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Abstract—Protocol sequences are used in channel access for
the multiple-access collision channel without feedback. A new
construction of protocol sequences with a guarantee of worst-
case system throughput is proposed. The construction is based
on Chinese remainder theorem. The Hamming crosscorrelation
is proved to be concentrated around the mean. The sequence
period is much shorter than existing protocol sequences with the
same throughput performance. The new construction reduces the
complexity in implementation and also shortens the waiting time
until a packet can be sent successfully.

Tags: Protocol sequences, collision channel without feed-
back, wobbling sequences.

I. INTRODUCTION

Protocol sequences are periodic binary sequences for
multiple-access control in the collision channel without feed-
back [6]. In a time-slotted scenario, each user repeatedly reads
out the value of a statically assigned protocol sequence, and
sends a packet in a time slot if the sequence value is equal
to one. If two or more users transmit simultaneously in the
same time slot, there is a collision and the collided packets
are assumed unrecoverable. If there is exactly one transmitting
user while the others remain silent, the received packet is
assumed error-free. We do not assume any feedback from
the receiver and any coordination among the transmitters.
This assumption is applicable to low-cost and low-complexity
wireless sensor networks, as it is not necessary to spare any
hardware on monitoring the channel; the transmitters simply
send a packet whenever the value of the assigned protocol
sequence is one, regardless of the channel condition. For
simplicity in presentation, we assume slot-synchronization in
this paper. This requirement can be relaxed without much
degradation in performance.

This channel model is considered in practical sensor net-
works, such as f-MAC [8]. One of the main design issues
is the construction of protocol sequences. Some design ob-
jectives are addressed in [9]. Since we do not assume any
coordination among the users, the users may not start their
protocol sequences at the same time. This incurs relative delay
offsets among the transmitters. Our first objective is to design
protocol sequences such that no matter what the relative delay
offsets are, the system throughput is provably larger than some
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positive constant. This provides a throughput guarantee in the
worst-case.

The second objective is to minimize the sequence period,
which measures the delay one has to wait until the promised
number of successful packets go through the channel. For
protocol sequences with very long period, a user may suffer
starvation in the short term even though the throughput in
the whole period is very good. This issue is alleviated if the
sequence period is minimized.

The two objectives mentioned above are contradicting, and
there is a tradeoff between them. In [3], [6], [9], a class of pro-
tocol sequences, called shift-invariant sequences are studied.
This class of protocol sequences can achieve optimal system
throughput, but the sequence period grows exponentially as a
function of the users, and hence is not of practical interests
when the number of users is large. Another class of protocol
sequences, called wobbling sequences is constructed in [10].
The system throughput is provably larger than 0.25 for any
choice of relative delay offsets, and the sequence period grows
like M4, where M is for the number of users in the system.
In this paper, we construct shorter protocol sequences with
roughly the same throughput performance by the wobbling
sequences.

Other constructions of protocol sequences are investigated
in [4], [7], sometime under the name of cyclically permutable
constant weight codes (CPCWC). The difference between
CPCWC and our protocol sequences is that the latter only
has Hamming crosscorrelation requirement, but the former has
both autocorrelation and crosscorrelation constraints. In [2],
constructions using optical orthogonal codes and cyclic super-
imposed codes are considered.

In Section II, the new construction of protocol sequences
is described. In Section III, we investigate the crosscorrelation
properties, which are crucial in the derivation of a lower bound
on system throughput in Section IV. Comparison with shift-
invariant and wobbling sequences is given in Section IV.

II. CONSTRUCTION OF PROTOCOL SEQUENCES VIA
CHINESE REMAINDER THEOREM

We will use sequence “period” and sequence “length”
interchangeably. Let Zn = {0, 1, . . . , n − 1} be the residues
of integers mod n. The components in a sequence of length L
are indexed by ZL. The Hamming weight of a binary sequence
a(t) of length L is the number of ones in a(t) in a period. For



two binary sequences a(t) and b(t) of length L, their Hamming
crosscorrelation function is defined as

Hab(τ) :=
∑
t∈ZL

a(t)b(t+ τ),

where τ is the delay offset.
We shall construct sequences with length L = pq, where

p and q are two relatively prime integers. In this paper, we
will take p to be a prime number and q an positive integer not
divisible by p. By the Chinese Remainder Theorem (CRT) [5],
there is a bijection between Zpq and the direct sum

Gp,q := Zp ⊕ Zq.

The bijective mapping Φ : Zpq → Gp,q is given by

Φ(x) = (x mod p, x mod q).

Henceforth, we will identify Zpq with Gp,q.
CRT Construction Given a prime number p and an integer

q relatively prime to p, we define a sequence sg(t) of length
pq, for g = 0, 1, 2 . . . , p− 1, by

sg(t) :=

{
1 Φ(t) = (j̄g, j) for some j, 0 ≤ j < q,

0 otherwise,

where j̄ is the residue of j in Zp. We call the sequence sg(t)
the CRT sequence generated by g. The integer g is called the
generator of sg(t).

Alternately, we can define the CRT sequences by specifying
their characteristic sets. For each g ∈ {0, 1, . . . , p− 1}, let

Ig := {(j̄g, j) ∈ Gp,q : 0 ≤ j < q}. (1)

We note that Ig is an arithmetic progression in Gp,q with
common difference (g, 1). The CRT sequence with generator
g is obtained by setting sg(t) = 1 if and only if Φ(t) ∈ Ig.

The Hamming weight of each sequence is equal to q.

Example 1. p = 5 and q = 9. The five CRT sequences s0(t)
to s4(t) are listed as follows. The common period is 45, and
the Hamming weight of each sequence is equal to 9.

s0 : 10000 10000 10000 10000 10000 10000 10000 10000 10000,

s1 : 11111 11110 00000 00000 00000 00000 00000 00000 00000,

s2 : 10000 10000 00010 00000 01000 01001 00001 00100 00100,

s3 : 10000 10000 01000 01000 00100 00010 00010 00001 00001,

s4 : 10000 10000 00100 00101 00001 00000 01000 00010 00010.

III. CROSSCORRELATION PROPERTIES

The main idea of using CRT in constructing protocol
sequences hinges on the fact that Φ is a homomorphism of
abelian groups, so that the analysis of crosscorrelation can be
carried out in Gp,q instead of Zpq. We remark that in [1], [4],
[7], [9], the idea of CRT appears in the same way as in this
paper.

Given a one-dimensional delay τ , we denote its two-
dimensional counterpart by (τ1, τ2) := Φ(τ). For h ∈ Zp,
define the translation Ih + (τ1, τ2) of Ih by (τ1, τ2) by

{(x+ τ1, y + τ2) ∈ Gp,q : (x, y) ∈ Ih}.

The Hamming crosscorrelation Hgh(τ) can be computed by

Hgh(τ) = |Ig ∩ (Ih − (τ1, τ2))|,

where |A| indicates the cardinality of a set A. To distinguish
arithmetic operations in Zp and Zq, we use ⊕p and ⊖p for
addition and subtraction in Zp, and ⊕q and ⊖q for addition
and subtraction in Zq. In this notation, we have

Ih + (τ1, τ2) = {(j̄h⊕p τ1, j ⊕q τ2) : j = 0, 1, . . . , q − 1}.

By a change of variable, Ih + (τ1, τ2) can be written as

{(((j ⊖q τ2)h)⊕p τ1, j) : j = 0, 1, . . . , q − 1}.

After comparing with the definition of Ig in (1), we see that
|Ig ∩ (Ih + (τ1, τ2))| is equal to the number of solutions to

x̄g ≡ ((x⊖q τ2)h)⊕p τ1 mod p. (2)

for x = 0, 1, . . . , q − 1. The problem of computing the cross-
correlation function is thus reduced to counting the solutions
to (2).

The following simple lemma is useful in the derivation of
Hamming crosscorrelation.

Lemma 1. Let p be a prime number. For each b ∈ Zp, the
number of solutions to x̄ ≡ b mod p for x going through d
consecutive integers c, c+ 1, . . . c+ d− 1, equals{

d/p if p divides d,

⌊d/p⌋+ δ otherwise,

where δ is either 0 or 1.

Proof: In the first case where d is divisible by p, if we
reduce the integers c, c+1, . . . , c+d−1 mod p, we have each
element in Zp repeated exactly d/p times. Hence, for each
b ∈ Zp, there are exactly d/p integers in {c, . . . , c + d − 1}
whose residue mod p equal b

For the second case, where d is not divisible by p, we divide
the d consecutive integers into two parts. The first part consists
of ⌊d/p⌋p consecutive integers and the second part consists of
the last d−⌊d/p⌋p integers. Among the first ⌊d/p⌋p integers,
exactly ⌊d/p⌋ of them equal b mod p. The residues of the
d−⌊d/p⌋p integers in the second part are distinct, and hence
at most one of them is equal to b. The number of integers in
{c, . . . , c + d − 1} whose residue equal b is either ⌊d/p⌋ or
⌊d/p⌋+ 1.

From Lemma 1, we obtain the crosscorrelation between
s0(t) and other sequences.

Theorem 1. For g ̸= 0, the Hamming crosscorrelation of
sg(t) and s0(t) is equal to either ⌊q/p⌋ or ⌊q/p⌋+ 1.

Proof: If we put h = 0 in (2), we get x̄ ≡ g−1τ1 mod
p. The number of integers in {0, 1, . . . , q − 1} which equal
g−1τ1 mod p is either ⌊q/p⌋ or ⌊q/p⌋+ 1 by Lemma 1.

For nonzero h, we can divide both sides of (2) by h and
re-write it as

x̄(h−1g) ≡ (x⊖q τ2)⊕p (h
−1τ1) mod p.



For each fixed τ2, as τ1 runs through Zp, h−1τ1 also runs
through the complete set of residues mod p. Therefore, the
distribution of Hamming crosscorrelation between sg(t) and
sh(t) is the same as the distribution of Hamming cross-
correlation between sg/h(t) and s1(t). We henceforth focus
on the case h = 1 without any loss of generality.

To aid the derivation of the Hamming crosscorrelation, we
first prove the following lemma.

Lemma 2. Let g ∈ Zp\{1}, and denote Φ(τ) by (τ1, τ2). The
Hamming crosscorrelation between sg(t) and s1(t), namely
Hg1(τ), satisfies the following properties:

1) Hg1(τ) equals the number of solutions to

x̄ ≡ ag(τ1, τ2) + bgI(0 ≤ x < τ2) mod p, (3)

for x = 0, 1, . . . , q − 1, where

ag(τ1, τ2) := (g − 1)−1(τ1 − τ̄2), (4)

bg := (g − 1)−1q̄, (5)

and I is the indicator function defined as

I(P ) :=

{
1 if P is true,
0 if P is false.

2) Let τ and τ ′ denote two relative delay offsets. Suppose
that the first component of Φ(τ) and Φ(τ ′) are the same,
and the second component of Φ(τ) and Φ(τ ′) defer by
a multiple of p, then then Hg1(τ) = Hg1(τ

′).

Proof: After setting h in (2) to 1, we obtain

x̄g ≡ (x⊖q τ2)⊕p τ1 mod p. (6)

We want to show that the number of solutions to (6), for q =
0, 1, . . . , q − 1, is the same as the number of solutions to (3).

We consider x in two disjoint ranges: (i) 0 ≤ x < τ2, and
(ii) τ2 ≤ x < q. In the first case, x ⊖q τ2 is congruent to
x+ q − τ2 mod q. So, for 0 ≤ x < τ2, (6) is equivalent to

x̄g ≡ x̄+ q̄ − τ̄2 + τ1 mod p (7)

where q̄ and τ̄2 are residues of q and τ2 in Zp, respectively.
In the second case, for x = τ2, τ2 + 1, . . . , q − 1, (6) is

equivalent to
x̄g ≡ x̄− τ̄2 + τ1 mod p. (8)

We combine (7) and (8) in one line as

x̄(g − 1) ≡ −τ̄2 + τ1 + q̄I(0 ≤ x < τ2) mod p,

Since g is not equal to 1 by assumption, we can divide by
(g−1) and obtain (3). This proves the first part of the lemma.

The second part of the lemma is vacuous if q < p. So
we assume q > p. (The case q = p is excluded because it is
assumed that q is relatively prime with p.) Let (τ1, τ2) = Φ(τ)
and (τ ′1, τ

′
2) = Φ(τ ′). It is sufficient to prove the statement for

τ1 = τ ′1 and τ ′2 = τ2 + p, namely, the number of solutions
to (3) and the number of solutions to

x̄ ≡ ag(τ1, τ
′
2) + bgI(0 ≤ x < τ ′2) mod p (9)

for x = 0, 1, . . . , q − 1, are the same. We note that ag(τ1, τ2)
is equal to ag(τ1, τ

′
2). However, the arguments inside the

indicator function are different. We divide the range of x into
three disjoint parts:

X1 := {0, 1, . . . , τ2 − 1},
X2 := {τ2, τ2 + 1, . . . , τ2 + p− 1},
X3 := {τ2 + p, τ2 + p+ 1, . . . , q − 1}.

Since q > p, X3 is non-empty. For x ∈ X1, I(0 ≤ x <
τ2) = I(0 ≤ x < τ ′2). Therefore (3) and (9) have the same
number of solutions for x in X1. For x ∈ X2, both (3) and
(9) have exactly one solution by Lemma 1. For x ∈ X3, (3) is
equivalent to (9), and hence has the same number of solutions
as (9) does. In conclusion, the number of solutions to (3) and
(9) for x ∈ X1∪X2∪X3 are the same. This finishes the proof
of the second part of the lemma.

From now on, we assume that q > p, which is the case of
practical interest.

Theorem 2. Let p and q be positive integers such that p is
prime, gcd(p, q) = 1 and q > p. Let m denote the quotient of
q divided by p, i.e., m = ⌊q/p⌋, and let g ∈ Zp, 0 ̸= g ̸= 1. Let
q̄ be the residue of q mod p, and bg be defined as in (5). The
Hamming crosscorrelation between sg(t) and s1(t) is bounded
between

m− 1 and m+ 1 if 0 < bg < p− q̄, or (10)
m and m+ 2 if p− q̄ < bg < p. (11)

Proof: By the second part of the previous lemma, we only
need to consider τ2 = 0, 1, . . . , p − 1. In this proof, we will
denote Hg1(τ) by Hg1(τ1, τ2), with (τ1, τ2) equal to Φ(τ).

We first prove the first case in (10) by considering two cases.
Case 1, 0 ≤ τ2 < q̄
Suppose that (3) has no solution for 0 ≤ x < τ2. As the

indicator function in (3) is zero for x = τ2, τ2 +1, . . . , q− 1,
(3) is reduced to

x̄ ≡ ag(τ1, τ2) mod p.

The number of integers in {τ2, τ2 + 1, . . . , q − 1}, say d,
satisfies ⌊d/p⌋ = m. By Lemma 1, we have either m or m+1
solutions to (3) for x ≥ τ2.

Secondly, suppose that (3) has exactly one solution for 0 ≤
x < τ2. The indicator function in (3) is equal to 1 for 0 ≤
x < τ2. Hence,

0 ≤ ag(τ1, τ2) + bg < τ2. (12)

We claim that (3) has no solution for x = τ2, τ2+1, . . . , q̄−1.
Otherwise, we have

τ2 ≤ ag(τ1, τ2) < q̄,

which, after combining with the assumption that 1 ≤ bg ≤
p− q̄ − 1, yields

τ2 < ag(τ1, τ2) + bg < p− 1.



This contradicts with (12) and proves the claim. For

q̄ ≤ x < q,

there are exactly m solutions by Lemma 1. The total number
of solutions to (3) for x = 0, 1, . . . , q−1, is thus m+1. Hence
Hg1(τ1, τ2) = m+ 1.

Case 2: q̄ ≤ τ2 < p
By Lemma 1, (3) has either 0 or 1 solution for 0 ≤ x ≤ τ2,

and either m − 1 or m solutions for τ2 ≤ x < q. Hence,
Hg1(τ1, τ2) is within the range of {m− 1,m,m+ 1}.

For bg = p− q̄+1, . . . , p−1, we again consider two cases.
Case 1: 0 ≤ τ2 < q̄
By Lemma 1, (3) has either 0 or 1 solution for 0 ≤ x < τ2,

and either m or m + 1 solutions for τ2 ≤ x < q. Therefore,
Hg1(τ1, τ2) ∈ {m,m+ 1,m+ 2}.

Case 2: q̄ ≤ τ2 < p
Suppose that (3) has no solution for 0 ≤ x < τ2, i.e.,

τ2 ≤ ag(τ1, τ2) + bg < p. (13)

We claim that (3) must have one solution for x in the following
range

τ2 ≤ x < p+ q̄. (14)

From the assumption of q̄ ≤ τ2 < p, we deduce that

q̄ < p+ q̄ − τ2 ≤ p,

so that the range in (14) is non-empty and consists of no
more than p integers. If the claim were false, we would have
no solution to (3) for τ2 ≤ x < p+ q̄, implying that

q̄ ≤ ag(τ1, τ2) < τ2. (15)

Here, we have used the fact that the indicator function in (3)
is equal to zero for x in the range in (14). By adding (15) to

p− q̄ + 1 ≤ bg ≤ p− 1

and reducing mod p, we obtain

1 ≤ ag(τ1, τ2) + bg < τ2,

which is a contradiction to (13). Thus, the claim is proved.
For x = p+ q̄, p+ q̄ + 1, . . . , q − 1, there are exactly m− 1
solutions to (3) by Lemma 1. Totally there are m solutions,
and thus Hg1(τ1, τ2) = m.

Finally suppose that (3) has exactly one solution for 0 ≤
x < τ2. As the number of solutions to (3) for x = τ2, τ2 +
1, . . . , q−1 is either m−1 or m by Lemma 1, the total number
of solutions to (3) is either m or m+ 1.

In any case, we see that Hg1(τ1, τ2) is either m, m+ 1 or
m+ 2.

Thereom 2 asserts that for any pair of distinct CRT se-
quences, the Hamming crosscorrelation is either between m−1
and m+1, or between m and m+2. For the whole sequence
set, the Hamming crosscorrelation is therefore four-valued.
We next show that for some special choice of q, namely
q ≡ ±1 mod p, the Hamming crosscorrelation of the whole
sequence set assumes only three distinct values.

Theorem 3. Let p and q be integers as in Theorem 2.
1) If q is of the form mp+ 1 for some positive integer m,

then for g = 2, 3, . . . , p − 1, Hg1(τ) is between m − 1
and m+ 1.

2) If q be of the form mp+(p−1) for some positive integer
m, then for g = 2, 3, . . . , p − 1, Hg1(τ) is between m
and m+ 2.

Proof: For he first part of the theorem, we have q̄ equal
to 1 mod p. So

bg ≡ (g − 1)−1q̄ ≡ (g − 1)−1 mod p.

Since g is between 2 and p− 1 inclusively, g − 1 is between
1 and p − 2, and hence the inverse of g − 1 mod p is also
between 1 and p− 2. We thus obtain 0 < bg < p− 1 = p− q̄.
The result now follows from Theorem 2.

The second part can be proved similarly from Theorem 2
by putting q̄ = p− 1.

Together with Theorem 1, which says that the Hamming
crosscorrelation between s0(t) and sg(t), for g ̸= 0, is
either m or m + 1, we prove that the Hamming crosscor-
relation of the whole CRT sequence set is three-valued when
q ≡ ±1 mod p. The sequences in Example 1 are generated
with q ≡ −1 mod p. We can verify that the Hamming
crosscorrelation in Example 1 is either 1, 2 or 3.

IV. LOWER BOUND ON SYSTEM THROUGHPUT

The three-valued result in Theorem 3 suggests that the
variation of Hamming crosscorrelation due to relative delay
offsets is minimal when q ≡ ±1 mod p. We single out the
q ≡ −1 mod p case below and derive a lower bound on
the resulting system throughput. The case of q ≡ 1 mod p
is similar and omitted.

When q is of the form kp − 1 for some integer k ≥ 2,
the CRT construction yields p protocol sequences of length
L = kp2 − p and Hamming weight kp − 1. By Theorem 3,
the largest Hamming crosscorrelation value is k + 1.

We pick M sequences and form the CRT sequence set of
size p in order to support M users. Here, M is an integer
whose value will be optimized later. Since a user sends kp−1
packets in a period, and each other user may collide with him
in at most k+1 packets, the number of successful packets per
user per period is no less than kp− 1− (M − 1)(k+1). The
total number of successful packets, summed over all M users,
is thus lower bounded by

M [kp− 1− (M − 1)(k + 1)]. (16)

By the method of completing square, we can write (16) as

(k + 1)

[
−
(
M − k(p+ 1)

2(k + 1)

)2

+
(k(p+ 1)

2(k + 1)

)2
]
. (17)

We see that the maximum value in (16) is obtained when

M∗ = k(p+ 1)/(2(k + 1)). (18)

Since M must be an integer, after taking the floor of (18),
we obtain the following theorem.



Theorem 4. Let p be a prime number, k ≥ 2, and M ′ be the
largest integer smaller than or equal to M∗ in (18). By picking
M ′ sequences from the CRT construction with parameters p
and q = kp− 1, the system throughput is lower bounded by

1

p(kp− 1)

[
(p+ 1)2

4
· k2

k + 1
− (k + 1)

]
(19)

Proof: Consider the expression in (16) as a function of
M , and denote it by f(M). Since the difference between M∗

and M ′ is at most one, f(M∗)−f(M ′) ≤ (k+1)(M ′−M∗) ≤
k + 1. After division by the period p(kp − 1), we have the
following lower bound on system throughput,

f(M ′)

p(kp− 1)
≥ f(M∗)− (k + 1)

p(kp− 1)

which can be readily seen to be the same as (19).
We note that the value in (19) is approximately equal to

0.25 when k and p are large.
Theorem 4 provides a hard guarantee on the worst-case

system throughput; no matter what the delay offsets are, the
system throughput is always larger than the value in (19).
Theorem 4 also indicates a tradeoff between the the lower
bound and the sequence period. If we increase the value of
k, the sequence period is increased, but the lower bound on
system throughput is also increased.

We remark that the lower bound in Theorem 4 is not
tight. The actual system throughput is higher than (19). The
next example compares the lower bound with the average
throughput over relative delay offsets.

Example 2. We consider an example with M = 19 users,
using CRT sequences with p = 37 and q = kp − 1.
The throughput is plotted against the sequence period, while
keeping the fraction of ones in each sequence fixed at 1/p. This
means that the fraction of time in which a user is transmitting,
and hence the power of each user, is kept constant. We
compare the lower bound in (19) with the average throughput
obtained by simulation in Fig. 1. For each k, 20000 delay
offset combinations are randomly generated. The mean system
throughput is about 0.31 In addition to the mean throughput,
the maximum and minimum throughput obtained among these
20000 delay offset combinations are also plotted. The variation
of throughput diminishes as sequence period increases. The
value of the lower bound (19) also increases. We see that the
minimal observed system throughput is much higher than the
lower bound in Theorem 4.

For the shift-invariant protocol sequence set for nineteen
users, the sequence period is 1919, which is astronomical.
Nevertheless, it has higher system throughput e−1 = 0.3679.
For wobbling sequences, a lower bound of 0.25 system
throughput [10, (6.12)] is guaranteed when the sequence
period is 194 ≈ 1.3×105. From Fig. 1, a lower bound of 0.25
can be obtained by using CRT sequences when the sequence
period is about 1.1 × 104, a roughly ten-fold reduction in
sequence period.
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Fig. 1. System Throughput of CRT Sequences for M = 19 users, p = 37.

V. CONCLUSION

In order to minimize the waiting time until a successful
packet is sent, while maintaining a high level of system
throughput, a class of protocol sequences with short period are
constructed. After analyzing the crosscorrelation properties,
we derive a lower bound on the system throughput. The con-
structed sequences provides flexibility on the tradeoff between
sequence period and the worst-case system throughput.
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