives a comparison with random
accessing scheme in terms of blocking probability and period.
Finally, we close in Section VI with some concluding remarks.

II. PROPERTIES OF COMPLETELY IRREPRESSIBLE
SEQUENCE SET

In our channel model, if user i starts its packet transmission
at time index k0 + δi for some non-negative integer k0, this
packet is successfully received if and only if no any other user
would start or end its transmission at interval [k0 + δi, k0 +
δi + 1). For studying the individual successful transmission
amount in the asynchronous channel to see whether a protocol
sequence set is CI or not, we present the following result by
generalizing the observation in [2]. δmax is used to denote the
maximum value of δi for i = 1, 2, . . . ,M . Given a sequence
s, we construct s′ as:

s′[n] :=

{
1 if s[n− 1] = 1 and n ≥ 1;

s[n] otherwise.

Given s1, s2, . . . , sM and δ1, δ2, . . . , δM , the sequence set
Ti = {si 1, si 2, . . . , si M} for i = 1, 2, . . . ,M , is constructed
as the following rule:

(i) For any j ∈ {1, 2, . . . ,M} such that bδj − δic 6= δj − δi,
we set si j = s

′[bδj−δic]
j ;

(ii) Otherwise, we set si j = s
[bδj−δic]
j .

Proposition 4.
(i) In each interval [δi +k, δi +k+L) for any non-negative

integer k such that δi + k ≥ δmax, the resulting number
of successful packets from user i is exactly equal to the
number of unblocked ones of si i in Ti.

(ii) In each interval [δi +k, δi +k+L) for any non-negative
integer k such that δi + k < δmax, the resulting number
of successful packets from user i is larger than or equal
to the number of unblocked ones of si i in Ti.

Proof of Proposition 4 is presented in Appendix A. It
is different from the argument in [2]. Furthermore, the fol-
lowing equivalent condition for user irrepressibility in the
asynchronous channel just directly follows Proposition 4.
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Theorem 5. A sequence set {s1, s2, . . . , sM} is CI iff si i
is unblocked in Ti for any δ1, δ2, . . . , δM and any i ∈
{1, 2, . . . ,M}.

As an example, consider the protocol sequence set in
Example 1 with the time offset (δ1 = 0.5, δ2 = 1, δ3 = 2.5) in
the asynchronous channel. To obtain the number of successful
slots from user 1, we find T1 as

s1 1 = [1 1 1 0 0 0 0 0 0 0 0 0]

s1 2 = [1 1 0 1 1 0 1 1 0 0 0 0]

s1 3 = [0 0 1 0 0 0 1 0 0 0 1 0].

Obviously, we can check all ones of s1 1 are blocked in T1.
Thus we know this sequence set is not CI.

Following Proposition 4, we know that Ti is determined by
i and δj for j = 1, 2, . . . ,M . Thus for every distinct user, we
have Ti may be different from Tj if i 6= j. For example, T3

can be found as

s3 1 = [1 0 0 0 0 0 0 0 0 0 1 1]

s3 2 = [0 1 1 0 1 1 0 0 0 0 1 1]

s3 3 = [1 0 0 0 1 0 0 0 1 0 0 0].

Then we have the following equivalent condition for the
most energy-efficient user irrepressibility in the asynchronous
channel.

Theorem 6. A sequence set {s1, s2, . . . , sM} with w(si) = M
for i = 1, 2, . . . ,M is ECI iff we have Hsis′j

[τ ] ≤ 1 for any
integer τ and any pair of distinct i and j.

Proof: We prove the “only if” part by contradiction.
Suppose Hsis′j

[τ0] > 1 for some integer τ0 and some j with
j 6= i. Then by letting τ0 < δj−δi < τ0 +1, we have si i = si
and si j = s

′[τ0]
j in Ti. Thus we have at least two ones of

si i are blocked by si j . Then from w(si i) = w(si) = M ,
we know there are at most M − 2 remaining ones in si i.
We can choose some delay offsets of other M − 2 sequences
such that the remaining M − 2 ones are totally blocked in Ti.
Thus we find si i is blocked in Ti. Following Theorem 5, we
further have {s1, s2, . . . , sM} is not CI, which contradicts the
condition.

For the “if” part, we first have the following simple fact
from the construction of s′j :

Hsisj

[
bδj − δic

]
≤ Hsis′j

[
bδj − δic

]
.

Then with the condition we find the number of unblocked
ones of si i in Ti for any i and any {δ1, δ2, . . . , δM} is lower
bounded by one due to

M∑
j=1,j 6=i

Hsi isi j
[0] ≤

M∑
j=1,j 6=i

Hsis′j

[
bδj − δic

]
≤M − 1.

Thus we can conclude si i is unblocked in Ti for any i and
any {δ1, δ2, . . . , δM}. It implies {s1, s2, . . . , sM} is thus CI
following Theorem 5. It is also ECI as each sequence has
Hamming wight M .

In the view of the difference sets, we have the following
version of Theorem 6.

Theorem 7. Let Isj , j = 1, 2, . . . ,M , be the characteristic
sets of M sequences of period L, such that Isj contains exactly
M elements in ZL for all j. Let αj be any element in d∗(Isj )
for j = 1, 2, . . . ,M . The corresponding sequence set is ECI
iff

(i) 1, L− 1 6∈ d∗(Isj ) for j = 1, 2, . . . ,M ;
(ii) αi−αj 6= 0 i.e., d∗(Isi) and d∗(Isj ) are disjoint for all

pairs of distinct i and j;
(iii) αi − αj 6= ±1 for all pairs of distinct i and j.

Proof: Let us prove the “only if” part first.
(i) Suppose 1, L − 1 ∈ d∗(Isi). We also have 1 ∈ d∗(Is′j )

following the construction of s′j . Then we can find some
integer τ0 such that Hsis′j

[τ0] = 2 as there is a common
element 1 between d∗(Isi) and d∗(Is′j ). From Theo-
rem 6, we know the sequence set is not CI contradicting
the condition. We thus have 1, L − 1 6∈ d∗(Isj ) for
j = 1, 2, . . . ,M .

(ii) Suppose αi = αj for some distinct i and j. Then we have
Hsisj [τ0] = 2 for some integer τ0. It implies Hsis′j

[τ0] ≥
2 which contradicts Theorem 6. Thus we have d∗(Isi)
and d∗(Isj ) are disjoint for all pairs of distinct i and j.

(iii) If αj ∈ d∗(Isj ), we can find αj ± 1 ∈ d∗(Is′j ) from
the construction of s′j . Suppose αi − αj = 1. Then we
can find some integer-delay τ0 such that Hsis′j

[τ0] = 2 as
there is a common element (αj+1) between d∗(Isi) and
d∗(Is′j ). Thus from Theorem 6 we know the sequence set
is not CI contradicting the condition. By the same argu-
ment, αi − αj = −1 would also make the contradiction.
Therefore, αi − αj 6= ±1 is a necessary condition here.

Next we will prove the “if” part.
With the conditions and the construction of s′j , we must

have Hsis′j
[τ ] ≤ 1 for any integer τ and any pair of distinct i

and j. Following Theorem 6, it suffices to show that the entire
sequence set is ECI.

Remark: For the slot-synchronous channel, i.e., δi is an
integer for all i, we have s′j = sj for j = 1, 2, . . . ,M . Thus the
equivalent condition in Theorem 6 is reduced to Hsisj [τ ] ≤ 1
for any integer τ and any pair of distinct i and j. Furthermore,
we have (ii) of Theorem 7 is an equivalent condition here.

III. LOWER BOUNDS ON Lmin(M) AND Lemin(M)

A. A Lower Bound on Lmin(M)

The following lower bound on Lmin(M) hinges on elemen-
tary property of Hamming crosscorrelation in Proposition 2.

Theorem 8. For M ≥ 2, we have

Lmin(M) ≥ 2M2. (1)

Proof: For distinct i and j, the Hamming weight of si
and sj are both known as M . With (i) of Theorem 7 we know
there is no adjacent ones in sj . Then by the construction of s′j ,
we find the Hamming weight of s′j is equal to 2M . Thus from
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Proposition 2, we know Hsis′j
[τ ] averaged over all integer τ ,

is equal to 2M2/L. Then if 2M2/L > 1, we can find some
τ0 such that Hsis′j

[τ0] ≥ 2, which contradicts Theorem 6.
Therefore, we can conclude that 2M2/L ≤ 1 or equivalently
L ≥ 2M2.

Example 2: s1 and s2 form a ECIS(8, 2):

s1 = [1 0 0 0 1 0 0 0]

s2 = [1 0 1 0 0 0 0 0].

It is easy to see that the bit structure is in accordance with
Theorem 7 from the following:

d∗(Is1) = {4}, d∗(Is2) = {2, 6}.

From Theorem 8, we know the above is the shortest ECI
sequence set for M = 2.

Remark: To compare different models of synchronization ,
the shortest UI sequence set for M = 2 is given below.

s1 = [1 0 1 0]

s2 = [1 1 0 0].

For the slot-synchronized channel, one can check the differ-
ence sets below are just in accordance with (ii) of Theorem 7.

d∗(Is1) = {2}, d∗(Is2) = {1, 3}.

B. An Asymptotic Lower Bound on Lemin(M)

The following result is essential in this subsection to derive
an asymptotic lower bound on Lemin(M).

Given a positive integer x ≥ 2, let π(x) denote the number
of distinct prime numbers between 2 and x,

π(x) := |{i : 2 ≤ i ≤ x, i is prime}|.

Note that π(x) also counts the maximum number of relatively
prime integers between 2 and x.

Given a ECISe(L,M), let ΓM be the collection of se-
quences in the ECISe(L,M) such that if s ∈ ΓM , then the
difference of any pair distinct elements in d∗(Is) is at least
two.

Theorem 9. For any ECISe(L,M), we have

|ΓM | ≥M − π(2M − 2). (2)

Proof: Let gj be the common difference of equi-
difference sj for j = 1, 2, . . . ,M . The characteristic set Isj
can be written as

{0, gj , . . . , (M − 1)gj} mod L.

Then for j = 1, 2, . . . ,M , we have

d∗(Isj ) = {gj ,−gj , . . . , (M − 1)gj ,−(M − 1)gj} mod L.

Suppose s1 6∈ ΓM . Let mi be some integral number ranged
from 0 to M − 1 for i = 1, 2, . . . , 6. From the definition of
ΓM , we have the following three possible cases:
case 1: m1g1 − (−m2g1) = 1 mod L;
case 2: (−m4g1)−m3g1 = 1 mod L;

case 3: m5g1 −m6g1 = 1 mod L.
It is easy to see that case 3 implies there exists two

consecutive ones in s1. It contradicts (i) of Theorem 7. Thus
we can rule out the case 3 and just need to consider the first
two cases. The case that m1 + m2 < M or m3 + m4 < M
can also be ruled out due to it also implies that there exists a
consecutive two ones’ run in s1 contradicting (i) of Theorem 7.
By letting n1 = (m1 +m2) and n2 = (m3 +m4), both ranged
from M to 2M−2, we can further simplify the two cases into

n1g1 = 1 mod L; (3)

n2g1 = −1 mod L. (4)

Also, we can find n1 is relatively prime to L. Otherwise over
ZL, the result of n1g1 should be located in [2, L− 2], which
contradicts (3). The same result can also be found for n2 and
L.

Now we consider another sequence, s2 6∈ ΓM . Let r1 and
r2 be some integer ranged from M to 2M − 2 respectively.
For the same reason, there are following two possible cases:

r1g2 = 1 mod L; (5)

r2g2 = −1 mod L. (6)

By the same argument, we find that r1, r2 are relatively prime
to L respectively.

Consider (3) and (5) first. Combining them we have

n1g1 − r1g2 = 0 mod L.

Let v1 be the largest common factor of n1 and r1. Now we
will prove v1 = 1 by contradiction. v1 is relatively prime
to L from the fact that n1 and r1 are relatively prime to L
respectively. Given v1, we thus have

(n1/v1)g1 = (r1/v1)g2 mod L

If v1 > 1, we can find (n1/v1) and (r1/v1) are both smaller
than M from n1, r1 ≤ 2M − 2. It further implies that there
is a common element between d∗(Is1) and d∗(Is2), which
contradicts (ii) of Theorem 7. Therefore we find that v1 = 1,
i.e., n1 and r1 are relatively prime.

Then consider (3) and (6). Combining them we have

n1g1 + r2g2 = 0 mod L.

We also can find n1 and r2 are relatively prime. Let v2 be
the largest common factor of n1 and r2. Given v2 which is
relatively prime to L, we thus have

(n1/v2)g1 = L− (r2/v2)g2 mod L

By the similar argument, we find that v2 = 1.
For (4) and (5), similarly we also can get that n2 and r1

are relatively prime. The result is also true for n2 and r2

considering (4) and (6). Therefore, by the above argument we
can conclude that the four pairs (n1, r1), (n1, r2), (n2, r1),
(n2, r2) are all relatively prime respectively. In other words,
if there are two sequences not in ΓM , at least one case of
the above would occur, then there are at least two proper
integral numbers, ranged from M to 2M − 2, such that they
are relatively prime.



6

The above claim can be easily generalized to that there are
M − |ΓM | sequences not in ΓM . Then there are M − |ΓM |
proper integral numbers, ranged from M to 2M − 2, namely
β1, β2, . . . , βM−|ΓM |, such that they are mutually relatively
prime. The number of these integers is less than or equal to
the maximal number of relatively prime integers between 2
and 2M − 2, namely π(2M − 2). We thus have M − |ΓM |
less than or equal to π(2M − 2).

We state a version of Kneser’s theorem, which is tailored to
what we need here. It will be useful to derive the asymptotic
lower bound on Lemin(M). A proof of Kneser’s theorem can
be found in [16].

Theorem 10 (Kneser [17]). If a subset I in ZL satisfies

|d∗(I)| < 2|I| − 2,

then there exists a proper divisor α of L such that

d∗(I) ⊇ {kα : k = 1, 2, . . . , (L/α)− 1},

i.e., d∗(I) contains all multiples of α.

Furthermore, in view of Kneser’s theorem, we classify M
sequences in any ECISe(L,M) into two types. We say that
a sequence is in class 1 if the associated set of differences
contains the multiples of a proper divisor of L, otherwise, we
say that it is in class 2. Denote the set of sequences in class
2 as ΥM . As proved in [9], we have the following asymptotic
result:

lim inf
M→∞

|ΥM |
M

= 1. (7)

Theorem 11.
lim inf
M→∞

Lemin(M)

4M2
≥ 1. (8)

Proof: By the prime number theorem, we know π(x) is
close to x/ lnx for large M . Thus following (2) we have

lim inf
M→∞

|ΓM |
M
≥ M − (2M − 2)/ ln(2M − 2)

M

which implies

lim inf
M→∞

|ΓM |
M

= 1, (9)

by the condition |ΓM | ≤M .
Given a ECISe(L,M), let ΩM be ΓM ∩ΥM . With Theo-

rem 10 and ΩM ⊆ ΥM , we see the total number of distinct
elements in all d∗(Isj ) for sj ∈ ΩM is at least

|ΩM |(2M − 2).

Following Theorem 7, the definition of ΓM and ΩM ⊆ ΓM ,
we know the difference of any pair elements in all d∗(Isj ),
sj ∈ ΩM , is at least two. Thus, the nonzeros in ZL should
contain at least |ΩM |(2M−2) distinct elements whose mutual
difference is at least two. Also we have 1 and L − 1 are not
contained in these elements from (i) of Theorem 7. Then we
have

L− 1 ≥ 1 + 2|ΩM |(2M − 2). (10)

We define ε1 and ε2 as the following respectively:

ε1 := {1, 2, . . . ,M} \ ΓM ;

ε2 := {1, 2, . . . ,M} \ΥM .

Combining them, we have

{1, 2, . . . ,M} = (ΓM ∪ ε1) ∩ (ΥM ∪ ε2)

⊆ (ΓM ∪ ε1 ∪ ε2) ∩ (ΥM ∪ ε2 ∪ ε1)

= (ΓM ∩ΥM ) ∪ (ε2 ∪ ε1)

= ΩM ∪ (ε2 ∪ ε1)

which implies

M = |{1, 2, . . . ,M}| ≤ |ΩM ∪ (ε2 ∪ ε1)|
≤ |ΩM |+ |ε2|+ |ε1|.

Then following (7), (9) and the above, we have

lim inf
M→∞

|ΩM |
M

≥ lim inf
M→∞

1− |ε1|
M
− |ε2|

M
= 1

By the condition that |ΩM | ≤M , we further obtain

lim inf
M→∞

|ΩM |
M

= 1. (11)

Hence the following result can be found from (10) and (11):

lim inf
M→∞

Lemin(M)

4M2
≥ lim inf

M→∞

2 + 2|ΩM |(2M − 2)

4M2

= lim inf
M→∞

2 + 2M(2M − 2)

4M2
= 1.

In other words, Lemin(M) is lower bounded by approximately
4M2 when M is large.

IV. AN ASYMPTOTICALLY OPTIMAL CONSTRUCTION

First, we present the following general construction of CI
sequence set based on UI sequence set. We use EUIS(L,M)
to denote a UI sequence set of M sequences with period L and
Hamming weight M . Specially we denote an equi-difference
EUIS(L,M) by EUISe(L,M).

Theorem 12. Given a EUIS(L,M), then we can construct a
ECIS(2L,M) by doubling all elements in the characteristic
set of each sequence.

Proof: In the slot-synchronized channel, following the
construction of s′j , Theorem 6 can be found reduced to
Hsisj [τ ] ≤ 1 for any integer τ and any pair of distinct i
and j, for any EUIS(L,M). Thus we find (ii) of Theorem 7
holds. By doubling all elements in the characteristic set of each
sequence and period, we further find (i) and (iii) of Theorem 7
hold since the difference of any two distinct even numbers is
even. Therefore, from Theorem 7 we can conclude this new
sequence set is a ECIS(2L,M).

Remark: The variation is found as a special case of [2]
which is targeted for achieving the capacity of the asyn-
chronous collision channel without feedback.

Theorem 11 asserts that Lemin(M) is lower bounded by
4M2 approximately when M is large. In order to design a
ECISe(L,M) with period achieving 4M2 asymptotically, the
following construction for UI sequence set is introduced.
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M L subsets in ZL

2 8 {0,2},{0,4}
3 24 {0,2,4},{0,6,12},{0,8,16}
4 52 {0,2,4,6},{0,8,16,24},{0,10,20,30},{0,12,26,38}
5 84 {0,2,4,6,8},{0,10,20,30,40},{0,12,24,36,48}, {0,14,28,42,56}, {0,16,32,50,66}

TABLE I
THE SHORTEST KNOWN PERIODS OF ECI SEQUENCE SET WITH M SEQUENCES FOR M = 2, 3, 4, 5.

CRT Construction: The construction is based on Chinese
remainder theorem. The mapping f : Zpq → Zp ⊕ Zq defined
by f(a) := (a mod p, a mod q) is a bijection from Zpq to
Zp⊕Zq when p and q are relatively prime [18], and preserves
addition and multiplication by integers. Given M , we set q to
be 2M − 1, and p any prime larger than or equal to M and
relatively prime to 2M−1. Let u be any integer ranged from 1
to M−1, relatively prime to 2M−1. For j = 0, 1, . . . ,M−1,
we let

I ′sj := {(jy, yu) ∈ Zp ⊕ Z2M−1 : y = 0, 1, . . . ,M − 1}

and obtain the characteristic sets of the sequences, Isj , by
taking the inverse image f−1(I ′sj ) for j = 0, . . . ,M − 1.

Remark: When u = 1, the CRT construction is the same as
the original construction in [9].

Let h be the number of integers ranged from 1 to M − 1
and relatively prime to 2M − 1.

Theorem 13. For all M , the sequences by CRT construction
form h distinct EUISe(p(2M − 1),M)s consisting of hM
distinct sequences.

Proof of Theorem 13 is a generalization of that in [9] and
can be found in Appendix B.

We modify the CRT construction via the method stated in
Theorem 12. We call it mCRT construction.

Theorem 14. For all M , the sequences by mCRT construction
form h distinct ECISe(2p(2M − 1),M)s consisting of hM
distinct sequences.

Proof: It directly follows Theorem 12 and 13.
Example 4: By mCRT construction for p = M = 3, we

can design the following two distinct ECISe(30, 3)s including
six distinct sequences.

The first ECISe(30, 3) with g1 = 6, g2 = 4 and g3 = 14:

s1 = [100000100000100000000000000000]

s2 = [100010001000000000000000000000]

s3 = [100000000000001000000000000010].

The second ECISe(30, 3) with g1 = 12, g2 = 2 and g3 = 8:

s1 = [100000000000100000000000100000]

s2 = [101010000000000000000000000000]

s3 = [100000001000000010000000000000].

By mCRT construction, we will show the asymptotic lower
bound in Theorem 11 can be achieved.

Theorem 15.
lim inf
M→∞

Lemin(M)

4M2
= 1. (12)

Proof: Let pM be the smallest prime larger than or equal
to M . By Bertrand’s postulate, we know if M ≥ 2, then
there always exists at least one prime number not smaller than
M and smaller than 2M − 1. It implies pM < 2M − 1 for
M ≥ 2. Then as pM is a prime, we find the smallest two
integers not relatively prime to pM , are pM and 2pM . Because
pM < 2M−1 < 2M ≤ 2pM , we further find pM and 2M−1
are always relatively prime for M ≥ 2. Thus we can obtain a
ECISe(2pM (2M − 1),M) from mCRT construction with pM
for M ≥ 2.

Also we have the following fact:

lim inf
M→∞

pM/M = 1,

since there are infinitely many primes and pM = M if M is
a prime. Therefore we have

lim inf
M→∞

2pM (2M − 1)

4M2
= 1.

This shows that the asymptotic lower bound in Theorem 11 is
tight and proves Theorem 15.

Remark: For M = 2, 3, 4, 5, the shortest known period of
ECI sequence set with M sequences is listed in Table I. We
note the sequence set for M = 2, 3 is equi-difference, but not
for M = 4, 5. However, these sequence sets are all constructed
from UI sequence set following Theorem 12. For example,
when M = 4, it is constructed from

{0, 1, 2, 3}, {0, 4, 8, 12}, {0, 5, 10, 15}, {0, 6, 13, 19}

in Z26.

V. DISCUSSION ON BLOCKING PROBABILITY

In the unslotted random access scheme, we can compute
the probability of at least one of the users cannot send any
packet successfully in a period of L time slots. We call this
the blocking probability. The blocking probability is nonzero
and user irrepressibility in the asynchronous channel does not
hold for unslotted random access scheme.

The power consumption is measured by the fraction of ones
of a protocol sequence in each period, also known as the
duty factor, pd. In order to make a fair comparison with ECI
protocol sequence set, in the random access scheme, we pick
the probability of sending a packet such that the duty factor
is the same as in the sequence including in ECI sequence
set. The blocking probability of the unslotted random access
scheme with pd in a given period can be easily found by

1−
(
1− (1− pd(1− 2pd)

M−1)L
)M

.
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Fig. 2. The blocking probability for 5 users in a unslotted random access
scheme with duty factor fixed at 1/18. When the period is the same as that
in mCRT sequence set, i.e., 90, the blocking probability is about 0.2.

The period of the mCRT sequence set for 5 users is 90 and
the duty factor is 1/18. We plot the blocking probability of
unslotted random access for 5 users in Fig. 2, with duty factor
fixed at 1/18. We see that in a block length of 90 time slots,
the blocking probability is about 0.2, meanwhile, the blocking
probability for ECI sequence set is zero. If we want blocking
probability less than, say 10−4, in a period of L time slots,
we must have L larger than 306 time slots.

VI. CONCLUSION

We consider the property of user irrepressibility for the
asynchronous channel in the design of protocol sequences.
CI protocol sequence set provides strict guarantee of zero
blocking probability within one period for each user in
the asynchronous channel. The minimum period for equi-
difference ECI sequence set with M sequences is shown to be
asymptotically 4M2. A construction that meets this asymptotic
bound is given.

The minimum period of ECI sequence set which is not equi-
difference may be between 2M2 and 4M2 asymptotically for
M users. However, we do not think such construction can be
found. Thus we have the following:

Conjecture 1. Given M, then we have

lim inf
M→∞

Lmin(M)

4M2
= 1.

Furthermore, for all M ≥ 2, we have the following
improvements over the asymptotic bounds in Conjecture 1.

Conjecture 2. Let ΦM be the shortest period among all sets
of M UI sequences, each with Hamming weight M . Then for
M ≥ 2 we have

Lmin(M) = 2ΦM .

The result has been verified by computer on the range of 2 ≤
M ≤ 5. The mathematical proof of the above two conjectures
is an interesting and challenging direction for further studies.

APPENDIX A
PROOF OF PROPOSITION 4

Given two binary value a and b, their logical OR is defined
as

(a ∨ b) :=

{
1 if a = 1 or b = 1,

0 otherwise.

Let k0 be any non-negative integral number such that k0+δi ≥
δmax. We know all users started their transmission schemes at
the time index k0 + δi or earlier. Suppose fsi(t− δi) = 1 for
any t ∈ [k0 + δi, k0 + δi+ 1). Then we know there is a packet
from user i located in [k0 + δi, k0 + δi + 1). Furthermore we
know this packet is successful iff no other users start or end
their packet transmission in [k0+δi, k0+1+δi) or equivalently
we have

M∨
j=1,j 6=i

fsj (t− δj) = 0 (13)

for any t ∈ [k0 + δi, k0 + δi + 1).
Let ξ1 be the collection of all j ∈ {1, 2, . . . ,M} \ {i} such

that bδj − δic 6= δj − δi. Let ξ2 be {1, 2, . . . ,M} \ {i, ξ1}.
Then from (13) we have the following formula to find this
packet is not successful if it is equal to one.

⌈ ∫ (k0+1+δi)
−

k0+δi

M∨
j=1,j 6=i

fsj (t− δj) dt
⌉

=
{ ∨
j∈ξ1

fsj (k0 + δi − δj) ∨ fsj (k0 + 1 + δi − δj)
}

∨
{ ∨
j∈ξ2

fsj (k0 + δi − δj)
}

=
{ ∨
j∈ξ1

fsj (bk0 + δi − δjc) ∨ fsj (bk0 + 1 + δi − δjc)
}

∨
{ ∨
j∈ξ2

fsj (bk0 + δi − δjc)
}

=
{ ∨
j∈ξ1

sj
[
k0 − 1− bδj − δic

]
∨ sj

[
k0 − bδj − δic

]}
∨
{ ∨
j∈ξ2

sj
[
k0 − bδj − δic

]}
=
{ ∨
j∈ξ1

sj′
[
k0 − bδj − δic

]}
∨
{ ∨
j∈ξ2

sj
[
k0 − bδj − δic

]}

=

M∨
j=1,j 6=i

si j [k0].

The last two equalities follow respectively from the construc-
tions of s′j and si j . Furthermore, the total number of unsuc-
cessful packets from user i at time interval [δi+k, δi+k+L)
for any non-negative integral number k such that k+δi ≥ δmax
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can be found as:
k+L−1∑
k0=k

⌈ ∫ (k0+1+δi)
−

k0+δi

fsi(t− δi)
M∨

j=1,j 6=i

fsj (t− δj) dt
⌉

=

k+L−1∑
k0=k

si[k0]

M∨
j=1,j 6=i

si j [k0]

=

L−1∑
k0=0

si i[k0]

M∨
j=1,j 6=i

si j [k0],

which implies the number of blocked ones of si i in Ti. Thus
the claim (i) of Proposition 4 is proved.

For any non-negative integer k such that k+δi < δmax, we
know there exists at least one user with its time offset smaller
than k + δi so that it would start their transmission schemes
later than the time index k+δi. Thus, the number of successful
packets from user i in time interval [δi+k, δi+k+L) would
be equal to or larger than the number in claim (i). It proves
the result of (ii).

APPENDIX B
PROOF OF THEOREM 13

First we know that all sequences formed by CRT construc-
tion are equi-difference. For sj,u, its common difference can
be found as (j, u) or (p− j, 2M − 1− u).

Then we will show sj,u for j = 0, 1, . . . ,M − 1 form a
EUISe(p(2M −1),M). Suppose for the sake of contradiction
that, we can find two distinct i and j in {0, 1, . . . ,M − 1}
such that d∗(I ′si,u) and d∗(I ′sj,u) share a common element.
Then

(iy′1, y
′
1u)− (iy1, y1u) = (jy′2, y

′
2u)− (jy2, y2u)

for some y′1 6= y1 and y′2 6= y2. By equating the second
components on both sides, we see that u(y′1 − y1) = u(y′2 −
y2) mod 2M − 1. Since the range of y1, y′1, y2 and y′2 is
between 0 and M − 1, we must have y′1 − y1 = y′2 − y2

due to u is prime to 2M − 1. From the first component,
we obtain (i − j)(y′1 − y1) ≡ 0 mod p, which implies that
y′1 = y1. This contradicts the assumption that y′1 6= y1. It
implies the condition in (ii) of Theorem 7 holds for Isj,u here
for j = 0, . . . ,M−1. Therefore, following Theorem 7 we can
conclude that the sequences formed by the CRT construction
with the same value of u form a EUISe(p(2M − 1),M).

Now we know there are total h sequence set formed by
CRT construction with different value of u. Then we will
show that all hM sequences here are distinct. For sequences
constructed by the same value of u, we can easily find that
these M sequences are distinct, otherwise any two non-distinct
sequences would be totaly blocked each other for some relative
integer-shift which contradicts the definition of UI sequence
set.

Since u is relative prime to 2M − 1, we have

g 6= 0 mod 2M − 1

with g = f−1(j, u). Thus we find Mg 6= 0 mod L with
L = p(2M−1). Let u1 and u2 be two distinct integers ranged
from 1 to M − 1 and relatively prime to 2M − 1 respectively.

Consider two sequence formed by CRT construction letting
u = u1 and u = u2 respectively. Suppose for the sake of
contradiction that, for some j and j′ we can find that

(j, u1) = (j′, u2) or (p− j′, 2M − 1− u2).

By equating the second components on both sides, we see that

u1 = u2 or 2M − 1− u2 mod 2M − 1.

Since that the range of u1 and u2 is between 1 and M − 1,
we must have u1 = u2. This contradicts the assumption that
u1 6= u2. Thus any two sequences constructed by different
value of u can be found distinct.

Finally, we can conclude the CRT construction form h
distinct EUISe(p(2M − 1),M)s including hM distinct se-
quences.
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