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Power Control for Non-Gaussian Interference
Yi Chen and Wing Shing Wong, Fellow, IEEE

Abstract—This paper investigates a wireless communication
system where the mutual user interference is not assumed to
be a Gaussian process. We derive an exact expression for the
average bit error probability (BEP) for such a system and
study the non-Gaussian interference model through two types of
power control problems. We analyze the situation under which
the system can be asymptotically error-free, the behavior of
users’ BEP when scaling up a fixed power setting by a uniform
scalar and the effect of varying symbol rate on the system
performance. Our work shows that the non-Gaussian model
has significantly different performance characteristics from the
traditional Gaussian interference model. Simulations also show
that the Gaussian model is generally pessimistic in comparison
with the non-Gaussian model.

Index Terms—Non-Gaussian model, power control, bit error
probability (BEP), character matrix, 𝑀 -matrix.

I. INTRODUCTION

IN modern wireless communication systems, mutual user
interference is one of the fundamental factors that limit

performance. Enormous amount of research has been devoted
to use power control to manage the interference (ref. [2]–[5]
and the references therein). Most of those papers start with the
assumption that the signal-to-interference-plus-noise power
ratio (SINR) is the utility metric. SINR has clearly understood
implication on bit error probability (BEP), capacity and other
Quality of Service (QoS) metrics mainly for additive Gaussian
channels [6]. In other words, using SINR as a surrogate for
QoS metrics such as BEP or capacity implicitly assumes
that for any given user, the combined interference from other
users sharing the same spectrum is a Gaussian process. This
Gaussian approximation can be partially justified by the Cen-
tral Limit Theorem if the interference comes from mutually
independent, identically distributed user signal processes and
if the number of such users is large (the property of identically
distributed is required unless certain conditions are satisfied
[7]). However, in practice, the number of interfering users may
be small or the interfering signals may not be independent
or identically distributed. When the Central Limit Theorem is
not applicable, the Gaussian model may not accurately capture
system performance and the significance of SINR as a utility
metric is less clear. In [8]–[14], the statistic distribution of
interference and the BEP expression were studied for different
wireless networks, fading channels and spacial distribution of
the interfering users. It is shown that the Gaussian model can
yield poor BEP estimates under certain operating conditions.
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In this paper, we study a system model where the inter-
ference is not assumed to be Gaussian. We call it the non-
Gaussian model. Different from [8]–[14], our model allows for
different symbol rates and powers for different users and we
focus on studying the non-Gaussian model for power control.
We derive an exact expression of BEP for such a system and
use BEP as the QoS metric to investigate two types of power
control problems under the new model. The first problem aims
at minimizing the maximal BEP of all users. We call it the
minimal BEP problem. The second problem aims at mini-
mizing the total transmission power while satisfying the BEP
requirement of each user. It is referred to as the minimal power
problem. Under the traditional Gaussian model, since the BEP
is a monotonically decreasing function of the SINR, the two
problems are equivalent to the power balancing problem [2]
and the SINR tracking problem [3] respectively. However, a
major finding of our work is that the non-Gaussian model has
some significantly different performance characteristics from
the Gaussian model. They are reflected in the following three
major aspects.

The first concerns the feasible BEP region, that is the set
of BEP vectors of all users that can be achieved through
power control. Under the Gaussian model, it is a well-known
result of the power balancing problem that the maximum of
the minimal SINR of all users is related to the dominant
eigenvalue of the channel gain matrix [2] and therefore is
bounded. Hence, it is not possible to make the BEP of all
users arbitrarily small. While for the non-Gaussian model, it
is possible that the BEP of all users approach simultaneously
to zero under certain technical condition which is explicitly
characterized here.

The second performance difference shows up when we scale
up a fixed power setting by a uniform multiplier. Given an
initial power setting, the SINR of all users increase mono-
tonically with the multiplier. Under the Gaussian model, this
implies the solution to the minimal BEP problem is obtained
by letting the power vector, or equivalently the multiplier,
approach infinity. However, under the non-Gaussian model,
the behavior of BEP with respect to the multiplier is more
complicated. We show that for certain channel gain matrices,
the BEP for some users first decrease monotonically then
increase monotonically with the multiplier. It is shown by
example that the solution to the minimal BEP problem can
be achieved by a finite power vector under the non-Gaussian
model.

The third performance difference occurs in asynchronous
transmission systems where different users have different
symbol rates. In many papers reported in the literature, the
variation in interference power with respect to the symbol
rate and asynchronism is not explicitly considered. That is,
the variances of the interference are typically assumed to be
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independent of the symbol rate. So varying the symbol rate
of one user does not change the BEP of other users. The
non-Gaussian model, however, shows otherwise. For example,
under the assumption of a fixed power setting, if we decrease
the symbol rate of one user, the BEP of other users will
increase.

In this paper we demonstrated by rigorous arguments the
qualitative differences between the Gaussian and non-Gaussian
models. We also performed simulations to numerically com-
pare the two models for coded and uncoded channels. It is
shown that the Gaussian model is generally pessimistic for
both cases. From the results reported in this paper, one can
expect that the interference can be ameliorated under the non-
Gaussian model by appropriately choosing the symbol rate,
exploiting the interference structure and so on, whereas the
Gaussian model entails an a priori loss of this possibility.
Our long term aim is to investigate modulation/demodulation
schemes that can efficiently use the structure of the inter-
ference to mitigate its effect and to optimize the network
throughput by means of better resource allocation algorithms.
This is obviously an ardor and complicated mission. In this
paper, we focus on clarifying some basic properties of the
non-Gaussian model.

The rest of the paper is organized as follows. The system
model and the error probability calculation are presented in
Section II. Section III analyzes the minimal BEP problem and
proves the necessary and sufficient condition for a system to be
asymptotically error-free. In Section IV, the behavior of BEP
with respect to the multiplier is described for certain channel
gain matrices. Some bounds of the minimal BEP are also
given. Section V investigates the minimal power problem and
introduces some properties of the BEP function. Simulation
results are provided in Section VI. Finally, in Section VII, we
give some concluding remarks.

II. SYSTEM MODEL AND ERROR PROBABILITY

CALCULATION

Consider a general wireless communication system with
𝑛 transmitters {tran𝑖 : 𝑖 = 1, . . . , 𝑛} and 𝑛 receivers
{rec𝑖 : 𝑖 = 1, . . . , 𝑛}, in which, tran𝑖 communicates to
rec𝑖 and all the transmissions share the same wireless radio
spectrum. We refer user 𝑖 to be the pair (tran𝑖, rec𝑖). Let 𝑥2𝑖 be
the transmitted power of tran𝑖 where 𝑥𝑖 > 0 is the amplitude
of the transmitted signal. Define x = (𝑥1, . . . , 𝑥𝑛). Assume
slow and flat fading. Let ℎ2

𝑖𝑗 be the power gain between tran𝑗
and rec𝑖 where ℎ𝑖𝑗 > 0 is the amplitude attenuation factor
on 𝑥𝑗 . There is no assumption on the statistic distribution of
ℎ𝑖𝑗 . The channel gain matrix is H = (ℎ𝑖𝑗). We consider a
snapshot of the system, and thus ℎ𝑖𝑗 is treated as a constant.
Its magnitude reflects the effect of path loss, shadow fading
and antenna gains.

All transmitters apply binary phase-shift keying (BPSK)
modulation. The analysis in this paper can be extended to
QPSK. Let 𝑅𝑖 be the symbol/bit rate of tran𝑖 and 𝑝𝑇𝑖 be the
unit-amplitude rectangular pulse of duration 𝑇𝑖 = 1/𝑅𝑖. Let
{𝑏𝑘𝑖 }∞𝑘=−∞ denote the BPSK-modulated information sequence
of tran𝑖 where 𝑏𝑘𝑖 is uniformly distributed on 𝔹 = {+1,−1}.
Assume there is no frequency offset and phase offset in all

the transmitters and receivers. Thus the carrier is suppressed
for notational economy. The baseband signal 𝑠𝑖(𝑡) of tran𝑖 is

𝑠𝑖(𝑡) = 𝑥𝑖𝑎𝑖(𝑡), (1)

where

𝑎𝑖(𝑡) =

∞∑
𝑘=−∞

𝑏𝑘𝑖 𝑝𝑇𝑖(𝑡− 𝑘𝑇𝑖). (2)

The transmitted signals from all the transmitters may not
necessarily be synchronized, unless explicitly stated otherwise.
At rec𝑖, the received baseband signal 𝑟𝑖(𝑡) is

𝑟𝑖(𝑡) =

𝑛∑
𝑗=1

ℎ𝑖𝑗𝑥𝑗𝑎𝑗(𝑡− 𝜏𝑖𝑗) + 𝑛𝑖(𝑡), (3)

where 𝜏𝑖𝑗 is the time delay of 𝑠𝑗(𝑡) at rec𝑖 and 𝑛𝑖(𝑡) is the
additive white Gaussian noise (AWGN) with two-sided power
spectral density 𝑁0/2.

A receiver demodulates the received baseband signal using
a matched filter, followed by a threshold decision. The impulse
response 𝑠0𝑖 (𝑡) of the filter of rec𝑖 is a rectangular pulse
of amplitude 1 and duration 𝑇𝑖. Without loss of generality,
assume 𝜏𝑖𝑖 = 0, i.e., the matched filter of rec𝑖 is synchronized
to the arrival signal transmitted by tran𝑖. Consider a bit
interval as [0, 𝑇𝑖] to be demodulated. Label the first bit
overlapping with this interval by 𝑏0𝑗 for all 𝑗 and the sequential
bits are 𝑏1𝑗 , 𝑏

2
𝑗 , . . . . Without confusion, we use 𝜏𝑖𝑗 to represent

the misalignment of the interfering symbol of user 𝑗 with
respect to the desired symbol of user 𝑖, and it is assumed
to be uniformly distributed in [0, 𝑇𝑗) (see Fig. 1). The input
to the decision device for rec𝑖 is

𝑦𝑖 =

∫ 𝑇𝑖

0

𝑟𝑖(𝑡)𝑠
0
𝑖 (𝑡)d𝑡 = 𝑊𝑖𝑖 +

∑
𝑗 ∕=𝑖

𝑊𝑖𝑗 + 𝑍𝑖, (4)

where

𝑊𝑖𝑗 = ℎ𝑖𝑗𝑥𝑗

∫ 𝑇𝑖

0

𝑎𝑗(𝑡− 𝜏𝑖𝑗)d𝑡, 𝑍𝑖 =

∫ 𝑇𝑖

0

𝑛𝑖(𝑡)𝑠
0
𝑖 (𝑡)d𝑡.

(5)
Since 𝜏𝑖𝑖 = 0, 𝑊𝑖𝑖 = 𝑏0𝑖𝑇𝑖ℎ𝑖𝑖𝑥𝑖. Unlike classical models,

the interference term
∑

𝑗 ∕=𝑖 𝑊𝑖𝑗 is not assumed to be a Gaus-
sian random variable. For all 𝑗 ∕= 𝑖, 𝑊𝑖𝑗 is a random variable
depending on 𝜏𝑖𝑗 and the information bits 𝑏𝑘𝑗 of tran𝑗 . Several

typical cases of the integral
∫ 𝑇𝑖

0 𝑎𝑗(𝑡 − 𝜏𝑖𝑗)d𝑡 are illustrated
in Fig. 1. For example, when the interfering signal and the
intended signal are synchronous (Fig. 1(a)), 𝑊𝑖𝑗 = ℎ𝑖𝑗𝑥𝑗𝑇𝑖𝑏

0
𝑗 ;

when they are asynchronous and 𝑇𝑖 > 𝑇𝑗 (Fig. 1(c)), 𝑊𝑖𝑗 =
ℎ𝑖𝑗𝑥𝑗(𝜏𝑖𝑗𝑏

0
𝑗 + 𝑇𝑗(𝑏

1
𝑗 + 𝑏2𝑗 + 𝑏3𝑗) + (𝑇𝑖 − 𝜏𝑖𝑗 − 3𝑇𝑗)𝑏

4
𝑗).

For the threshold decision, an error occurs if 𝑦𝑖 < 0 when
𝑏0𝑖 = 1, or if 𝑦𝑖 > 0 when 𝑏0𝑖 = −1. Since 𝑏0𝑖 takes ±1 with
equal probability, the average BEP is equal to the probability
of receiving 𝑦𝑖 < 0 when 𝑏0𝑖 = 1. Since 𝑍𝑖 is a Gaussian
random variable with zero mean and variance 𝜎2

𝑖 = 𝑁0𝑇𝑖/2,
the BEP of user 𝑖 conditioned on

∑
𝑗 ∕=𝑖 𝑊𝑖𝑗 is

Pr

⎛⎝𝑦𝑖 < 0∣
∑
𝑗 ∕=𝑖

𝑊𝑖𝑗 , 𝑏
0
𝑖 = 1

⎞⎠ = 𝑄

(
𝑇𝑖ℎ𝑖𝑖𝑥𝑖 +

∑
𝑗 ∕=𝑖 𝑊𝑖𝑗

𝜎𝑖

)
(6)
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Fig. 1. Typical cases of interfering signal with symbol duration 𝑇𝑗 in
the integration interval [0, 𝑇𝑖]. 𝜏𝑖𝑗 is the relative time offset and 𝑏𝑘𝑗 is the
information bit.

where 𝑄(⋅) is the complementary error function defined as

𝑄(𝑥) = 1√
2𝜋

∫ ∞
𝑥

𝑒−
𝑢2

2 d𝑢.
Hence, the average BEP is

𝜆𝑖(x) = E[Pr(𝑦𝑖 < 0∣
∑
𝑗 ∕=𝑖

𝑊𝑖𝑗 , 𝑏
0
𝑖 = 1)], (7)

where the expectation is over {𝑏𝑘𝑗 : 𝑗 ∕= 𝑖} and {𝜏𝑖𝑗 : 𝑗 ∕= 𝑖}.
In the following, we give a review of the Gaussian model.

Under the Gaussian model, the output interference from the
matched filter,

∑
𝑗 ∕=𝑖 𝑊𝑖𝑗 , given by (5), is approximated by

a Gaussian random variable with identical variance. So the
decision statistic 𝑦𝑖, given by (4), is a Gaussian random
variable. This yields the BEP

𝜆𝐺
𝑖 (x) = Pr

(
𝑦𝑖 < 0∣𝑏0𝑖 = 1

)
= 𝑄

⎛⎝ 𝑊𝑖𝑖√∑
𝑗 ∕=𝑖 𝜎

2
𝑊𝑖𝑗

+ 𝜎2
𝑖

⎞⎠ ,

(8)
where 𝜎2

𝑊𝑖𝑗
is the variances of 𝑊𝑖𝑗 .

In the scenario of asynchronous transmission (𝜏𝑖𝑗 ∕= 0) and
different bit rates (𝑅𝑖 ∕= 𝑅𝑗) (see Fig. 1(b)(c)(d)), averaging
over the distribution of {𝑏𝑘𝑗 : 𝑗 ∕= 𝑖} and {𝜏𝑖𝑗 : 𝑗 ∕= 𝑖} yields
(the derivation is given in [15]; the case for 𝑅𝑗 = 𝑅𝑖 while
𝜏𝑖𝑗 ∕= 0 can be found in [8], [9]),

𝜎2
𝑊𝑖𝑗

= ℎ2
𝑖𝑗𝑥

2
𝑗 min{𝑇 2

𝑖 , 𝑇
2
𝑗 }

(
max{1, 𝑇𝑖

𝑇𝑗
} − 1

3
min{1, 𝑇𝑖

𝑇𝑗
}
)

< ℎ2
𝑖𝑗𝑥

2
𝑗𝑇

2
𝑖 . (9)

However, in many papers reported in the literature, it is
implicitly assume that all users transmit at the same bit rate
synchronously (see Fig. 1(a)) [5]. In that case the variance
𝜎2
𝑊𝑖𝑗

is equal to ℎ2
𝑖𝑗𝑥

2
𝑗𝑇

2
𝑖 . We call this special case the Aligned

Gaussian model and define the corresponding SINR by

𝛾𝑖(x) =
𝑊 2

𝑖𝑖∑
𝑗 ∕=𝑖 𝜎

2
𝑊𝑖𝑗

+ 𝜎2
𝑖

=
ℎ2
𝑖𝑖𝑥

2
𝑖∑

𝑖∕=𝑗 ℎ
2
𝑖𝑗𝑥

2
𝑗 + 𝜎2

𝑖 /𝑇
2
𝑖

. (10)

The BEP under the Aligned Gaussian model becomes

𝜆𝐺
𝑖 (x) = 𝑄(

√
𝛾𝑖(x)). (11)

Note that the Aligned Gaussian model yields a more pes-
simistic result since it assumes a larger interference variance
among the two classes of Gaussian models (Aligned and
Misaligned, see the last inequality in (9)). In subsequent
discussion, the Aligned Gaussian model is considered while
the simulation results for the Misaligned Gaussian model are
also presented in Section VI.

In the following power control optimization problems, the
channel gains are known and the optimization variables are
the signal amplitudes.

III. THE MINIMAL BEP PROBLEM

In this section, we first recall the solution to the minimal
BEP problem under the Gaussian model (or equivalently the
power balancing problem). Then we analyze the situation
under which the minimal BEP can approach zero under the
non-Gaussian model. Scalar operators, such as “ >”, “ ≥” or
“ =” are applied to vectors component-wise. We use “∣ ⋅ ∣” to
denote the absolute value of a scalar and “⌈⋅⌉” to denote the
ceiling function.

The power balancing problem under the Gaussian model is
to maximize the minimal SINR of all users. It is equivalent
to the minimal BEP problem and can be written as

�̂�𝐺 = inf
x>0

max
𝑖=1,...,𝑛

𝜆𝐺
𝑖 (x), (12)

where 𝜆𝐺
𝑖 (x) is defined in (11). It can be solved by finding the

Perron-Frobenius eigenvalue 𝜌Z of the normalized power gain

matrix Z = (𝑧𝑖𝑗) = (
ℎ2
𝑖𝑗

ℎ2
𝑖𝑖
) and its corresponding eigenvector

[�̂�21, . . . , �̂�
2
𝑛]

⊤, given that Z is an irreducible matrix [2]. Let
xZ = (�̂�1, . . . , �̂�𝑛), then

�̂�𝐺 = lim
𝛼→∞ max

𝑖=1,...,𝑛
𝜆𝐺
𝑖 (𝛼xZ) = 𝑄

(√
1

𝜌Z − 1

)
. (13)

Since Z is a nonnegative matrix with diagonal entries equal
to one, 𝜌Z > 1, and thus �̂�𝐺 > 0. That is, under the
Gaussian model, for any given channel gains, it is not possible
to make the BEP of all users approach zero. For the non-
Gaussian model, it is possible that the BEP of all users go
simultaneously to zero under certain technical condition which
is explicitly characterized below. To make the presentation
precise, we introduce the following definitions.

Definition 1. An 𝑛-user wireless communication system is
said to be asymptotically error-free if the minimal BEP

�̂� = inf
x>0

max
𝑖=1,...,𝑛

𝜆𝑖(x) = 0, (14)

where 𝜆𝑖(x) is the BEP function.

Remark: This definition of asymptotically error-free trans-
mission is focused on the decision error at the physical layer.
It is different from the information-theoretic concept in coding
theory.

Definition 2. A matrix A = (𝑎𝑖𝑗) is said to be row diagonally
dominant if

∣𝑎𝑖𝑖∣ >
∑
𝑗 ∕=𝑖

∣𝑎𝑖𝑗 ∣ for all 𝑖. (15)
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Definition 3. [16] A square matrix is called a 𝑍-matrix if
all off-diagonal entries are less than or equal to zero. A 𝑍-
matrix A is called an 𝑀 -matrix if it satisfies any one of the
following equivalent conditions:

1) The eigenvalues of A all have positive real parts.
2) Av ≥ 0 implies v ≥ 0.
3) There exists a vector v with positive entries such that

𝐴v > 0.
4) The diagonal entries of A are positive and AD is

row diagonally dominant for some positive diagonal
matrices D.

Definition 4. The character matrix of an 𝑛-user wireless
communication system with channel gain matrix H = (ℎ𝑖𝑗)
is an 𝑛 × 𝑛 matrix C = (𝑐𝑖𝑗) with 𝑐𝑖𝑖 = ℎ𝑖𝑖 for all 𝑖 and
𝑐𝑖𝑗 = −ℎ𝑖𝑗 for 𝑗 ∕= 𝑖.

Obviously, C is a 𝑍-matrix. One type of the 𝑀 -matrix is
row diagonally dominant matrix.

Theorem 1. Under the non-Gaussian model, an 𝑛-user wire-
less communication system is asymptotically error-free if and
only if its character matrix is an 𝑀 -matrix.

Proof: Consider an 𝑛-user wireless communication sys-
tem with channel gain matrix H = (ℎ𝑖𝑗) and character matrix
C. First fix a receiver 𝑖. From (5), we see that for 𝑗 ∕= 𝑖,

𝑊𝑖𝑗 = ℎ𝑖𝑗𝑥𝑗

∫ 𝑇𝑖

0

𝑎𝑗(𝑡− 𝜏𝑖𝑗)d𝑡 ≥ −𝑇𝑖ℎ𝑖𝑗𝑥𝑗 , (16)

where the last equality is obtained when 𝑎𝑗(𝑡 − 𝜏𝑖𝑗) = −1
for 0 ≤ 𝑡 ≤ 𝑇𝑖. That is, the interfering bits 𝑏𝑘𝑗 for 0 ≤ 𝑘 ≤
⌈𝑇𝑖/𝑇𝑗⌉ that fall onto the period [0, 𝑇𝑖] are −1. For example,
in Fig. 1(b), 𝑊𝑖𝑗 = ℎ𝑖𝑗𝑥𝑗(𝜏𝑖𝑗𝑏

0
𝑗 + (𝑇𝑖 − 𝜏𝑖𝑗)𝑏

1
𝑗) ≥ −ℎ𝑖𝑗𝑥𝑗𝑇𝑖

for any 𝜏𝑖𝑗 and 𝑏0𝑗 , 𝑏
1
𝑗 . Since 𝑄(⋅) is a decreasing function, by

(7) and (16),

𝜆𝑖(x) = E

[
𝑄

(
𝑊𝑖𝑖 +

∑
𝑗 ∕=𝑖 𝑊𝑖𝑗

𝜎𝑖

)]
(17)

≤ E

[
𝑄

(
𝑇𝑖ℎ𝑖𝑖𝑥𝑖 −

∑
𝑗 ∕=𝑖 𝑇𝑖ℎ𝑖𝑗𝑥𝑗

𝜎𝑖

)]
(18)

= 𝑄

(
𝑦𝑖𝑇𝑖

𝜎𝑖

)
, (19)

where the expectation is over {𝑏𝑘𝑗 : 𝑗 ∕= 𝑖} and {𝜏𝑖𝑗 : 𝑗 ∕= 𝑖};
𝑦𝑖 = ℎ𝑖𝑖𝑥𝑖 −

∑
𝑗 ∕=𝑖 ℎ𝑖𝑗𝑥𝑗 is defined for the worst interfering

bits pattern, i.e., 𝑏𝑘𝑗 falling on [0, 𝑇𝑖] are −1 for all 𝑗 ∕= 𝑖. Let
ỹ = [𝑦1, . . . , 𝑦𝑛]

⊤. It follows from Definition 4 that ỹ = Cx.
If C is an 𝑀 -matrix, by the third equivalent condition of 𝑀 -
matrix, there exists x∗ > 0 such that ỹ∗ = Cx∗ > 0. Let
{𝛼x∗ : 𝛼 > 0} be a sequence of input signal amplitude with
𝛼 → ∞. Then, 𝜆𝑖(𝛼x

∗) ≤ 𝑄(𝛼𝑦∗𝑖 𝑇𝑖/𝜎𝑖) → 0 as 𝛼 → ∞
for all 𝑖. Hence �̂� = 0, that is, the system is asymptotically
error-free.

On the other hand, if C is not an 𝑀 -matrix, given any
x > 0, there exists at least one entry in Cx, say 𝑦𝑖, which is
not positive. Let

𝑃𝑖 = Pr{𝑏𝑘𝑗 = −1 : 𝑗 ∕= 𝑖, 0 ≤ 𝑘 ≤ ⌈𝑇𝑖/𝑇𝑗⌉} (20)

= 2−
∑

𝑗 ∕=𝑖(⌈𝑇𝑖/𝑇𝑗⌉+1).

Then,

𝜆𝑖(x) ≥ 𝑃𝑖𝑄 (𝑦𝑖𝑇𝑖/𝜎𝑖) ≥ 𝑃𝑖𝑄(0) = 𝑃𝑖/2 > 0. (21)

This means that �̂� > 0 and the system is not asymptotically
error-free.

Under the Gaussian model, the minimal BEP �̂�𝐺 =
lim𝛼→∞ 𝜆𝐺

𝑖 (𝛼xZ) > 0 (refer to (13)) and thus the system
will never be asymptotically error-free. In contrast, under the
non-Gaussian model, if the character matrix C is an 𝑀 -matrix,
�̂� = lim𝛼→∞ 𝜆𝑖(𝛼x

∗) = 0 (refer to the proof of Theorem 1)
and the system is asymptotically error-free. What will happen
if C is not an 𝑀 -matrix? Note that for both models if C
is an 𝑀 -matrix, the minimal BEP is approached by letting
𝛼 go to infinity. This is due to the fact that given xZ and
x∗, 𝜆𝐺

𝑖 (𝛼xZ) and 𝜆𝑖(𝛼x
∗) are monotonically decreasing with

𝛼 for all 𝑖. However, for the non-Gaussian model with C
being not an 𝑀 -matrix, given any x, the monotonic property
of 𝜆𝑖(𝛼x) with respect to 𝛼 may not hold for some 𝑖. As a
result, solving the minimal BEP problem for this case is quite
complicated. In subsequent section we study this problem in
a synchronized transmission scenario.

IV. NON-GAUSSIAN MODEL WITH A NON-𝑀 -MATRIX

CHARACTER MATRIX

In this section, we study the minimal BEP problem under
the non-Gaussian model when the character matrix is not an
𝑀 -matrix. Assume all users transmit at the same bit rate
𝑅 = 1/𝑇 and the transmitted signals are synchronized (as
illustrated in Fig. 1(a)). Then the interference statistic, 𝑊𝑖𝑗 ,
given by (5), is 𝑊𝑖𝑗 = 𝑏0𝑗ℎ𝑖𝑗𝑥𝑗𝑇 . For the notation simplicity,
𝑏𝑗 is used instead of 𝑏0𝑗 in this section. Assume 𝜎2

𝑖 /𝑇 = 1.
By (7), the BEP of user 𝑖 is

𝜆𝑖(x) =
1

2𝑛−1

∑
𝑏𝑗′∈𝔹

𝑗′ ∕=𝑖

𝑄

⎛⎝ℎ𝑖𝑖𝑥𝑖 +
∑
𝑗 ∕=𝑖

𝑏𝑗ℎ𝑖𝑗𝑥𝑗

⎞⎠ . (22)

Define a mapping 𝜙 : 𝔹𝑛−1 → ℤ as 𝜙(𝑎1, 𝑎2, . . . , 𝑎𝑛−1) =∑𝑛−1
𝑖=1

𝑎𝑖+1
2 2𝑖−1. It is a notional device. We can check that 𝜙

is a one-to-one mapping and 𝜙[𝔹𝑛−1] = {0, 1, . . . , 2𝑛−1−1}.
For integer 0 ≤ 𝑘 ≤ 2𝑛−1 − 1, define 𝑦𝑘𝑖 (x) = ℎ𝑖𝑖𝑥𝑖 +∑

𝑗 ∕=𝑖 𝑏𝑗ℎ𝑖𝑗𝑥𝑗 , where (𝑏1, . . . , 𝑏𝑖−1, 𝑏𝑖+1, . . . , 𝑏𝑛) = 𝜙−1(𝑘).
Comparing with (22), the BEP can be alternatively written as

𝜆𝑖(x) =
1

2𝑛−1

2𝑛−1−1∑
𝑘=0

𝑄
(
𝑦𝑘𝑖 (x)

)
. (23)

Note that 𝑦0𝑖 (x) = ℎ𝑖𝑖𝑥𝑖−
∑

𝑗 ∕=𝑖 ℎ𝑖𝑗𝑥𝑗 . So for 𝑘 > 0, 𝑦𝑘𝑖 (x) >
𝑦0𝑖 (x). Let y0(x) = (𝑦0𝑖 (x) : 𝑖 = 1, . . . , 𝑛). We see y0(x) =
Cx.

Lemma 1. If a character matrix C is not an 𝑀 -matrix, then
for any x > 0 either at least one entry in Cx is negative or
Cx = 0.

Proof: We prove this by contradiction. Assume that there
exists x > 0 such that all the entries in y0(x) = Cx are
nonnegative and y0(x) ∕= 0. Let Φ = {𝑖 : 𝑦0𝑖 (x) = 0}. If
Φ = ∅, it contradicts with the condition that C is not an 𝑀 -
matrix. Since y0(x) ∕= 0, there exists 𝑖 /∈ Φ such that 𝑦0𝑖 (x) >
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0. Find 0 < 𝜖 < 𝑦0𝑖 (x)/ℎ𝑖𝑖. Let x′ = (𝑥1, . . . , 𝑥𝑖− 𝜖, . . . , 𝑥𝑛).
We have x′ > 0 and Cx′ > 0, i.e., a contradiction to the fact
that C is not an 𝑀 -matrix.

Definition 5. Define sets

1) 𝒳C = {x > 0 : Cx > 0}
2) 𝒳0 = {x > 0 : Cx = 0}
3) 𝒳1 = {x > 0 : 𝑧𝑖,𝑙(x) = ℎ𝑖𝑖𝑥𝑖 −

∑
𝑗 ∕=𝑖,𝑙 ℎ𝑖𝑗𝑥𝑗 > 0, 𝑖 =

1, . . . , 𝑛, 𝑙 ∕= 𝑖}.
Note that 𝑧𝑖,𝑙(x) = 𝑦0𝑖 (x) + ℎ𝑖𝑙𝑥𝑙. Moreover, 𝒳C,𝒳0 and
𝒳1 are cones. 𝒳C ⊂ 𝒳1 and 𝒳0 ⊂ 𝒳1.

Theorem 2. Under the non-Gaussian model, for an 𝑛-user
wireless communication system with synchronized transmis-
sion, if the character matrix is not an 𝑀 -matrix, the minimal
BEP �̂� ≥ 1/2𝑛. Furthermore, if there exists x0 ∈ 𝒳0,
�̂� = lim𝛼→∞ max𝑖=1,...,𝑛 𝜆𝑖(𝛼x0) =

1
2𝑛 .

Proof: If the character matrix C is not an 𝑀 -matrix, for
any x > 0, there exists a user 𝑖 such that 𝑦0𝑖 (x) ≤ 0 (see
Lemma 1). So we have

�̂� ≥ inf
x>0

max
𝑖=1,...,𝑛

1

2𝑛−1
𝑄

(
𝑦0𝑖 (x)

) ≥ 1

2𝑛−1
⋅ 1
2
=

1

2𝑛
. (24)

If there exists x0 ∈ 𝒳0, then for all 𝑖, 𝑦0𝑖 (x0) = 0 and
𝑦𝑘𝑖 (x0) > 0 for 𝑘 > 0. We have

�̂� ≤ lim
𝛼→∞ max

𝑖=1,...,𝑛
𝜆𝑖(𝛼x0)

= max
𝑖=1,...,𝑛

1

2𝑛−1

2𝑛−1−1∑
𝑘=1

lim
𝛼→∞𝑄(𝛼𝑦𝑘𝑖 (x0)) +

1

2𝑛−1
𝑄(0)

=
1

2𝑛−1
⋅ 1
2
=

1

2𝑛
.

Together with (24), �̂� = lim𝛼→∞ max𝑖=1,...,𝑛 𝜆𝑖(𝛼x0) =
1
2𝑛 .

When 𝒳0 = ∅, given any x, there exists a user 𝑖 such
that 𝑦0𝑖 (x) < 0 and thus 𝜆𝑖(𝛼x) may not be monotonically
decreasing with 𝛼. In subsequent discussion, we consider a
class of character matrix for which the monotonic property of
𝜆𝑖(𝛼x) with respect to 𝛼 does not hold. An example is shown
that the solution to the minimal BEP problem is achieved by
a finite power vector.

Given any x > 0, define ℐ−(x) = {𝑖 : 𝑦0𝑖 (x) < 0}. ℐ−(x)
is the complement of ℐ−(x).
Lemma 2. For any x > 0 but x /∈ 𝒳1, ℐ−(x) is nonempty
and there exists 𝑖 ∈ ℐ−(x) such that 𝜆𝑖(x) ≥ 1

2𝑛−1 .

Proof: Since x /∈ 𝒳1, there exists 𝑖 and 𝑙 with 𝑙 ∕= 𝑖 such
that 𝑧𝑖,𝑙(x) ≤ 0. So 𝑦0𝑖 (x) = 𝑧𝑖,𝑙(x) − ℎ𝑖𝑙𝑥𝑙 < 0, and thus
ℐ−(x) is nonempty. In addition,

𝜆𝑖(x) ≥ 1

2𝑛−1
(𝑄(𝑧𝑖,𝑙(x) − ℎ𝑖𝑙𝑥𝑙) +𝑄(𝑧𝑖,𝑙(x) + ℎ𝑖𝑙𝑥𝑙))

≥ 1

2𝑛−1
(𝑄(−ℎ𝑖𝑙𝑥𝑙) +𝑄(ℎ𝑖𝑙𝑥𝑙)) =

1

2𝑛−1
.

Lemma 3. Given x ∈ 𝒳1, 𝑦𝑘𝑖 (x) > ∣𝑦0𝑖 (x)∣ for all 𝑘 ≥ 1 and
all 𝑖.

Proof: Fix a user 𝑖. For any 𝑘 ≥ 1, there exists 𝑙 ∕= 𝑖
such that 𝑏𝑙 = 1. Then

𝑦𝑘𝑖 (x) = ℎ𝑖𝑖𝑥𝑖 +
∑
𝑗 ∕=𝑖,𝑙

𝑏𝑗ℎ𝑖𝑗𝑥𝑗 + ℎ𝑖𝑙𝑥𝑙

≥ ℎ𝑖𝑖𝑥𝑖 −
∑
𝑗 ∕=𝑖,𝑙

ℎ𝑖𝑗𝑥𝑗 + ℎ𝑖𝑙𝑥𝑙 = 𝑧𝑖,𝑙(x) + ℎ𝑖𝑙𝑥𝑙. (25)

Since x ∈ 𝒳1, 𝑧𝑖,𝑙(x) > 0. Thus 𝑧𝑖,𝑙(x) + ℎ𝑖𝑙𝑥𝑙 > −𝑧𝑖,𝑙(x) +
ℎ𝑖𝑙𝑥𝑙 = −𝑦0𝑖 (x). Moreover, 𝑧𝑖,𝑙(x)+ℎ𝑖𝑙𝑥𝑙 > 𝑧𝑖,𝑙(x)−ℎ𝑖𝑙𝑥𝑙 =
𝑦0𝑖 (x). Hence, 𝑧𝑖,𝑙(x) + ℎ𝑖𝑙𝑥𝑙 > ∣𝑦0𝑖 (x)∣. Together with (25),
𝑦𝑘𝑖 (x) > ∣𝑦0𝑖 (x)∣ for any 𝑘 ≥ 1.

Lemma 4. Given x ∈ 𝒳1, for user 𝑖 ∈ ℐ−(x), there exits 𝛼0

such that when 0 < 𝛼 < 𝛼0,
d𝜆𝑖(𝛼x)

d𝛼 < 0 and when 𝛼 > 𝛼0,
d𝜆𝑖(𝛼x)

d𝛼 > 0. Moreover, lim𝛼→∞ 𝜆𝑖(𝛼x) =
1

2𝑛−1 .

Proof: Consider 𝜆𝑖(𝛼x) where 𝛼 ≥ 0 is the variable.
From (23),

𝜆𝑖(𝛼x) =
1

2𝑛−1

2𝑛−1−1∑
𝑘=0

𝑄
(
𝛼𝑦𝑘𝑖 (x)

)
. (26)

Differentiating it with respect to 𝛼, we have

d𝜆𝑖(𝛼x)

d𝛼
=

−1
2𝑛−1

√
2𝜋

2𝑛−1−1∑
𝑘=0

𝑦𝑘𝑖 (x) ⋅ exp
(
− (𝑦𝑘𝑖 (x)𝛼)

2

2

)

=
−1

2𝑛−1
√
2𝜋

exp

(
− (𝑦0𝑖 (x)𝛼)

2

2

) ( ∑
𝑘≥1

𝑦𝑘𝑖 (x)⋅

exp

(
− (𝑦𝑘𝑖 (x)

2 − 𝑦0𝑖 (x)
2)𝛼2

2

)
+ 𝑦0𝑖 (x)

)
.

Let

Ψ(𝛼) =
∑
𝑘≥1

𝑦𝑘𝑖 (x) ⋅ exp
(
− (𝑦𝑘𝑖 (x)

2 − 𝑦0𝑖 (x)
2)𝛼2

2

)
.

Since x ∈ 𝒳1, by Lemma 3, for 𝑘 ≥ 1, 𝑦𝑘𝑖 (x) > 0 and
𝑦𝑘𝑖 (x)

2 − 𝑦0𝑖 (x)
2 > 0. Hence Ψ(𝛼) is strictly and monotoni-

cally decreasing. Moreover, Ψ(0) =
∑

𝑘≥1 𝑦
𝑘
𝑖 (x) > −𝑦0𝑖 (x)

and lim𝛼→∞ Ψ(𝛼) = 0 < −𝑦0𝑖 (x), where 𝑦0𝑖 (x) < 0
due to 𝑖 ∈ ℐ−(x). Since Ψ(𝛼) is continuous, there exists
𝛼0 such that Ψ(𝛼0) + 𝑦0𝑖 (x) = 0. When 0 < 𝛼 < 𝛼0,
d𝜆𝑖(𝛼x)

d𝛼 = −1
2𝑛−1

√
2𝜋

exp
(
− (𝑦0

𝑖 (x)𝛼)
2

2

)
(Ψ(𝛼) + 𝑦0𝑖 (x)) < 0

and when 𝛼 > 𝛼0,
d𝜆𝑖(𝛼x)

d𝛼 > 0. In addition,

lim
𝛼→∞𝜆𝑖(𝛼x) =

1

2𝑛−1

2𝑛−1−1∑
𝑘=1

lim
𝛼→∞𝑄(𝛼𝑦𝑘𝑖 (x))

+
1

2𝑛−1
lim

𝛼→∞𝑄(𝛼𝑦0𝑖 (x)) = 0 +
1

2𝑛−1
⋅ 1 =

1

2𝑛−1
.

Theorem 3. Under the non-Gaussian model, for an 𝑛-user
wireless communication system with synchronized transmis-
sion, when the character matrix is not an 𝑀 -matrix, if 𝒳1 = ∅,
the minimal BEP �̂� ≥ 1

2𝑛−1 ; if 𝒳0 = ∅ but 𝒳1 ∕= ∅,
�̂� = infx∈𝒳1 max𝑖=1,...,𝑛 𝜆𝑖(x) and 1

2𝑛 < �̂� < 1
2𝑛−1 .

Proof: When 𝒳1 = ∅, by Lemma 2, �̂� =
infx/∈𝒳1

max𝑖=1,...,𝑛 𝜆𝑖(x) ≥ 1
2𝑛−1 .
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Fig. 2. BEP versus the power of user 1 and user 2. The solution to the
minimal BEP problem is achieved by a finite power vector.

When 𝒳1 ∕= ∅, consider x̃ ∈ 𝒳1. Since the character matrix
is not an 𝑀 -matrix and 𝒳0 = ∅, by Lemma 1, there exists 𝑖
such that 𝑦0𝑖 (x̃) < 0, and thus 𝑖 ∈ ℐ−(x̃) ∕= ∅. By Lemma 4,
for user 𝑖 ∈ ℐ−(x̃) there exists 𝛼𝑖 such that d𝜆𝑖(𝛼x̃)

d𝛼 > 0
when 𝛼 > 𝛼𝑖 and lim𝛼→∞ 𝜆𝑖(𝛼x̃) = 1

2𝑛−1 . So we have
𝜆𝑖(𝛼x̃) <

1
2𝑛−1 for 𝛼 ≥ 𝛼𝑖. For 𝑖′ ∈ ℐ−(x̃), since 𝑦𝑘𝑖′(x̃) ≥ 0

for all 𝑘, 𝜆𝑖′(𝛼x̃) is monotonically decreasing with 𝛼 and
lim𝛼→∞ 𝜆𝑖′(𝛼x̃) ≤ 1

2𝑛 . Therefore there exists 𝛼𝑖′ such that
𝜆𝑖′ (𝛼x̃) <

1
2𝑛−1 when 𝛼 ≥ 𝛼𝑖′ . Let 𝛼∗ = max𝑖 𝛼𝑖. Then for

𝛼 ≥ 𝛼∗, max𝑖 𝜆𝑖(𝛼x̃) <
1

2𝑛−1 . So

�̂� = min

{
inf

x/∈𝒳1

max
𝑖=1,...,𝑛

𝜆𝑖(x), inf
x∈𝒳1

max
𝑖=1,...,𝑛

𝜆𝑖(x)

}
= inf

x∈𝒳1

max
𝑖=1,...,𝑛

𝜆𝑖(x) ≤ max
𝑖=1,...,𝑛

𝜆𝑖(𝛼
∗x̃) <

1

2𝑛−1
.

Moreover, since there exists 𝑖 such that 𝑦0𝑖 (x) < 0, the second
inequality in (24) holds strictly. Therefore �̂� > 1

2𝑛 .
Fig. 2 plots the BEP versus power for a two-user system

with synchronous transmission. The channel gain matrix is
symmetric and ℎ11 < ℎ12. So the character matrix is a non-
𝑀 -matrix. It can be found that the minimal BEP 0.3128 is
achieved by a finite power vector (0.9, 0.9). To conclude, the
relations of the minimal BEP and the character matrix are
summarized in Table I. From the table, the limitation of the
Gaussian model in predicting the BEP becomes clear.

V. THE MINIMAL POWER PROBLEM

In previous discussion, we focus on the minimal BEP
problem, which provides a theoretic bound on the system
performance. In this section, we consider another common
power control problem: minimize the total transmission power
while maintaining an acceptable QoS for each user, where the
QoS is in terms of BEP. Our purpose is to further explore the
property of the BEP function 𝜆𝑖(x) given by (7) under the
non-Gaussian model and to compare the power control results
under the non-Gaussian model with those under the Gaussian
model. Let 𝜖 be the target BEP, the minimal power problem

can be stated as

min

𝑛∑
𝑖=1

𝑥2𝑖 (27)

s.t. 𝜆𝑖(x) ≤ 𝜖 𝑖 = 1, . . . , 𝑛.

Under the Gaussian model, by (11), we see that 𝜆𝐺
𝑖 (x) is

monotonically decreasing with SINR. Thus the requirement
of BEP 𝜆𝐺

𝑖 (x) ≤ 𝜖 can be transformed to the requirement of
SINR 𝛾𝑖(x) ≥ Γ, where 𝜖 = 𝑄(

√
Γ). It is exactly equivalent

to the SINR tracking problem: min
∑

𝑖 𝑥
2
𝑖 s.t. 𝛾𝑖(x) ≥ Γ,

which can be solved via linear programming. Let u be the

normalized noise vector with entry 𝑢𝑖 = 𝜎2
𝑖 /𝑇

2
𝑖 ℎ

2
𝑖𝑖. Z = (

ℎ2
𝑖𝑗

ℎ2
𝑖𝑖
)

is the normalized power gain matrix as defined in Section III. I
is an 𝑛×𝑛 identity matrix. If the Perron-Frobenius eigenvalue
of Z satisfies 𝜌Z < 1 + 1

Γ , the optimal power setting is [4]

[𝑥21, . . . , 𝑥
2
𝑛]

⊤ = [(
1

Γ
+ 1)I− Z]−1u. (28)

Under the non-Gaussian model, the minimal power problem
(27) cannot be transformed to a linear programming. More-
over, since 𝜆𝑖(x) is a linear combination of 𝑄-functions and
𝑄-function is non-convex on ℝ, 𝜆𝑖(x) is in general non-
convex on {x : x > 0}, and thus (27) is not a convex
optimization. However, note that the Q-function is convex on
ℝ

+. We can add a constraint to ensure the new problem is
convex. Define

𝒳𝜖 = {x : 𝜆𝑖(x) ≤ 𝜖, 𝑖 = 1, . . . , 𝑛}. (29)

Proposition 1. There exists 𝜖0 such that for 𝜖 ≤ 𝜖0, 𝒳𝜖 ⊂ 𝒳C.

Proof: Let 𝜖 ≤ 𝜖0 ≜ min𝑖=1,...,𝑛(𝑃𝑖/2), where 𝑃𝑖 is
defined in (20). If there exists an x ∈ 𝒳𝜖 but x /∈ 𝒳C, at least
one entry in Cx, say the 𝑖th entry, is not positive. By (21),
𝜆𝑖(x) > 𝑃𝑖/2 ≥ 𝜖0 ≥ 𝜖, i.e., a contradiction to x ∈ 𝒳𝜖. Hence
𝒳𝜖 ⊂ 𝒳C.

In practice, an acceptable BEP requirement rarely can be
higher than 10−3, e.g., the tolerable uncoded BEP is less than
10−5 for data and 10−6 for video [17]. We consider a system
of less than six users. It is reasonable to assume 𝜖 < 10−3 <
𝜖0. It needs to be mentioned that, without this assumption, (27)
can be solved following a similar method to be discussed later,
but at the expense of defining more cumbersome parameters.
In this paper, we only present how to solve (27) with the
assumption. So (27) is equivalent to

min
𝑛∑

𝑖=1

𝑥2𝑖 (30)

s.t. 𝜆𝑖(x) ≤ 𝜖 𝑖 = 1, . . . , 𝑛

x ∈ 𝒳C.

If the character matrix C is not an 𝑀 -matrix, 𝒳C = ∅
and there is no feasible solution to (30). It is easy to explain:
when C is not an 𝑀 -matrix, given any amplitude setting,
there exists a user whose signal is weaker than the aggregated
interference. Thus the BEP of that user fails to satisfy the
QoS requirement. In that case, a scheduling is required to
select candidate subsets of concurrently active users and this
investigation is out of the scope of this paper. In subsequent
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TABLE I
COMPARISON BETWEEN THE NON-GAUSSIAN MODEL AND GAUSSIAN MODEL

Character matrix minimal BEP (non-Gaussian) minimal BEP (Gaussian)

𝑀 -matrix (𝒳C ∕= ∅) �̂� = 0

𝒳1 = ∅ �̂� ≥ 1/2𝑛−1

Non 𝑀 -matrix 𝒳0 ∕= ∅ �̂� = 1/2𝑛 �̂�𝐺 = 𝑄
(√

1
𝜌Z−1

)

(synchronized transmission) 𝒳0 = ∅,𝒳1 ∕= ∅ 1/2𝑛 < �̂� < 1/2𝑛−1

discussion, we consider that C is an 𝑀 -matrix. So 𝒳C ∕= ∅.
Moreover, by Theorem 1, 𝒳𝜖 ∕= ∅.

Remark: when C is an 𝑀 -matrix, C′ = (𝑐𝑖𝑗 + Δ𝑖𝑗) is
still an 𝑀 -matrix if max𝑖,𝑗{∣Δ𝑖𝑗 ∣} is small enough. Hence
for fading channel, if the perturbations of the channel gains
are small, the 𝑀 -matrix structure of the character matrix
is preserved. Therefore the feasibility of the minimal power
problem (30) is robust to slow and flat fading up to some
extent.

The following three Lemmas describe the properties of
𝜆𝑖(x) over 𝒳C.

Lemma 5. For any user 𝑖, 𝜆𝑖(x) is convex on 𝒳C.

Proof: 𝒳C is an intersection of 𝑛 half-spaces and hence
convex. Fix a user 𝑖 and assume 𝑏0𝑖 = 1. Let 𝑞𝑖𝑗 =

ℎ𝑖𝑗

∫ 𝑇𝑖

0
𝑎𝑗(𝑡 − 𝜏𝑖𝑗)d𝑡 and q𝑖 = [𝑞𝑖1, . . . , 𝑞𝑖𝑛]. Given q𝑖, by

(5),
∑𝑛

𝑗=1 𝑊𝑖𝑗 = q𝑖x is a linear function of x. So the range
of

∑𝑛
𝑗=1 𝑊𝑖𝑗 over 𝒳C is convex. For x ∈ 𝒳C, we have

𝑛∑
𝑗=1

𝑊𝑖𝑗 = 𝑏0𝑖𝑇𝑖ℎ𝑖𝑖𝑥𝑖 +
∑
𝑗 ∕=𝑖

𝑊𝑖𝑗 ≥ 𝑇𝑖ℎ𝑖𝑖𝑥𝑖 − 𝑇𝑖

∑
𝑗 ∕=𝑖

ℎ𝑖𝑗𝑥𝑗 > 0.

Since 𝑄(𝑥) is convex on 𝑥 > 0, by the composition rule
of convexity-preserving, 𝑄(

∑𝑛
𝑗=1 𝑊𝑖𝑗/𝜎𝑖) = 𝑄(q𝑖x/𝜎𝑖) is

convex on 𝒳C. Therefore 𝜆𝑖(x) = Eq𝑖 [𝑄(q𝑖x/𝜎𝑖)] in (7) is
convex on 𝒳C.

By Lemma 5, we see that problem (30) is convex. For the
convex optimization problem with strictly convex objective
function, there exists at most one global minimizer [18].
Hence, if the optimal value of (30) can be attained, the
minimizer is unique.

Lemma 6. For any user 𝑖, over x ∈ 𝒳C, 𝜆𝑖(x) is a strictly
and monotonically decreasing function of 𝑥𝑖 and a strictly and
monotonically increasing function of 𝑥𝑘 for 𝑘 ∕= 𝑖.

The proof of Lemma 6 can be found in [15]. The idea is
to prove ∂𝜆𝑖(x)

∂𝑥𝑖
< 0 and ∂𝜆𝑖(x)

∂𝑥𝑘
> 0.

Lemma 7. Define a function 𝜆(x) : ℝ
𝑛 → ℝ

𝑛 with
component functions 𝜆1(x), . . . , 𝜆𝑛(x). Then 𝜆(x) is injective
on 𝒳C.

Proof: We first consider that the channel gain matrix
H = (ℎ𝑖𝑗) is row diagonally dominant. In this case, the
character matrix C is an 𝑀 -matrix and 𝒳C ∕= ∅. Suppose
x′, x̂ ∈ 𝒳C and x′ ∕= x̂. Let Δx = x̂ − x′. Suppose
𝑙 ∈ argmax𝑖{∣Δ𝑥𝑖∣}. Since x′ ∕= x̂, Δ𝑥𝑙 ∕= 0. Suppose
Δ𝑥𝑙 < 0, otherwise exchange the value of x̂ and x′. By
Lemma 5, 𝜆𝑙(x) is convex on 𝒳C, and therefore

𝜆𝑙(x̂) ≥ 𝜆𝑙(x
′) +∇𝜆𝑙(x

′)⊤(x̂− x′). (31)

If ∇𝜆𝑙(x
′)⊤(x̂− x′) > 0, we have 𝜆𝑙(x̂) > 𝜆𝑙(x

′). Then for
any x′ ∕= x̂, 𝜆(x′) ∕= 𝜆(x̂) and thus 𝜆(x) is injective on 𝒳C.
Now we show the proof. The 𝑞𝑙𝑗 is defined in the proof of
Lemma 5.

∇𝜆𝑙(x
′)⊤(x̂− x′) =

𝑛∑
𝑗=1

∂𝜆𝑙(x
′)

∂𝑥𝑗
Δ𝑥𝑗

=

𝑛∑
𝑗=1

E 𝑞𝑙𝑗′
𝑗′ ∕=𝑙

[
−𝑞𝑙𝑗
𝜎𝑙
√
2𝜋

exp

(
− (

∑𝑛
𝑗=1 𝑞𝑙𝑗𝑥

′
𝑗)

2

2𝜎2
𝑙

)]
⋅Δ𝑥𝑗

= E 𝑞𝑙𝑗′
𝑗′ ∕=𝑙

⎡⎣ 1

𝜎𝑙
√
2𝜋

(

𝑛∑
𝑗=1

−𝑞𝑙𝑗Δ𝑥𝑗) exp

(
− (

∑𝑛
𝑗=1 𝑞𝑙𝑗𝑥

′
𝑗)

2

2𝜎2
𝑙

)⎤⎦
> 0.

The last inequality holds since for any 𝑞𝑙𝑗 , we have,
𝑛∑

𝑗=1

𝑞𝑙𝑗Δ𝑥𝑗
(𝑎)

≤ ℎ𝑙𝑙𝑇𝑙Δ𝑥𝑙 +
∑
𝑗 ∕=𝑙

ℎ𝑙𝑗𝑇𝑙∣Δ𝑥𝑙∣

= 𝑇𝑙Δ𝑥𝑙

⎛⎝ℎ𝑙𝑙 +
∑
𝑗 ∕=𝑙

−ℎ𝑙𝑗

⎞⎠ (𝑏)
< 0,

where (𝑎) holds since ∣Δ𝑥𝑙∣ ≥ Δ𝑥𝑗 for all 𝑗 and (𝑏) holds
since H is row diagonally dominant.

Now we consider that H is not row diagonally dominant
while C is an 𝑀 -matrix. By the fourth equivalent condition
of 𝑀 -matrix in Definition 3, there exists a positive diagonal
matrix D = diag(𝑑1, . . . , 𝑑𝑛), such that CD is strictly row
diagonally dominant. Hence, 𝑑𝑖ℎ𝑖𝑖 >

∑
𝑗 ∕=𝑖 ℎ𝑖𝑗𝑑𝑗 for all 𝑖.

Let H′ = HD. So H′ is row diagonally dominant. Let CH′

denote the character matrix of H′. We can see that CH′ = CD
and 𝒳CH′ = {x : CH′x > 0} = {D−1x : x ∈ 𝒳C}. 𝜆H′(x)
and 𝜆(x) are the BEP functions for H′ and H respectively.
Since 𝜆H′(x) is injective on 𝒳CH′ , 𝜆(x) = 𝜆H′(D−1x) is
injective on 𝒳C.

Next, we propose an algorithm to prove that the optimal
value of (30) is attainable and the minimizer x∗ satisfies the
inequality constraints with equality, i.e., 𝜆𝑖(x

∗) = 𝜖 for 𝑖 =
1, . . . , 𝑛. Iterative Descent Algorithm:

Input x(0) ∈ 𝒳𝜖 and set 𝑘 = 1.
1) 𝑖 = ∣𝑘∣ mod 𝑛.

If 𝜆𝑖(x
(𝑘)) < 𝜖,

let x(𝑘+1) = [𝑥
(𝑘)
1 , . . . , 𝑥

(𝑘)
𝑖−1, 𝑥

(𝑘+1)
𝑖 , 𝑥

(𝑘)
𝑖+1, . . . , 𝑥

(𝑘)
𝑛 ] s.t.

𝜆𝑖(x
(𝑘+1)) = 𝜖;

otherwise x(𝑘+1) = x(𝑘).
2) 𝑘 ← 𝑘 + 1, go to 1).

Lemma 8. For each user 𝑖, the Iterative Descent Algorithm
generates a sequence {𝑥(𝑘)𝑖 }𝑘. When 𝜖 ≤ 𝜖0, the sequence
{𝑥(𝑘)𝑖 }𝑘 is monotonically decreasing and is bounded below



CHEN and WONG: POWER CONTROL FOR NON-GAUSSIAN INTERFERENCE 2667

by zero, thus it is convergent. Suppose {𝑥(𝑘)𝑖 }𝑘 converges to
𝑥𝑖. Let x̃ = (𝑥1, . . . , 𝑥𝑛). Then 𝜆𝑖(x̃) = 𝜖 for all 𝑖.

Proof: When 𝜖 ≤ 𝜖0, the input x(0) ∈ 𝒳𝜖 ⊂ 𝒳C

(ref. Prop. 1). If 𝜆𝑖(x
(0)) = 𝜖 for all 𝑖, then we are

done. Otherwise 𝜆𝑖(x
(0)) < 𝜖 for some 𝑖. We prove that

the sequences {𝑥(𝑘)𝑖 }𝑘 for 𝑖 = 1, . . . , 𝑛 are monotonically
decreasing by mathematical induction. At the first step, 𝑥(0)1

is updated. Given 𝑥
(0)
𝑗 , 𝑗 ∕= 1, 𝜆1(𝑥1, 𝑥

(0)
2 , . . . , 𝑥

(0)
𝑛 ) is

a continuous and monotonically decreasing function of 𝑥1.
Since 𝜆1(x

(0)) ≤ 𝜖 and 𝜆1(0, 𝑥
(0)
2 , . . . , 𝑥

(𝑘)
𝑛 ) = 1/2 > 𝜖,

there exists 𝑥
(1)
1 s.t. 𝜆1(x

(1)) = 𝜖 and 0 < 𝑥
(1)
1 ≤ 𝑥

(0)
1 .

So 0 < x(1) ≤ x(0). As x(0) ∈ 𝒳C, it can be checked
that x(1) ∈ 𝒳C. Further by Lemma 6, 𝜆𝑗(x) increases with
𝑥1, therefore 𝜆𝑗(x

(1)) ≤ 𝜆𝑗(x
(0)) ≤ 𝜖 for 𝑗 ∕= 1. So

x(1) ∈ 𝒳𝜖. Suppose the statement is truth for 𝑘 steps. That is
0 < x(𝑘) ≤ x(𝑘−1) ≤ ⋅ ⋅ ⋅ ≤ x(0) and x(𝑚) ∈ 𝒳𝜖 ⊂ 𝒳C

for 𝑚 ≤ 𝑘. At the 𝑘 + 1th step, 𝑥
(𝑘)
𝑖 is updated, where

𝑖 = ∣𝑘 + 1∣ mod 𝑛. Following the same arguments, we have
0 < x(𝑘+1) ≤ x(𝑘) and x(𝑘+1) ∈ 𝒳𝜖. Now we already prove
that the sequences {𝑥(𝑘)𝑖 }𝑘 are monotonically decreasing and
are bounded below by zero.

Let x̃ = lim𝑘→∞ x(𝑘). For any arbitrarily small 𝛿 > 0, since
𝜆𝑖(x)’s are continuous functions, there exists a sufficiently
large 𝐾 , when 𝑘 > 𝐾 we have∣∣∣𝜆𝑖(x̃)− 𝜆𝑖(x

(𝑘))
∣∣∣ < 𝛿 ∀𝑖 = 1, . . . , 𝑛. (32)

By the algorithm, 𝜆𝑖(x
(𝑘′)) = 𝜖 for some 𝑘′ > 𝐾 . Therefore,

from (32), we have

∣𝜆𝑖(x̃)− 𝜖∣ < 𝛿 ∀𝑖 = 1, . . . , 𝑛. (33)

That is, 𝜆𝑖(x̃) = 𝜖 for all 𝑖.

Theorem 4. The optimal value of (30) is attainable and the
minimizer x∗ satisfies the inequality constraints with equality,
i.e., 𝜆𝑖(x

∗) = 𝜖 for 𝑖 = 1, . . . , 𝑛. Given any initial point
x(0) ∈ 𝒳𝜖, the Iterative Descent Algorithm converges to the
global minimizer x∗.

Proof: For any x ∈ 𝒳𝜖 with 𝜆𝑖(x) < 𝜖 for some 𝑖,
applying the Iterative Descent Algorithm with x(0) = x,
by Lemma 8, we obtain monotonically decreasing sequences
{𝑥(𝑘)𝑖 }𝑘 which convergence to 𝑥𝑖 for all 𝑖 and 𝜆𝑖(x̃) = 𝜖 for
all 𝑖. It is seen that

∑
𝑖 𝑥

2
𝑖 ≤

∑
𝑖 𝑥

2
𝑖 . As a result, the inequality

constraint in (30) is satisfied with the equality 𝜆𝑖(x) = 𝜖 for
all 𝑖. By Lemma 8, the solution to this equality exists and by
Lemma 7, the solution is unique, denoted by x∗. Since x∗ is
bounded, the optimal value of (30) is attainable. Besides, since
x∗ is unique, given any initial point x(0) ∈ 𝒳𝜖, the Iterative
Descent Algorithm converges to the global minimizer x∗.

Remark: First, for the simplicity of analysis, in (27), the
target BEP of all users are set to be the same 𝜖. However, it
can be generalized to each user having an individual 𝜖𝑖, and all
the conclusions in this section hold with slight modification.
Second, if the objective function in (27) is changed to any
function 𝑓(x) satisfying 𝑓(x) ≥ 𝑓(x′) when x ≥ x′, the
conclusions in this section hold. This property of the objective
function is utilized in the proof of Theorem 4.
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Fig. 3. Power as a function of target BEP 𝜖.

VI. SIMULATION RESULTS

Simulation studies were performed for two-user and three-
user systems. For all 𝑖 and 𝑗, the channel gain ℎ𝑖𝑗 is drawn
from a uniform distribution on the interval [0, 1]. We select the
channel gain matrix whose character matrix is an 𝑀 -matrix.
The uniform distribution is used here only for simplicity. It is
not a necessary condition for the following discussion to be
valid. The power spectral density 𝑁0 of the AWGN is 10−10

W/Hz. The basic transmission bit rate 𝑅 = 1Mb/s.
First, we compare the results of the minimal power problem

under the Gaussian models and non-Gaussian model. Consider
a system involving three active users and each transmitter
transmits at the same bit rate 𝑅. Fig. 3 plots the power versus
target BEP 𝜖 for one of the users. The power under the non-
Gaussian model are found by the Iterative Descent Algorithm.
The solutions under the Gaussian models are solved by (28).
It is seen that the required powers under the Gaussian models
deviate from those under the non-Gaussian model. Roughly,
the smaller the target 𝜖, the lager the differences. Besides, un-
der the Aligned Gaussian model, 𝜖 ≤ 10−3.6 is not achievable
and the required power tend to go to infinity as 𝜖 is close
to 10−3.6. This matches the theoretical value of the minimal
BEP �̂�𝐺 = 10−3.57, calculated by (13). The Misaligned
Gaussian model has similar performance. In conclusion, under
the Gaussian models, the BEP of all users cannot be arbitrarily
small.

Next, we investigate a two-user system where the transmit-
ters use different bit rates. For the convenience of illustration,
we set ℎ11 = ℎ22 and ℎ12 = ℎ21. The power setting is
𝑥21 = 𝑥22 = 0.3mW. The bit rate of user 1 is fixed at 𝑅1 = 𝑅,
while the bit rate of user 2, 𝑅2, changes from 𝑅 to 𝑅/10.
Fig. 4 shows the effect of varying bit rate on BEP under
different models. Under the three models, the BEP of user
2 all decrease as 𝑅2 decreases. One of the reasons is that the
normalized noise variance 𝜎2

2/𝑇
2
2 = 𝑁0𝑅2/2 decreases with

𝑅2. For the Misaligned Gaussian model and non-Gaussian
model, there is another reason, that is, the normalized interfer-
ence variance 𝜎2

𝑊21
/𝑇 2

2 (see (9)) also decreases with 𝑅2. On
the other hand, the Aligned Gaussian model assumes constant
interference variance, so the decrement under this model is
not so significant. As for user 1, under the Aligned Gaussian
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Fig. 4. BEP as a function of bit rate ratio (𝑅1/𝑅2). 𝑅1 = 𝑅 is fixed. 𝑅2

decreases from 𝑅 to 𝑅/10. The dashed lines are for user1, the solid lines
are for user2.

model, the BEP is invariant, while under the Misaligned
Gaussian model and non-Gaussian model, the BEP increase
as 𝑅2 decreases. This is because 𝜎2

𝑊12
/𝑇 2

1 increases as 𝑅2

decreases. The Misaligned Gaussian model has similar results
with the non-Gaussian model, but as it assumes that the
interference is Gaussian distributed, the effect of varying bit
rate on BEP is less significant.

Until now, we have been discussing an uncoded system.
Next, we report some simulations performed for a coded two-
user system. In these simulations a convolutional code with
coding rate 1/2 and Viterbi-decoding with soft-decision was
used. The modulation scheme is BPSK. We set ℎ11 = ℎ22,
ℎ12 = ℎ21, fix 𝑁0 and the symbol rates by 𝑅1 = 𝑅2 = 𝑅.
We set the symbol amplitudes by 𝑥1 = 𝑥2 = 𝑥 and select
𝑥 such that 𝐸𝑏

𝑁0
= 2𝐸𝑠

𝑁0
= 2𝑥2/𝑅

𝑁0
with 𝐸𝑏

𝑁0
ranging from

0dB to 30dB. Fig. 5 illustrates BEP versus 𝐸𝑏

𝑁0
for a coded

system and an uncoded system. In both cases, the Gaussian
models yield pessimistic results. Under the Gaussian models,
the BEP cannot be arbitrarily small, while under the non-
Gaussian model, the BEP can decrease to zero. Moreover,
the Misaligned Gaussian model and the non-Gaussian model
start out to have similar performance for small 𝐸𝑏

𝑁0
ratio and

diverge significantly when the ratio increases. However, for
the uncoded system the divergence starts to occur for smaller
values of 𝐸𝑏

𝑁0
(around 6dB) when compared to the coded

system (around 8db).

VII. CONCLUDING REMARKS

In this paper, we investigate a non-Gaussian interference
model. As demonstrated by both analysis and simulations, the
non-Gaussian model has significantly different performance
characteristics from the Gaussian model. We note that the
analysis in this study, although specific to certain assumptions,
can be extended to more general situations, for example when
the channels are time-varying. However, the results reported
in the paper aim to shed further lights on more realistic
interference models and may lead to more effective power
control algorithms.
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Fig. 5. BEP as a function of 𝐸𝑏/𝑁0. The dashed lines are for the uncoded
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